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Abstract

Some results on the Nelson model are reported including: (i) an algebraic definition;
(ii) field equations ; (iii) existence of a ground state in the massless case in a non-

Fock representation.
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1 Introduction

The Nelson model, which was introduced in [10], describes a system of N quantum parti-
cles coupled to a quantum scalar field on the d-dimensional space IR? (d, N € IN). If the
quantum field is massive (resp. massless), then the model is called massive (resp. mass-
less). Nelson showed that, in the massive case, the model is ultravioletly renormalizable,
1.e., the model without ultraviolet cutoff (high-energy cutoff) can be constructed within
the Hilbert space in which the unperturbed Hamiltonian is defined. Recently Ammari
constructed a scattering theory for the renormalized Nelson model [1].

From the view-point of the radiation theory of atoms interacting with the quantized
radiation field, it is more important and interesting to consider the massless Nelson model.
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In this note we report on some results of the Nelson model including the massless case.
For more details, see [2].

Among problems concerning the massless Nelson model, the problem of existence of
a ground state is particularly important. It should be remarked, however, that, generally
speaking, there is some subtlety on the existence of ground states of massless quantum field
models. This is due to possible infrared divergences, which are related to the phenomenon
where the total energy of bosons emitted at low energy is finite, but the number of such
bosons (soft bosons) blows up. Indeed, in a class of models which describe interactions
of particles and massless quantum fields, it is proved or suggested that they have no
ground states if no infrared cutoff is made in the interactions, althogh it may depend on
the strength of the parameters contained in the Hamiltonians [3, 4, 6, 13]. On the other
hand, the Pauli-Fierz model in non-relativistic quantum electrodynamics without infrared
cutoff has a ground state [5, 8].

It has been shown that the massless Nelson model with infrared cutoff (low-energy
cutoff) has a ground state [7, 14]. A natural question is then if the model without infrared
cutoff has a ground state or not. As for this problem, Lérinczi, Minlos and Spohn [9]
proved that, in the case d = 3 and N = 1, the massless Nelson model without infrared
cutoff has no ground state within the Fock space where the time-zero fields are given by
the usual Fock representation of the canonical commutation relations (CCR) indexed by
Sred(]Rd), the space of real-valued, rapidly decreasing C'*°-functions on R¢.

The purpose of this note is to point out that, if we consider the massless Nelson model
in a non-Fock representation of the CCR for time-zero fields, then it has a ground state
even in the case where no infrared cutoff is made. This new representation of the massless
Nelson model is inequivalent to the Fock one if no infrared cutoff is made.

2 Algebraic characterization and field equations of
the Nelson model

2.1 The standard Nelson model

We first review the Nelson model in the standard form [10]. We call it the standard Nelson

model (SNM).
The coordinate of the configuration space IR*Y of the N particles is denoted ¢ =

(q1,°++, qN) € RN with ¢; := (gj1,°**,qja) € R? (j = 1,---,N). The Hamiltonian of
the particle system is then given by the Schrodinger operator

N
1
Hp = —; %—;Aq-j + V, (2.1)

acting on L?(IR*N), where m; > 0 is the mass of the j-th particle and A, is the d-
dimensional generalized Laplacian in the variable g;.

For a linear operator T, we denote its domain by D(T').

We assume the following;:
(H.1) The operator H, is self-adjoint on its natural domain D(Hj) = NIL, D(A,;,)ND(V)

and bounded from below.
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The Hilbert space for state vectors of the quantum scalar field is given by
Fo := @2, ®F L*(RY), (2:2)

the Boson Fock space over L*(IR?), where ®L*(R?) is the symmetric tensor product of
L*(R) (82L*(RY) := C).

Let w be a nonnegative Borel measurable function on R? such that 0 < w(k) < oo
for almost everywehre (a.e.) k € IR? with respect to the d-dimensional Lebesgue measure

and
w(k) = w(—k) a.e.k. (2.3)

For a.e. k € R?, w(k) physically means the energy of one free boson with momentum
k. The function w defines a nonnegative self-adjoint multiplication operator on L?(IR?)
which is injective.

Remark 2.1 A physical example for w is given by
wm(k) :=Vk?+m?, ke R, (2.4)
with m > 0 a constant denoting the mass of one boson. We are interested in the massless
case m = 0: wo(k) = |k|
The free Hamiltonian of the quantum scalar field is defined by
Hy, := dT'(w), (2.5)

the second quantization of w [11, §X.7]. _
We denote the annihilation operators on Fy, by a(f) = fraa(k)f(k)*dk (f € L*(IR?))
[11, §X.7]. The symmetric operator

8s(f) == —lﬁ(a(f)* +a(f)), (2.6)

called the Segal field operator, is essentially self-adjoint [11, §X.7]. We denote its closure
by the same symbol.
Let S',,(R?) be the set of real tempered distributions on IR? and, for each s € R,

H := {f € Sl a(R*)|w’ f € L*(R?)}, (2.7)
where

f(k) == (—2:?2- [ @) ds 2.8)

is the Fourier transform of f.
For f € H;'/? and g € H/?, we can define

a

¢r(f) 1= ®s (\/ia) , mr(g) = Bs (iviwy) . (2.9)

Let
Fo = {¢ = {¥™M}2, € F|p™ = 0 for all but finitely many n’s}, (2.10)
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called the subspace of finite-particle vectors. Then, for all f € H;'/2? and g € HY/?, ¢p(f)
and 7r(g) leave F, invariant satisfying the CCR

(ge(f)ome()] = i [, F(k)a(k)dk, (2.11)
[6e(F), $6(f)] =0, [me(9),7r(d)] =0, f,f € H;'?, 9,4’ € HL?, (2.12)

on Fo. Namely, {¢p(f), me(g)|f € H;'/?,g € HY?} gives a representation of the CCR.
This representation is called the Fock representation of the CCR. The time-zero fields in
the SNM are given by ¢r(f) and 7r(g).
The Hilbert space for the total system of the particles and the quantum scalar field in
the SNM is
H := L}(R™N) ® F. (2.13)

As usual, we freely use the natural identification of H with f]g.m Frdq, the constant fibre
direct integral with base space (IR*", dq) and fibre 7, [12, §XIIL.16].
In what follows, for notational simplicity, a decomposable operator A = fgm A(q)dq

on H with fibre A(q) (which is an operator on F;, for each ¢ € IR*) is denoted A(q) also.
To describe an interaction between the particles and the quantum scalar field, we fix
distributions p; € S.y(IR%),j = 1,-+-, N, which satisfy the following:

(H.2) Forj=1,---,N,
p; € HS, s=—1/2, —1. (2.14)

The interaction of the particles and the quantum field in the SNM is given by the
operator

N A x
Hf =3 @& (e-"‘%‘ %) (2.15)

=1 w

acting in H. Formally we have Hf = T, fga ¢r(q; — z)p;j(z)dz, where

1
" o P

The total Hamiltonian of the SNM is defined by

{a(k)*e~** + a(k)e*}dk.

Hsnm := Ho + MHY, (2.16)

where

Ho = Hp + Hb (217)
and A € R \ {0} denotes the coupling constant of the model.
Proposition 2.1 Assume (H.1) and (H.2). Then Hgnm is self-adjoint with D(Hsnm) =

D(H,) and bounded from below. Moreover, Hsnm is essentially self-adjoint on each core

Of.Ho

In summary, the SNM is characterized in terms of the Hamiltonian Hsnym and the
time-zero-fields {¢r(f), 7r(9)|f € HZY?,g € HY/?}.
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2.2 An abstract definition of the Nelson model

As is seen above, the SNM uses the Fock representation of the CCR to give its time-zero
fields and its Hamiltonain. We want to define the Nelson model in a way independent of
the choice of representations of the CCR for time-zero fields. A natural manner for this is
to use commutation relations fulfilled by observables, i.e., to find a possible Lie algebraic
structure. We shall take commutation relations in a weak sense.

We denote the inner product and the norm of a Hilbert space X by (-, -), and || - ||
respectively. But, if there is no danger of confusion, then we simply write them as (-, -)

and || - |-

Definition 2.2 Let A and B be densely defined linear operators on a Hilbert space X
and D be a subspace of X such that D C D(A)ND(B)ND(A*)N D(B*). Then we define
a quadratic form [A, B]? by

[A, BID(%,9) := (A", Bg) — (B"Y, Ad), ¢,¢ € D.
(“w” means “weak”.)

Remark 2.2 If A and B are bounded on X with D(A) = D(B) = X, then, for all dense
subspaces D of X, [A, B2 (v, ¢) = (v, [A, B]¢) for all 4, ¢ € D, where [A, B] := AB— BA

(the usual commutator).

Let F be a Hilbert space and
®
— T2(JR4N _
K = [}(R™)® F = /R _ Fdg. (2.18)

Definition 2.3 Assume (H.1) and (H.2). Let so and s; be real constants. A Nelson
model is a set MNeon := {K, D, Ly, {6(f), 7(9)|f € HZ,g € H:'}} having the following

properties:
(N.1) D is a dense subspace of K.
(N.2) L, is a symmetric operator on K and the operator
Hym :=Hy, + Ly, (2.19)

is self-adjoint (D(Hnwm) := D(Hp) N D(Ly)). We call Hyy the Hamiltonian of the
Nelson model Mpeison-

(N.3) The function w is such that
Seea(IRY) C H® N H*+2 0 H N H} (2.20)
and, forallyj=1,.--,N,u=1,--.,d,
D,p; € HY, ' (2.21)

where D, (u = 1,---,d) is the generalized partial differential operator in the p-th
variable z, in £ = (z,,:++,24) € R
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(N.4) {K,D,{6(f),7(f)If € Srea(R?)}} is a representation of the CCR indexed by
Sieal(IRY). Namely, for all f,g € Sreal(IR?Y), ¢(f) and 7(f) are self-adjoint oper-
ators on K with D C D(¢(f)7(g9)) N D(x(f)¢(g)) N D((f)¢(g)) N D(x(f)m(g))

satisfying the CCR
$(5), (o)l =i [, F(@)g()da, (2:22)
[6(£), 4(a)] =0, [x(£),7(s)] =0, (223)

on D and the linearity:
#(af + bg) = ad(f) + bp(g), w(af + bg) =.ar(f) +br(g), a,bER,
on D.
(N5) Let X = qj;npjwy = ¢(f)’7r(f), j=14L-- Np=1,-- -,d, f€ Sreal(IR'd)- There
exists a dense subspace £ of K such that
EC D(X)ND(Y)NnD(Ly)ND(Hyp) (2.24)
and the following relations hold in the sense of quadratic form on £:
Ly giule =0, [Dn,piule = IA(Dupi(g; — ),
L, ¢(f)]w = —im(f),

' N
[Ly, 7(f)]e = i¢(w(=iV)*f) +iX 2(/’;’ * £)(g5),

[X,Y]6 =0, [HpY],=0,
where V = (Dy,---,Dy) and p; * f is the convolution of p; and f: (p; * f)(z) :=
Jra pi(z — y)f(y)dy.
Remark 2.3 (i) We have

(VPN = Gy Jpu kP F Rk, ] € SRS,

Hence (N.3) implies that
w(“iV)Zf € HZO,

so that ¢(w(—iV)?%f) is defined. '
(ii) It follows from (H.2) and (N.3) that, for all f € Sreal(IRY), p; * f is a bounded
continuous function on R?, so that p; * f(g;) is a bounded self-adjoint multiplication

operator with D(p; * f(g;)) = K.
The SNM is indeed a Nelson model in the above sense. We introduce
}-w,ﬁn = L{QO’ a(fl)*"'a(fn)*ﬂoln € ]N’ fj € D(w),J = 1,"',71}, ' (225)

where Qo := {1,0,0,---} € F is the Fock vacuum and L{:--} means the subspace
algebraically spanned by all the vectors in the set {---}, and

D() = Cgo(RdN) ®alg ]:'w,ﬁn’ : (2‘26)

where ®,, denotes algebraic tensor product.
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Proposition 2.4 Assume (H.1) and (H.2). Suppose that

Vel (R™):= {u :R*™ 5 € ‘ /| <n lu(q)|*dg < 0o,VR > 0} ,  (2:27)
1 S

Seeat(IRY) € HY? N HY/2?, (2.28)
and, fO‘I’j = 1’°"’Nal‘ = 1)"'7d)
D,p; € H;'2. (2.29)
Let
L™ .= H, + \HF. (2.30)
Then

Msnm = {H, Do,LiNMa {¢r(f), 7r(g)|f € HJI/Z,Q € HulJ/z}}

1s a Nelson model.

2.3 Field equations
We derive field equations for the Nelson model IMNeison in a weak sense.

Definition 2.5 Let X be a Hilbert space and A(t) (¢ € R) be a linear operator on X.
Suppose that there exists a dense subspace D of X such that D C D(A(t)) for all t € R.
We say that A(t) is weakly differentiable on D if, for all 4, ¢ € D, the function (i, A(t)¢)
is differentiable in ¢ € R. In that case we define a quadratic form w-dA(t)/dt|p on D by

w L2 4,8) = 20 A0), $é€D.

Definition 2.6 Let X be a Hilbert space and H be a self-adjoint operator on H. Let A

be a delnsely defined linear operator on X. We say that A is in the set Ay if it satisfies

the following (i) and (ii):

(i) There exists a dense subspace D4 C D(H) such that, for all s € R, e*¥D, C
D(A)N D(A%).

(ii) For all ¢ € D4, the X-valued functions: s — Ae**H4) and s — A*e"” 1 are strongly
continuous on IR.

For A € Ay, we set _
DA,H = L{C”H'l/)l’lp € .DA,S € IR,} (231)

The canonical Heisenberg operators of the Neson model Mneson (Definition 2.3) are
defined as follows:
Qiu(t) = € Mg; e, p(2) 1= et eI, . (2.32)
$(t, f) := Mg fle~Hvmu - x(t, f) ;= eHMMg(t, f)etHm, (2.33)
j=1,---,N, p=1,--+,d, f € Sreat(R?), t € R.

For a self-adjoint operator T', Q(T') denotes the form domain of the quadratic form
associated with T'.
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Theorem 2.7 Consider the Nelson model Myeison (Definition 2.8). Assume (H.1), (H.2)
and the following (A.1)-(A.5):

(A.1) (2.27) holds and H, is essentially self-adjoint on CP(RM).

(A2) Forallj=1,---,N, p=1,---,d, the distributional partial derivative D;,V in the
variable g;, is a Borel measurable function on RN which is a.e. finite with respect
to the Lebesque measure. Moreover, CP(IRN) is a form core of the self-adjoint
multiplication operator D;,V and D(H,) C NX; Ni_, Q(D;,V).

(A.3) In addition to (2.24),
£ € D(Hy) N {n¥y Nf oy [D(piuar) 0 D(gupsu)]} 0 [N Ny Q(D1V))]-
(A.4) For all s € R, e*HNM leaves £ invariant: e*thwmg c €

(A5) Forallj=1,---,N, p=1,---,d and ¢ € £, the K-valued function gjueHMy is
strongly continuous in s € IR.

(A.6) For all f € Sreal(IRY), the K-valued functions o(f)e*H My and w(f)e'*Hvmy are
strongly continuous in s € R.

Then the Heisenberg operators ¢;,(t), p;u(t), #(t, f) and n(t, f) (f € Sreat(IR?)) are weakly
differentiable on € and

d‘Iju(t) _ Pju(t)
w-— le =T, (2.34)
w220 pLv(e) - A GDupi( — NI, (235)
w-%f—)‘s =n(t, f), (2.36)
N
w L) gt (i) = 3 (s * e, (237)

where g;(t) == (g1 (1), -+, ¢ja(t)), a(t) = (q1(2), -+~ v (2))-
To apply Theorem 2.7 to the SNM, we need the following condition too.
(H.3) The function w is such that
Seea(RY) € H' 0 HY2. (2.38)
Theorem 2.8 Assume (H.1)-(H.3), (A.1), (A.2) and (2.29). Suppose that Q(V) C
D(|q|) and there ezist constants c1,c; > 0 such that for all u € R(V)
llglull < ex[[IVI2ull + ealull (2.39)
and that
D(H,) € MYy 0%,y [D(psuan) N D{gupi)] N (NI NELy QDY) (2.40)

Then the conclusion of Theorem 2.7 holds with Hym = Hsnm, ¢(f) = ér(f), m(f) = e (f)
and € = D(Hsnm).
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3 A Nelson model in a non-Fock representation

Under hypotheses (H.2) and (H.3), we can define for each f € Spea(IR?)

)= ge() 43 [ AL 2L (3.1)
We set
#(f) = = (f). (3.2)
Proposition 3.1 Assume (H.2) and (H.3). Then:
() {Fo, Fo, {0(F), F(F)If € Sreat(R?)}} is a representation of the CCR indezed by Sreal(R?).

(ii) The representation {G(f),#(f)|f € Swea(IR?)}} is unitarily equivalent to the Fock
representation {¢r(f), 7r(F)|f € Sreat(R?)}} if and only if E;-Vﬂ p; € H;3/2,

We now consider a Nelson model whose time-zero fields are glven by {¢( D, ®(HIf €
Sreat(R%)}. We introduce an L?*(R%)-valued function G on RN (G : R*N — L2(RY),
Glg) € LA(R?), g € R*™) by

pilk)"

G(g)(k) := Z (et —1) (3.3)
=1 (Jw(k)
and a function N
Pi(K)Ai(K)" gk dN
= T dk . .
W(q) j§1 e o) , g€R (3.4)
By reality of p; and (2.3), W is real-valued.
We define a Hamiltonian by
H := Hy + A\®s(G(q)) — N*W + co)?, (3.5)
where
i3 ) Tjmibs (3.6)
W amy

Lemma 3.2 Assume (H.1) and (H.2). Then H is self-adjoint with D(H) = D(H,) and
bounded from below. Moreover, H is essentiqlly self-adjoint on each core of Hy.

Let
LYF := Hy, + A®s(G(q)) — \2W + o2, (3.7

so that
H = H, + L}F. (3.8)
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Proposition 3.3 Assume (H.1)-(H.3). Then
MNF = {H, DO, LI;TF, {g(f)ﬂ?(g)lf € H;:lag € Hul;/z}} (39)
is a Nelson model.

Proposition 3.4 Assume (H.1)-(H.3). Then {H,{$(f),#(f)|f € Seea(R?)}} is unitar-
ily equivalent to {Hsnm, {8r(f), 7e(f)|f € Sreat(R?)}} if and only if

N
3 p; € HY2 (3.10)

i=1

Proposition 3.4 shows that, under (H.1)~(H.3) and the condition that I, p; € H;3/2,
the Nelson model My is equivalent to the SNM. In this case, under suitable additional
conditions, Hgnm has a ground state [7] and so does H. Thus we are interested in the
case

N

S b ¢ H (3.11)

J=1
This condition is called an infrared singularity condition. In this paper, we say that the
Nelson model Myeison has no infrared cutoff if (3.11) holds. Under condition (3.11), the
Nelson model IMyr is not unitarily equivalent to the SNM. Note that (3.11) and the
natural condition Y, p;/+/@ € L*(IR?) imply :

ess.inf cpaw(k) =0 ' (3.12)

(“ess.inf” means essential infimum), i.e., the quantum scalar field under consideration is
“massless”.

4 Existence of a ground state of the Nelson model
Myr without infrared cutoff |

Let T be a self-adjoint operator on a Hilbert space and bounded from below. We say that
T has a ground state if there exists a non-zero vector 3 € D(T) such that Ty = Eo(T),
where Eo(T) := inf o(T) is the infimum of the spectrum o(T) of T'. In that case ¥ is

called a ground state of 7.
To ensure the existence of a ground state of the model IMyr without infrared cutoff,

we need some additional conditions.
(H.4) The function w is continuous on R? satisfying (3.12) and the following conditions:

D#w € Loo(]Rd)’ B = 17"'ad,
(H.5) Forj=1,---,N,

|k21;(K)I? | :
L. k< I G
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(H.6) There exist constants ¢;,c; > 0 such that

lg? < a1V (q) + c;, a.e.qe RV, (4.2)

An infrared-cutoff Hamiltonian of the SNM is defined by

- ikg; Xw2aPs”
Hsnmo == Ho+ 1) ®s (8_""” —WLJ—) , (4.3)

i=1 w

where o > 0 is an infrared cutoff parameter and x5 is a characteristic function of the set

S.

Under (H.2), we can define for all & > 0 a unitary operator

N 5
U, := exp (——M‘Ps (i——z‘1=;§/“;26p])) .

Theorem 4.1 Assume (H.1)-(H.6). Then H has a ground state v, which has the fol-
lowing property: there ezists a sequence {¢,,}°>, of unit vectors in D(Hy) such that
o, >0,n €N, lim,, 0, =0, each ¢,, is a ground state of Hsnm,o,, and

w- lim U; s, = do, (45)

(4.4)

where “w-im” means weak limit.

Remark 4.1 Consider the physical case w = wp ((2.4) with m = 0). Suppose that

N .
> ﬁ’Tﬁf; ¢ L*(R?). (4.6)

=1
Then (3.11), (H.2), (H.4) and (H.5) hold with w = wp. Hence Theorem 4.1 holds in the
physical case without infrared cutoff.

Remark 4.2 Assume (H.3) and (3.11). Then we have
w-lim U, = 0. (4.7)

o—0

This is an expression of infrared divergence. Hence the relation w-lim,_.co U }¢,, = tho
in Theorem 4.1 suggests that w-lim,_, ¢,, = 0.
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