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Fundamental groups of curves in positive characteristic

AKIO TAMAGAWA (EJIEKHKE)
RIMS, Kyoto Univ. (FEBKZEEBHTHIZERT)

ABSTRACT. We present some recent results (mainly of the author) concerning fun-
damental groups of curves over algebraically closed fields of positive characteristic.

§1. Main question (cf. [H2,4][T3]).
In this §, we introduce our main question.
Throughout this article, we let k denote an algebraically closed field of charac-

teristic p > 0, X a smooth curve over k, X* the smooth compactification of X

and £ % X* — X. We define non-negative integers g and n to be the genus of the

proper, smooth curve X* and the cardinality of the point set ¥, respectively. Note
that X is hyperbolic (resp. affine, resp. projective) if and only if 2 — 29 — n < 0,
ie., (g,n) # (0,0),(0,1),(0,2),(1,0) (resp. n > 0, resp. n = 0).

We denote by k(X)~ the maximal separable algebraic extension of k(X) in which
the discrete valuation ring Ox , is unramified for all z € X, and by k(X)™~* the
maximal separable algebraic extension of k(X)) in which Ox , is unramified for all
z € X and at most tamely ramified for all x € ¥. Then, the fundamental group
71(X) (resp. the tame fundamental group 7}(X)) of X is nothing but the Galois
group Gal(k(X)~/k(X)) (resp. Gal(k(X)™~*/k(X))).

Definition.
(i) For a (discrete) group I', we denote by I'" its profinite completion

lim T/N.
—
Nar', (I':N)<oo

(ii) For a profinite group G, we denote by GP' its maximal pro-prime-to-p quotient

lim G/N.
(__.
NG closed, pt(G:N)<oo

(iii) For non-negative integers g and n, we denote by II, ,, the topological funda-
mental group of a compact orientable surface of genus g with n points deleted.
More concretely,

—1,4-1 —1g-
Hg,n=(a1,°--aag,ﬂl,""ﬁg,7lv""7nIalﬂlal ,31 ---agﬁgag ,39171-”711:1}

In particular, if n > 0, Iy , is a free group of rank 2g + n — 1.
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The following fact concerning 7 (X) and #}(X) is more or less well-known:

Lemma.
We have the following three surjections (i)—(iii):
m1(X)
L@

(i (iii) '
(Ilg,n) @ m1(X) = (Ign)7P .
Moreover, we have:
(i) s an isomorphism < n =0,

(ii) is an isomorphism <= (g,n) = (0,0),(0,1),
and

oy : . either (g,n) = (0,0), (0,1),(0,2),
(i) is an isomorphism <= { , ,

or (g,n) = (1,0) and X is supersingular.
Proof. Surjection (i) comes from the definitions of 71(X) and #¢(X) (or the above
descriptions of m1(X) and #%(X) in terms of Galois groups). For surjections (ii)
and (iii), see [SGA1].

If n =0, i.e., X is projective, then the natural surjection m;(X) — 7¥(X) is an
isomorphism by definition. On the other hand, if n > 0, i.e., X is affine, m;(X) is
not topologically finitely generated (as its maximal pro-p quotient m1(X)P is a free
pro-p group of rank |k|), while 7}(X) is always topologically finitely generated as
a quotient of (Il; )" Thus, in this case, (i) cannot be an isomorphism.

Next, if (g,n) = (0,0),(0,1), then we have II;, = {1}. Thus, in this case,
surjections (ii) and (iii) must be isomorphisms. If (g,n) = (0,2) (resp (g, n) =
(1 0) and X is supersingular), then 7¢(X) coincides with (II,, WP = y/d (resp.
Z° x 77 ). Thus, surjection (iii) is then an isomorphism.

On the other hand, assume that (ii) is an isomorphism. Then, the abelianizations
(g,n) 2P and 7¢(X )ab are also isomorphic to each other. Observing the pro-p parts,
we obtain 29 + n — 1 + b3 = ~, where b(®) denotes the second Betti number of
X (i.e., ® =1 for n = 0 and b = 0 for n > 0), and v denotes the p-rank (or
Hasse-Witt invariant) of X. Since v < g, this equality implies (g,n) = (0,0), (0,1).

Finally, assume that (iii) is an isomorphism, which implies that 7}(X) has a
trivial pro-p-Sylow subgroup. If either (g,n) = (0, 0), (0,1),(0,2), or (g,n) = (1,0)
and X is supersingular, nothing remains to be proved If (g,n) (1,0) and X is
ordinary, then 74(X) = m;(X) is isomorphic to 7P x 7P x Zp, hence its pro-p-
Sylow subgroup is non-trivial. Finally, if (g,n) # (0,0),(0,1),(0,2),(1,0), i.e., X
is hyperbolic, then there exists a tame covering ¥ — X such that the genus of Y=
is not less than 2. By [R1], Corollaire 4.3.2, m1(Y*) has a non-trivial pro-p-Sylow
subgroup. Since 71(Y™*) is a subquotient of #%(X), this implies that #%(X) admits
a non-trivial pro-p-Sylow subgroup. This completes the proof. [
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Example.

The following are the only cases (for the present) in which we can describe 7 (X)
or 7} (X) explicitly.

(i) If (g,n) = (0,0), then we have

m(X) = 7i(X) = {1}.

(ii) If (g9,m) = (0,1), then we have 7¥(X) = {1}.
(iii) If (g,n) = (0,2), then we have

~ 7

(X))~ ZF.
(iv) If (g,n) = (1,0), then we have

Z* x7F x Z,, X: ordinary,

m X:ﬂ'th ~ o~ 9
1(X) 1(X) {zp x ZP' X: supersingular.

Now, our main question is as follows. b

Main question.
FEzactly what information on the geometry of X does m1(X) (or (X)) carry?

As for this question, the best situation we can expect is:

Hope.

Assume k = F,. (For general k, see [T3].)

(i) 71 (X) determines the isomorphism class of X (as a scheme), unless (g,n) =
(1,0).

(i) 74(X) determines the isomorphism class of X (as a scheme), unless (g,n) =
(0,0),(0,1),(1,0).

Remark (which shows that our problem is rather subtle).

(i) In characteristic 0, we have 71(X) = 7}(X) ~ (Ily,»)" which carries very little
information about X.

(ii) Let w4(X) denote the set of isomorphism classes of finite quotient groups of
71(X). Then, the Abhyankar conjecture (proved by Raynaud [R2] and Harbater
[H1]) asserts that, if n > 0, we have

74(X) = {G | G*' is generated by (at most) 29+ n — 1 elements.}/ ~ .

Thus, in this case, m4(X) carries very little information about X.

(iii) The geometric Shafarevich conjecture (proved by Harbater [H3] and Pop [P])
asserts that the absolute Galois group Gi(x) is a free profinite group of rank |k|.
Thus, G(X), which is an extension group of 71 (X), carries very little information
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§2. Some results (which support our hope).
In this §, we present some results which support our hope in the last §.

Theorem 0.
(i) ([T1]) m1(X) determines (g,n).
(i) ([T2]) =t(X) determines (g,n), unless (g,n) = (0,0),(0,1).

Theorem 1.

Assume k =TF, and g = 0.

(i) ([T1]) 71 (X) determines the isomorphism class of X (as a scheme).

(i) ([T2]) mt(X) determines the isomorphism class of X (as a scheme), unless
n=0,1.

Theorem 2 ([PS], [R4], [T4]).

Assume k = F.

(i) m1(X) determines the isomorphism class of X up to finite possibilities, unless
(g,n) = (1,0).

(ii) 7¥(X) determines the isomorphism class of X up to finite possibilities, unless
(9,n) = (1,0).

One of the main ingredients of the proofs of the above theorems is Raynaud’s
theory of theta divisors ([R1], cf. [R3], [M]).

§3. Applications.
In this §, we present two applications of the results in the last §.

Corollary to Theorem 1(ii) (Tamagawa, unwritten yet).

Let L be a subfield of Q, and assume that there exist infinitely many rational primes
p, such that Is N G ¢ I3 holds for some prime b of Q above p. (Here, I (resp.
IF ) denotes the inertia subgroup (resp. the pro-p-Sylow subgroup of the inertia
subgroup) at p.) Let X be a smooth, hyperbolic curve over L, and assume that the
smooth compactification of X is of genus 0. Then, the outer Galois representation
p: Gr — Out(m1(Xg)) determines the isomorphism class of X as an L-scheme.

Corollary to Theorem 2(ii) ([T4]).

Let F be a function field of one variable over a finite field of characteristic p. Let X
be a smooth, hyperbolic curve over F, and assume that X is non-isotrivial. Let p*
denote the outer Galois representation Gg — Out(w}(X3)). Then, for all primes
P of F, we have

Ker(p*) N Dp C IE.

(Here, Dp (resp. I}) denotes the decomposition subgroup (resp. the pro-p-Sylow
subgroup of the inertia subgroup) at P, defined up to conjugacy.)

Remark.
Let F be an arbitrary field of characteristic > 0, and X a smooth, affine curve over
F. Then, the outer Galois representation p : Gp — Out(m1 (X)) is injective (see
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