On the structure of weak interlaced bilattice $\mathcal{K}(L)$

島根大学総合理工学部 近藤通朗 (Michiro Kondo)

Department of Mathematics and Computer Science Shimane University

Abstract

We study fundamental properties of weak interlaced bilattices $\mathcal{K}(L)$ and show that for any weak interlaced bilattice \mathcal{W} there exists a lattice L such that \mathcal{W} can be embedded into a weak interlaced bilattice $\mathcal{K}(L)$. Hence, any interlaced bilattice can be embedded into the weak interlaced bilattice $\mathcal{K}(L)$ for some lattice L.

1 Introduction

It is well-known that the Kleene's 3-valued logic plays an important role in the field of multiple-valued logics. The logic has three values false, true, and \bot (unknown) as truth values. These values have two informal orderings concerning "amount of knowledge" and "degree of truth". For example, if we think of a certain proposition such as Goldbach's conjecture assigned \bot as truth value, then it is possible that we can conclude the truth value of the proposition as true or false with increasing knowledge. Thus in the ordering of knowledge, \bot is smaller than true and false. A sentence with \bot is between false and true in the ordering of degree of truth. In this way it can be considered that the three valued logic has two orderings. Belnap ([2]), Ginsberg([5]), and others proposed concept of a bilattice which has two orderings and proved some fundamental results ([1, 3, 4]). It is shown by Fitting ([3]) that bilattices can give a uniform semantics for many lanuages of logic programming. Since then the theory of bilattices is a hot reserach field.

On the other hand, as in Fuzzy logics, a truth value can be taken as a closed interval [a,b]. Let L be a lattice and $\mathcal{K}(L)$ be the set of all closed intervals of L. In this case we also define two orderings. For $[a,b], [c,d] \in \mathcal{K}(L)$, if $[a,b] \subseteq [c,d]$ then the knowledge in [a,b] is greater than that in [c,d]. Thus we set $[a,b] \sqsubseteq_k [c,d]$ if $[a,b] \subseteq [c,d]$. Likewise we also define $[a,b] \sqsubseteq_t [c,d]$ if $a \le c$ and $b \le d$, because [c,d] is greater than [a,b] in the ordering degree of truth. The structure $\mathcal{K}(L) = \langle \mathcal{K}(L), \sqsubseteq_t, \sqsubseteq_k \rangle$ which precise definition is given below has the property of weak interlaced bilattice.

In [3, 4], Fitting, Font and Moussavi have investigated the strucutre of $\mathcal{K}(L)$ and proved that if L is a bounded lattice, then $\mathcal{K}(L)$ is a weak

interlaced bilattice ([4]). Now does the converse hold?, that is, is there a lattice L such that $W \cong \mathcal{K}(L)$ for every weak interlaced bilattice W?

Clearly we answer "No". Because we have a simple counterexample. Let \mathcal{B} be a weak interlaced bilattice with 5 elements, for example, a set $\{0, p, \bot, q, 1\}$ with $0 \le_t p \le_t \bot \le_t q \le_t 1$, $\bot \le_k p \le_k 0$ and $\bot \le_k q \le_k 1$. It is obvious that \mathcal{B} is a weak interlaced bilattice. Suppose that there is a lattice L such that $\mathcal{B} \cong \mathcal{K}(L)$. If $|L| \ge 3$, then there exists an element $a \in L$ such that 0 < a < 1. For that element we have $[0,0], [0,a], [0,1], [a,1], [a,a], [1,1] \in \mathcal{K}(L)$ and $|\mathcal{K}(L)| \ge 6$. Since $|\mathcal{B}| = 5$, it must be $|L| \le 2$. But, in this case, we have $|\mathcal{K}(L)| \le 3$. This means that there is no lattice L such that $\mathcal{B} \cong \mathcal{K}(L)$.

Now we settle a more general question.

Question: For every weak interlaced bilattice W, is there a lattice L such that W can be embedded to K(L)?

In this note we study properties of $\mathcal{K}(L)$ and answer the question.

2 Definition of $\mathcal{K}(L)$

We define a structure $\mathcal{K}(L)$ for any lattice L. Let $L = (L, \leq)$ be a lattice and K(L) be the set of all closed intervals of L, that is,

$$K(L) = \{[a, b] | a \le b, a, b \in L\}$$

 $[a, b] = \{x | a \le x \le b\}.$

For any $[a, b], [c, d] \in K(L)$, we define two orderings $\sqsubseteq_t, \sqsubseteq_k$ on K(L) as follows:

$$[a, b] \sqsubseteq_t [c, d] \iff a \le c, b \le d$$
$$[a, b] \sqsubseteq_k [c, d] \iff a \le c, b \ge d$$

We set $\mathcal{K}(L) = \langle K(L), \sqsubseteq_t, \sqsubseteq_k \rangle$. It is obvious from definition that [0,0] ([1,1]) is the minimum (maximum) element with respect to \sqsubseteq_t . On the other hand, while [0,1] is the minimum element, there is no maximum element with respect to the ordering \sqsubseteq_k . This means that $\mathcal{K}(L)$ is a lattice with respect to \sqsubseteq_t and is a semi-lattice concering \sqsubseteq_k . Four operators $\sqcap_t, \sqcup_t, \sqcap_k, \sqcup_k$ are

defined by

$$\inf_{\sqsubseteq_t} \{a, b\} = a \sqcap_t b$$

$$\sup_{\sqsubseteq_t} \{a, b\} = a \sqcup_t b$$

$$\inf_{\sqsubseteq_k} \{a, b\} = a \sqcap_k b$$

$$\sup_{\sqsubseteq_k} \{a, b\} = a \sqcap_k b \quad \text{(if it is defined)}$$

Next we give definitions of an interlaced bilattice and of a weak interlaced bilattice. A relational system $\langle B, \leq_t, \leq_k \rangle$ is called an *interlaced bilattice* if it satisfies

- 1. B is a non-empty set
- 2. $\langle B, \leq_t \rangle$, $\langle B, \leq_k \rangle$ are bounded lattices and satisfy

(a)
$$x \leq_t y \Longrightarrow x \otimes z \leq_t y \otimes z, x \oplus z \leq_t y \oplus z$$

(b)
$$x \leq_k y \Longrightarrow x \land z \leq_k y \land z, \ x \lor z \leq_k y \lor z$$

where four operators are defined by

$$\inf_{\leq t} \{x, y\} = x \wedge y$$

 $\sup_{\leq t} \{x, y\} = x \vee y$
 $\inf_{\leq k} \{x, y\} = x \otimes y$
 $\sup_{\leq k} \{x, y\} = x \oplus y$

By 0(1), we mean the minimum (maximum) element with respect to the ordering \leq_t . We also denote by $\perp(\top)$ the minimum (maximum) element concerning to \leq_k .

A map \neg from B into itself is called a *negation* if

$$x \leq_t y \Longrightarrow \neg y \leq_t \neg x$$
$$x \leq_k y \Longrightarrow \neg x \leq_k \neg y$$
$$\neg \neg x = x.$$

For lattices $L_1 = \langle L_1, \wedge_1, \vee_1 \rangle$ and $L_2 = \langle L_2, \wedge_2, \vee_2 \rangle$, we define operations $\wedge, \vee, \otimes, \oplus$ on the product $L_1 \times L_2$: For $(a, b), (c, d) \in L_1 \times L_2$,

$$(a,b) \wedge (c,d) = (a \wedge_1 c, b \vee_2 d)$$

 $(a,b) \vee (c,d) = (a \vee_1 c, b \wedge_2 d)$
 $(a,b) \otimes (c,d) = (a \wedge_1 c, b \wedge_2 d)$
 $(a,b) \oplus (c,d) = (a \vee_1 c, b \vee_2 d)$

The structure $L_1 \odot L_2 = \langle L_1 \times L_2, \wedge, \vee, \otimes, \oplus \rangle$ is called a *Ginsberg product*. There are some fundamental results about the structure :

Proposition 1 (Fitting). If L_1, L_2 are bounded lattices then the Ginsberg product $L_1 \odot L_2 = \langle L_1 \times L_2, \wedge, \vee, \otimes, \oplus \rangle$ is an interlaced bilattice. Espectially, $L \odot L$ is an interlaced bilattice with negation \neg , where \neg is defined by $\neg(a,b) = (b,a)$.

It is proved that the converse holds by Avron ([1]).

Proposition 2 (Avron). For any interlaced bilattice \mathcal{B} , there are bounded lattices L_1, L_2 such that $\mathcal{B} \cong L_1 \odot L_2$. In particular, for any interlaced bilattice \mathcal{B} with negation, there is a bounded lattice L such that $\mathcal{B} \cong L \odot L$.

It is clear from definition that orderings $\sqsubseteq_t, \sqsubseteq_k$ on $\mathcal{K}(L)$ are the same as \leq_t, \leq_k on Ginsberg product $L \odot L$, respectively:

$$\sqsubseteq_t$$
 in $\mathcal{K}(L) \iff \leq_t$ in $L \odot L$

$$\sqsubseteq_k \text{ in } \mathcal{K}(L) \iff \leq_k \text{ in } L \odot L$$

Hence in the following we use the same symbols $\wedge, \vee, \otimes, \oplus$ in $\mathcal{K}(L)$ and in $L \odot L$.

Next we give a definition of a weak interlaced bilattice according to Font ([4]). A structure $W = \langle W, \leq_t, \leq_k \rangle$ is called a weak interlaced bilattice if

- 1. $\langle W, \leq_t \rangle$: lattice
- 2. $\langle W, \leq_k \rangle$: meet semilattice
- 3. $a \leq_k b, c \leq_k d \Longrightarrow a \land c \leq_k b \land d, a \lor c \leq_k b \lor d$
- 4. $a \leq_t b, c \leq_t d \Longrightarrow a \otimes c \leq_t b \otimes d$,
- 5. $a \leq_t b, c \leq_t d \Longrightarrow a \oplus c \leq_t b \oplus d$ if $a \oplus c$ and $b \oplus d$ exist.

3 Properties of weak interlaced bilattices

For any weak interlaced bilattice W, if we define

$$L_1 = \{x \in \mathcal{W} \mid x \le_k 0\} = [\bot, 0]_k$$

$$L_2 = \{x \in \mathcal{W} \mid x \le_k 1\} = [\bot, 1]_k,$$

then we have

Proposition 3.

$$L_1 = [\bot, 0]_k = [0, \bot]_t$$

 $L_2 = [\bot, 1]_k = [\bot, 1]_t$

Proof. Let $x \in [\bot, 0]_k$. Since $\bot \leq_k x \leq_k 0$, we have $\bot \lor \bot \leq_k x \lor \bot \leq_k 0 \lor \bot$ by definition of weak interlaced bilattice. From $\bot \lor \bot = 0 \lor \bot = \bot$, it follows that $x \lor \bot = \bot$ and hence that $x \leq_t \bot$. This means $[\bot, 0]_k \subseteq [0, \bot]_t$.

Conversely, suppose $x \in [0, \bot]_t$. If we put $u = 0 \otimes x$, then it is clear that $u \leq_k 0$ and $u \leq_k x$. Since $0 \leq_t x$, we have $0 \otimes x \leq_t x \otimes x = x$ and hence $u \leq_t x$. It follows from $\bot \leq_k u$ that $x \wedge \bot \leq_k x \wedge u$. Since $x \leq_t \bot$, we also have $x \wedge \bot = x$. On the other hand, since $u \leq_t x$, we get $u \wedge x = u$. Theses imply that $x \leq_k u$ and hence that x = u. Thus we have $x \leq_k 0$. Namely, we have $x \leq_k 0$. Namely,

The second equation can be proved similarly.

The result implies that L_1 and L_2 are lattices with ordering \leq_1 and \leq_2 in \mathcal{B} , respectively, where \leq_1 and \leq_2 are defined by

$$\leq_1 = \leq_t = \geq_k$$
$$\leq_2 = \leq_t = \leq_k$$

Thus we can consider the Ginsberg product $L_1 \odot L_2$, which becomes an interlaced bilattice. Moreover we can prove

Proposition 4. Let W be any weak interlaced bilattice. For any $x \in W$, we have

$$x = (x \otimes 0) \oplus (x \otimes 1) = (x \wedge \bot) \vee (x \vee \bot)$$

Now we investigate a realtion between a weak interlaced bilattice \mathcal{W} and an interlaced bilattice $L_1 \odot L_2$ constructed by \mathcal{W} .

Lemma 1. A map $\xi : \mathcal{W} \to L_1 \times L_2$ defined by $\xi(x) = (x \otimes 1, x \otimes 0) = (x \vee \bot, x \wedge \bot)$ is an embedding.

This means that

Theorem 1. Any weak interlaced bilattice can be embedded into an interlaced bilattice.

4 Answer to the question

In this section we give a positive answer to the question above. Since any weak interlaced bilattice \mathcal{W} can be embedded to an interlaced bilattice, it sufficies to show that any interlaced bilattice of a form $L_1 \odot L_2$ is embeddable into a weak interlaced bilattice $\mathcal{K}(L)$ for some lattice L. Because, from proposition 2, every interlaced bilattice has a form of $L_1 \odot L_2$ for some lattices L_1, L_2 . Let $L_1 \odot L_2$ be any interlaced bilattice and L be a set $(L_1 \times \{0\}) \cup (L_2 \times \{1\})$. We define an order \sqsubseteq on L. For any element $(a,i),(b,j) \in L$, we define

$$(a,i) \sqsubseteq (b,j) \iff i < j \text{ or } i = j \text{ and } a \le b$$

It is easy to show that the relation \sqsubseteq is a partially order on L and that

$$(a,i) \wedge (b,j) = \inf\{(a,i),(b,j)\} = \left\{ egin{array}{ll} (a \wedge b,i) & ext{if } i = j \ (a,i) & ext{if } i < j \ (b,j) & ext{if } i > j \end{array}
ight.$$

$$(a,i) \lor (b,j) = \sup\{(a,i),(b,j)\} = \left\{ egin{array}{ll} (a \lor b,i) & ext{if } i = j \\ (b,j) & ext{if } i < j \\ (a,i) & ext{if } i > j \end{array}
ight.$$

Hence L is a lattice with this order. Let $\mathcal{K}(L)$ be the set of all elements [(a,i),(b,j)] such that $(a,i)\sqsubseteq(b,j)$ for $(a,i),(b,j)\in L$. In this case, four operators $\wedge,\vee,\otimes,\oplus$ on $\mathcal{K}(L)$ are defined as follows:

$$\begin{aligned} &[(a,i),(b,j)] \wedge [(a',i'),(b',j')] = [(a,i) \wedge (a',i'),(b,j) \wedge (b',j')] \\ &[(a,i),(b,j)] \vee [(a',i'),(b',j')] = [(a,i) \vee (a',i'),(b,j) \vee (b',j')] \\ &[(a,i),(b,j)] \otimes [(a',i'),(b',j')] = [(a,i) \wedge (a',i'),(b,j) \vee (b',j')] \\ &[(a,i),(b,j)] \oplus [(a',i'),(b',j')] = [(a,i) \vee (a',i'),(b,j) \wedge (b',j')] \end{aligned}$$

Of course, the last equation is defined when $(a, i) \lor (a', i') \le (b, j) \land (b', j')$. Now we define a map $\xi : L_1 \odot L_2 \to \mathcal{K}(L)$ by

$$\xi(a,b) = [(a,0),(b,1)]$$

It is obvious that ξ is well-defined and injective. We only show that ξ is a homomorphism. We only think of two cases. For the case of $(a,b) \wedge (a',b')$, we have

$$\xi((a,b) \wedge (a',b')) = \xi(a \wedge a', b \vee b')$$

$$= [(a \wedge a', 0), (b \vee b', 1)]$$

$$= [(a,0) \wedge (a',0), (b,1) \vee (b',1)]$$

$$= [(a,0), (b,1)] \otimes [(a',0), (b',1)]$$

$$= \xi(a,b) \otimes \xi(a',b')$$

For another case of $(a, b) \oplus (a', b')$, we also have

$$\xi((a,b) \oplus (a',b')) = \xi(a \vee a', b \vee b')$$

$$= [(a \vee a', 0), (b \vee b', 1)]$$

$$= [(a,0) \vee (a',0), (b,1) \vee (b',1)]$$

$$= [(a,0), (b,1)] \vee [(a',0), (b',1)]$$

$$= \xi(a,b) \vee \xi(a',b')$$

Hence the map $\xi: L_1 \odot L_2 \to \mathcal{K}(L)$ is an embedding, that is,

Theorem 2. For every interlaced bilattice $L_1 \odot L_2$, there exists a lattice L such that it is embedded into a weak interlaced bilattice K(L).

From these results, we have have a main theorem.

Theorem 3. Every interlaced bilattice W can be embedded into a weak interlaced bilattice K(L) for some lattice L.

References

- [1] A.Avron, The structure of interlaced bilattices, Math. Struct. in Comp. Science, vol.6 (1996), 287-299.
- [2] N.D.Belnap, Jr., A useful four-valued logic, J.M.Dunn and G.Epstein (eds) Modern Uses of Multiple-Valued Logic, D.Reidel (1977).
- [3] M. Fitting, Kleene's Logic, generalized, Jour.Logic Comput., vol.1 (1991), 797-810.

- [4] J.M.Font and M.Moussavi, Notes on a six-valued extension of three-valued logic, Jour. of Applied Non-Classical Logic, vol.3 (1993), 173-187.
- [5] M.Ginsberg, Multivalued logic: a uniform approach to reasoning in artificial intelligence, Computational Intelligence, vol.4 (1988), 265-316.
- [6] M.Kondo, Filter theory of bilattices in the semantics of logic programming, Far East Jour. of Mathematical Sciences, vol.3 (2001), 177-189.

Michiro Kondo Current Address :

e-mail: kondo@sie.dendai.ac.jp School of Information Environment Tokyo Denki University, Inzai, 270-1382 JAPAN