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On the structure of weak interlaced bilattice K(L)
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Abstract

We study fundamental properties of weak interlaced bilattices K (L)
and show that for any weak interlaced bilattice W there exists a lat-
tice L such that W can be embedded into a weak interlaced bilattice
K(L). Hence, any interlaced bilattice can be embedded into the weak
interlaced bilattice (L) for some lattice L.

1 Introduction

It is well-known that the Kleene’s 3-valued logic plays an important role in
the field of multiple-valued logics. The logic has three values false, true,
and L (unknown) as truth values. These values have two informal orderings
concerning ”"amount of knowledge” and "degree of truth”. For example, if
we think of a certain proposition such as Goldbach’s conjecture assigned L
as truth value, then it is possible that we can conclude the truth value of
the proposition as true or false with increasing knowledge. Thus in the
ordering of knowledge, L is smaller than true and false. A sentence with
L is between false and true in the ordering of degree of truth. In this way
it can be considered that the three valued logic has two orderings. Belnap
([2]), Ginsberg([5]), and others proposed concept of a bilattice which has two
orderings and proved some fundamental results ([1, 3, 4]). It is shown by
Fitting ([3]) that bilattices can give a uniform semantics for many lanuages
of logic programming. Since then the theory of bilattices is a hot reserach
field.

On the other hand, as in Fuzzy logics, a truth value can be taken as a
closed interval [a,b]. Let L be a lattice and X(L) be the set of all closed
intervals of L. In this case we also define two orderings. For [a,b],[c,d] €
K(L), if [a,b] C [c,d] then the knowledge in [a,b] is greater than that in
[c,d]. Thus we set [a,b] Ci [c,d] if [a, b] C [c,d]. Likewise we also define
[a,b] C¢ [c,d] if a < ¢ and b < d, because [c,d] is greater than [a,b] in
the ordering degree of truth. The structure X(L) =< K(L), C¢, Cx> which
precise definition is given below has the property of weak interlaced bilattice.

In [3, 4], Fitting, Font and Moussavi have investigated the strucutre
of K(L) and proved that if L is a bounded lattice, then K(L) is a weak



interlaced bilattice ([4]). Now does the converse hold?, that is, is there a
lattice L such that W = K(L) for every weak interlaced bilattice W ?

Clearly we answer "No”. Because we have a simple counterexample.
Let B be a weak interlaced bilattice with 5 elements, for example, a set
{0,p,1,¢,1} with 0 <, p <4 L < g <o 1, L <pp<p0and L <pgq<il
It is obvious that B is a weak interlaced bilattice. Suppose that there is a
lattice L such that B = K(L). If |L| > 3, then there exists an element a € L
such that 0 < a < 1. For that element we have [0,0], [0, a], [0, 1], [a, 1], [a, a],
[1,1] € K(L) and |K(L)| > 6. Since |B| = 5, it must be [L| < 2. But, in this
case, we have |K(L)| < 3. This means that there is no lattice L such that
B K(L).

Now we settle a more general question.

Question : For every weak interlaced bilattice W, is there a
lattice L such that W can be embedded to K(L) ?

In this note we study properties of K(L) and answer the question.

2 Definition of KX(L)

We define a structure K(L) for any lattice L. Let L = (L, <) be a lattice
and K (L) be the set of all closed intervals of L, that is,

K(L) = {[a,b]la < b,a,b€ L}
[a,b] = {z]a < = < b}.

For any [a, b],[c,d] € K(L), we define two orderings ¢, Lk on K(L) as
follows :

[a,b] Ct [e,d] <= a <c,b<d
[a,b] Ck [c,d] <= a < c,b>d

We set K(L) =< K(L),Cs,Cx>. It is obvious from definition that [0,0]
([1,1]) is the minimum (maximum) element with respect to C¢. On the other
hand, while [0, 1] is the minimum element, there is no maximum element with
respect to the ordering Cg. This means that K(L) is a lattice with respect
to C; and is a semi-lattice concering Cg. Four operators Mg, Ug, Mg, Lg are
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defined by

infc,{a,b} =amM; b
supc,{a,b} =all b
infc, {a,b} = a Mg b
supc, {a,b} =aM b (if it is defined)

Next we give definitions of an interlaced bilattice and of a weak interlaced

bilattice. A relational system < B, <;, <x> is called an interlaced bilattice
if it satisfies

1. B is a non-empty set

2. < B,<t>, < B,<}> are bounded lattices and satisfy

(a) 2ty =225, YQ 2,102 < yd 2
b) z<ry=zAz2<pyAz,zV2z<pyVz

where four operators are defined by

infc, {z,y} =z Ay
supc, {T,y} =z Vy
inf<, {z,y} =z®y
sup, {z,y} =z Dy

By 0(1) , we mean the minimum (maximum) element with respect to

the ordering <;. We also denote by L(T) the minimum (maximum) element
concering to <j.

A map - from B into itself is called a negation if
Tty =y <e T
T kY= 2 <Y
-z = .
For lattices L, =< L1,A1,Vi1 > and Ly =< Lo, Ay, Vs >, we define
operations A, V,®,® on the product L, x Ly : For (a,b),(c,d) € L; x Lo,
(a,b) A (c,d) = (a A1 c,bVad)
(a,b) V (c,d) = (aVic,bAz d)
(a,b) ® (¢,d) = (a A1 ¢,b Az d)
(a,b) ® (c,d) = (a V1 ¢,bVad).



The structure Ly ® Ly =< Ly x Ly, A,V,®,® > is called a Ginsberg
product. There are some fundamental results about the structure :

Proposition 1 (Fitting). If Ly, Ly are bounded lattices then the Ginsberg
product Ly ® Ly =< Ly X L2, \,V,®,® > is an interlaced bilattice. Espec-
tially, L ® L is an interlaced bilattice with negation —, where — is defined by
—(a,b) = (b,a).

It is proved that the converse holds by Avron ([1])-

Proposition 2 (Avron). For any interlaced bilattice B, there are bounded
lattices L1, Lo such that B = Ly © La. In particular, for any interlaced
bilattice B with negation, there is a bounded lattice L such that B= L® L.

It is clear from definition that orderings C¢, T on K(L) are the same as
<¢, <y on Ginsberg product L © L, respectively :

Cy 1nIC(L) — < inL®L
Ciin K(L) <= <, inLOL

Hence in the following we use the same symbols A,V, ®, ® in (L) and in
Lo L.

Next we give a definition of a weak interlaced bilattice according to Font
([4]). A structure W =< W, <¢, <g> is called a weak interlaced bilattice if

1. < W, <> ¢ lattice

2. < W, <> : meet semilattice

3. agkb,cgkd=>a/\cgkb/\d,aVCSkad
4. a <t b,c<;d=>a®c<; b®d,

5. a<;bc<td=>a®c<; bDd if a ®c and b d exist.

3 Properties of weak interlaced bilattices
For any weak interlaced bilattice W, if we define

Li={zeW|z<x0}=[L,0
L2={Z€W|$Sk1}=[—l—,1]k,

then we have
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Proposition 3.

Ly =[1,0] = [0, L
Ly =[L1,1]k = [L,1];

Proof. Let x € [1,0]x. Since L <4 z <) 0, we have LV | <kzzVLI<p0vlyl
by definition of weak interlaced bilattice. From 1V | = OVL = 1, it follows
that z V L = 1 and hence that z <; L. This means [L,0]x C [0, L];.

Conversely, suppose z € [0, L];. If we put u = 0 ® z, then it is clear that
u <k 0 and u <4 z. Since 0 <; z, we have 0 ® z <tz ® z = z and hence
u <t z. It follows from 1 <j w that z A L <k Z A u. Since z <; 1, we also
have £ A L = z. On the other hand, since u <; z, we get u A x = u. Theses
imply that £ <y u and hence that z = u. Thus we have z <k 0. Namely,
we have [0, L]; C [L, 0].

The second equation can be proved similarly.

O

The result implies that L; and L, are lattices with ordering <; and <,
in B, respectively, where <; and <, are defined by

<1 =5 = 2%
e =<5 =<

Thus we can consider the Ginsberg product L; ® Lo, which becomes an
interlaced bilattice. Moreover we can prove

Proposition 4. Let W be any weak interlaced bilattice. For anyrt € W,

we have
z=(z®0)d(r®1)=(xAL)V(zV L)

Proof. See Avron [1] Cor.3.8 O

Now we investigate a realtion between a weak interlaced bilattice W and
an interlaced bilattice L; ® Ly constructed by W.

Lemma 1. A map £ : W — L; x Ly defined by £(z) = (z®1,z®0) =
(zV L,z A L) is an embedding.

This means that

Theorem 1. Any weak interlaced bilattice can be embedded into an inter-
laced bilattice.
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4 Answer to the question

In this section we give a positive answer to the question above. Since any
weak interlaced bilattice W can be embedded to an interlaced bilattice, it
sufficies to show that any interlaced bilattice of a form L; ® L, is embeddable
into a weak interlaced bilattice K(L) for some lattice L. Because, from
proposition 2, every interlaced bilattice has a form of Ly ® Ly for some
lattices L1,Ly. Let L1 ® Ly be any interlaced bilattice and L be a set
(L1 x {0}) U (Lz x {1}). We define an order C on L. For any element
(a,1), (b,j) € L, we define

(a,i) E (b,j) &= i<jori=janda<b

It is easy to show that the relation C is a partially order on L and that

(anbi) ifi=3j
(a,i) A (b, 5) = inf{(a,9), (b,5)} = { (a,5) ife<y
(b,5) ifi>7g

(aVb,1) ifi=j
(a,i) V (b,5) = sup{(a, ), (b,5)} = { (b,5) i<y
(a,1) ifi>7
Hence L is a lattice with this order. Let (L) be the set of all elements
[(a,1), (b, 5)] such that (a,i) T (b,j) for (a,i), (b,j) € L. In this case, four
operators A, V, ®,® on K(L) are defined as follows:

[(a7 z)’ (b .7)] /\ [(al, 74’), (bI’J,)] = [(a" i) /\ (al7 Z,)’ (b7.7) /\ (bl7.7’)]
[(a,9), (0, D] V [(a', ), (¥, 5] = [(@,3) V (@',7), (b, 5) V (¥, )]
[(a,3), (b, 3)] ® [(a', 1), (8, 5)] = [(@,3) A (@', ), (B, 5) V (¥, 5)]
[(a, i), (b,7)] ® [(alazl)a (bl7.7,)] = [(a,%) V (al,"")a (bv ) A (b’,J’)]
Of course, the last equation is defined when (a,%)V(d', %) < (b, HAWD, 5.

Now we define a map ¢ : L1 © Ly = K(L) by
£(a,b) = [(a,0), (b, 1)]

It is obvious that ¢ is well-defined and injective. We only show that ¢ is a
homomorphism. We only think of two cases. For the case of (a,b) A (d',b'),
we have
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£((a,b) A (d,b)) = &(and,bvid)

= [(and,0),(bVv¥,1)]

= [(a’ 0) A (a',a 0), (b, 1)V (b,7 1)]
[(a,0), (b, 1)) ® [(d',0), (¥',1)]
{(a,b) ® ¢(d', V)

For another case of (a,b) ® (a’, '), we also have

£((a,0) @ (d',0))) = E(avd,bvi)
= [(avad',0),(bV¥,1)]
= [(a,0) v (d',0), (b,1) v (¥,1)]
= [(a7 0), (b, 1)] v [(a’, 0), (bl’ 1)]
= &(a,b) VE(d',b)

Hence the map ¢ : Ly ® Ly = K(L) is an embedding, that is,

Theorem 2. For every interlaced bilattice Ly ® Ly, there exists a lattice L
such that it is embedded into a weak interlaced bilattice K(L).

From these results, we have have a main theorem.

Theorem 3. Every interlaced bilattice W can be embedded into a weak in-
terlaced bilattice (L) for some lattice L.
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