gobooboooboo 12680 20020 138-150

138

On Computable Tree Functions*

Masahiro Kimoto! and Masako Takahashit
April 19, 2002

Abstract

In order to investigate the structure of computable functions over (binary) trees, we define
two classes of recursive tree functions by extending the notion of recursive functions over natural
numbers in two different ways, and also define the class of functions computable by while-programs
over trees. Then we show that those classes coincide with the class of conjugates of recursive func-
tions over natural numbers via a standard coding function (between trees and natural numbers).
We also study how the choice of the coding function affects the result, and prove that the class of
conjugates of recursive numeric functions via coding function ¢ remains same as above, so long
as the conjugates of constructors suc and cons remain to be recursive.

0. Introduction

We consider in this paper a naive question: What are computable functions over trees. A simple
answer for the question might be the following: a tree function is computable if and only if it is
obtained from a computable function f over natural numbers as the conjugate ¢! o f o where ¢ is
an appropriate coding function from trees to natural numbers and ¢! is the decoding function.

Then a natural question arises: What coding functions are appropriate? Should not they be
‘computable’ in some sense? But then in what sense? Do we have to know the notion of computability
of coding functions (from trees to natural numbers), before we study the notion of computability of
tree functions?

Another question related to the tentative answer is: Does the notion of computability of tree
functions depend on the choice of the coding function or not?

We try to answer the first question in a number of different ways, and also partially answer the
other questions mentioned above.

Our motivation comes from the observation that a number of tree manipulating operations are
found to be useful in well-known algorithms for sorting, searching, etc., and also in various application
areas such as natural language processing. These are concrete examples of interesting ‘computable’
tree operations (or partial functions over trees), and certainly there should be many more. We would
like to develop a structural theory of computable tree operations, which hopefully will fill the gap
between conventional theory of computation and algorithmic aspects of trees.

In this paper, among various tree structures with or without labels, we concentrate on binary trees
without labels. This is because binary trees have the important property that any tree structure (and
moreover any finite sequence of tree structures) can be nicely represented by binary trees without any
coding function involved. (See, e.g., [4].) Moreover, we believe that studying unlabelled binary trees,

*This paper is a revised version of the following paper. M. Kimoto and M. Takahashi: On computable tree functions,
Lecture Notes in Computer Science, Vol. 1961, PP. 273 - 289. Springer-Verlag (2000). The major revision is to include
some new results (Lemmas 4.4 and 4.5, and Theorem 4.6) and to make the proof of a previous result (Corollary 4.7)
much shorter.

PREE#®R 22Ny 3 Ea—SKALH Compag Computer K.K., Tokyo 167-8533 Japan. E-mail:
Masahiro.Kimoto@jp.compaq.com

IEIRET B ER A Department of Information Science, International Christian University, Tokyo 181-8585
Japan. E-mail: mth@icu.ac. jp

139

a degenerate case of labelled binary trees, would be essential for studying the general case.

This paper is organized as follows. In the rest of this section, we summarize some notations
and known facts about computable functions over N = {0,1,2,...}, the set of natural numbers. In
Section 1, we present basic definitions about binary trees and their functions, and some of their
basic properties. Then in Section 2 we introduce the notion of primitive recursive functions over
binary trees, and show that the class of those functions is precisely that of conjugates of conventional
primitive recursive functions (over N) via the standard coding function (between binary trees and
natural numbers). In Section 3, two classes of recursive tree functions are introduced, one of which
depends on the coding function and the other does not. Then we prove that the two classes are equal
to the class of conjugates of conventional recursive functions (over N), and also equal to the class
of functions computable by while-programs over binary trees. In the last section, we study how the
choice of coding function affects the results; indeed we give a necessary and sufficient condition for
coding functions to yield the above results.

In this paper, a function from a subset of N" to N is called a function over N or a numeric
function, and for such a function f we write f : N*—N (using a special symbol — rather than
the usual —). Note that in the literature these functions are called ‘partial’ functions and we may
occasionally use that word to stress the point. As usual, the notation f:X™ — Y means that f is a
(total) function from X to Y. _

Recall that the class PR(IN) of primitive recursive functions over N is defined as the least class
that contains the successor function suc : N — N, the zero functions zero, : N* — N and projection
functions pp s : N® — N, and is closed under composition and primitive recursion. Also recall that the
class R(N) of recursive (partial) functions over N is defined as the least class that contains primitive
recursive functions over N and their minimization functions, and is closed under composition. The
minimization function pf : N*—=N of f : N**! 2N is defined by

w)(E) =z <> Vy <z[f(F,y) =0 & y=1|

The class R(N) is known to be equal to the class of functions computed by a (high-level) while-
program of the form; :

input(Z); S1; S2; -..; Sk; output(y)

where each S; is a statement, which is either an assignment statement or a while-statement. Here an
assignment statement is of the form
z := f(9)

and a while-statement is of the form

while f(§) # 0 do [S}; Sp; ..; S]]

where f is an arbitrary primitive recursive function (in PR(N)), z,y are variables (to store elements
of N), ¥ is a sequence of distinct (input) variables, and ¥ is any sequence of variables. S;-’s in the
while-statement are statements. The (partial) function fp : N*— N computed by a while-program P
with n input variables is defined as usual, assuming that the initial values of all variables other than
input variables are set to be 0. For more about the theory of computation and related subjects, see,
e.g., [7).

In the literature, the notions of PR(N) and R(IN) have been extended to functions over algebraic
structures other than N (see, e.g., [1], [2], [8], [9]). The present work may be considered as an extention
of studies on word functions in [2] and [§] to the case of functions over binary trees. As a related work,
we also note the seminal work [5] by J. McCarthy, which has taken a completely different approach
to studying computable functions over binary trees (with labelled leaves).

140

1. Basic Definitions

1.1 Definition The set T of binary trees (or simply trees) is defined recursively, as follows.
1. nileT.
2. If t1,t2 € T, then cons(ty,ts) € T.

When ¢ = cons(t1,t2), we write left(t) = ¢, and right(t) = ;. For each t € T, we define the size
[t|(€ N) of t recursively as

[nill =0, |cons(ty,t2)| = [t1] + |t2] + 1.

It is well-known (see e.g. [4]) that for each n € N the number of binary trees of the size n is equal to
the Catalan number B(n) = ;3 (>").

1.2 Definition For s,t € T, we write s <t if one of the following conditions holds;
1. |s| < [t].
2. |s| = [t| and left(s) < left(t).
3. |s| = [t], left(s) = left(t) and right(s) < right(t).

It is not difficult to see that the reflexive closure < of < is a total order in T, and moreover the ordered
set (T, <) is isomorphic to (N, <) through bijection v(t) = card{s € T|s < t}. (See [3].)

1.3 Definition Let us write next(t) for min{s € T|t < s}, where min refers to the order <. Note
that the inverse 7 : N — T of our standard coding function v : T — N can be described by using
next : T — T as

7(n) = v~(n) = next™(nil).

1.4 Definition For each n € N, let us write n (7, respectively) for the minimum (maximum) binary
tree of the size n; that is, :

0 = nil, n + 1 = cons(nil, n),

0 = nil, n+ 1 = cons(m, nil).

We also write N = {n|n € N} and N = {fi]n € N}.

Using these notations, we can give recursive descriptions of functions next : T — Tand v: T — N.
For the proofs, see [3].

1.5 Lemma
o If t € N, then next(t) = |t| + 1.

o If t = cons(t’,t”) ¢ N and

— if t” ¢ N, then next(t) = cons(t’, next(t")),
— ift” € N and t' ¢ N, then next(t) = cons(next(), |t"]),
— Ift" € N and t’ € N, then next(t) = cons(|¢/| + 1, |t”| — 1).

Note that in the last subcase we have |t’| > 0 since ¢’ € N and ¢t ¢ N.

141

1.6 Lemma
e If t = nil, then v(t) = 0.
e If t = cons(t’,t"), then
v(t) = YncpB)
+ Y cje(B(n) x B(lt| - n - 1))

+(w(t') — v(|t')) x B(t"])
+ (") - v([t"])-

The notion of conjugates, which plays an essential role in this paper, can be defined, as follows.
1.7 Definition Given a bijection ¢ : X — Y and a function f : Y"—Y we define the conjugate
fo : X"—X of f via ¢ by

fﬁP(xlam?v v Tn) =T & f(‘p(xl)v p(z2), - o(zn)) = 90('7:)

For simplicity, we may write ¢~ o f o ¢ for the conjugate f, even if f is not unary. Note that the
conjugate of f, via ¢! is f. For example, next : T — T is the conjugate suc, of suc : N — N via
v: T — N, since next(v~1(n)) = next™*1(nil) = v=1(n+1) = v~!(suc(n)), thus next = v~ ' osucov =
suc,. Also, suc = next,, the conjugate of next via 7 = vl

2. Primitive Recursive Functions over T

In this section, we define the notion of primitive recursive functions over T, and compare them
with conjugates of primitive recursive functions over N.

2.1 Definition The class PR(T) of primitive recursive functions over T is defined recursively, as
follows.

1. (constructors) The binary function cons : T2 — T and n-ary constant functions nil, : T* —» T
such that nil,(£) = nil (n > 0) belong to PR(T).

2. (projections) pp i : T™ — T such that pp i(t1,t2,...,tn) = ti belong to PR(T) (1 <i<n).

3. (composition) PR(T) is closed under composition. That is, ifg: T — T and 91,92, .., 91
T" — T belong to PR(T), then so does the function f : T® — T defined by f@) =

g(gl(t-)s ooy gl(i))

4. (primitive recursion) Ifg:T" — T and h: T"*+4 - T belong to PR(T), then so does the
function f : T"+t! — T defined by

{ fEni=g®
1 cons(t', ") = h(E,,t", f(E¢), FE,¢")-

We will denote the function f in 3 by g o (g1,---,g1), and the one in 4 by hx g.
2.2 Examples The following functions belong to PR(T).

1. The unary functions left : T — T and right : T — T defined by

left(nil) = nil,
{ left(cons(t',t")) = t/,

right(nil) = nil,
right(cons(t’,t")) =t".

142

2. The minimum tree function mnt : T — T to assign the minimum tree of the same size as the
argument (i.e., mnt(t) = |t|) can be defined by primitive recursion:

{ mnt(nil) = nil,

mnt(cons(t',t")) = cons(nil, gr(mnt(t’), mnt(¢")))

where gr : T2 — T is the function to graft the first argument at the rightmost leaf of the second
argument;

gr(t,nil) = ¢, gr(t, cons(t’,t")) = cons(t', gr(t, t")).
Likewise, we can define the maximum tree function mxt : T — T such that mxt(t) = |t| by
{ mxt(nil) = nil,
mxt(cons(t’, ")) = cons(gl(mxt(t'), mxt(t")), nil)
where
gl(t, nil) = 1t, gl(t, cons(t’, ")) = cons(gl(t, '), t").
3. The function nil? : T — T to tell whether the given tree is nil or not can be defined by

nil?(nil) = true,
nil?(cons(t',t")) = false.

Here we define true and false by nil and cons(nil, nil), respectively. The characteristic functions
N?:T — T (N?: T — T, respectively) of the sets N = {njn € N} (N = {filn € N}) are
defined by
N?(nil) = true,
{ N?(cons(t, ")) = if(nil?(t’), N?(t"), false),

N?(nil) = true,
N7(cons(#/, £)) = if(nil2(¢"), N7(¢'), false),
where

{ if(nil, ¢, 8) = ¢,

if(cons(t’,t"),t,s) = s.
4. The function next : T — T is primitive recursive, because

next(nil) = cons(nil, nil),
{ next(cons(¥,t")) = if(N?(cons(t’, t")), u, v)

where
u = cons(nil, mnt(cons(#,t"))) (= |cons(¥,t")| + 1),
v = if(N?(t"), if(N?(¢'), w1, w2), cons(¥/, next(t”)R
wy = cons(cons(nil, mnt(t')), right(mnt(t"))) (= cons(J¢| + 1, [t"] - 1)),
w2 = cons(next(t'), mnt(t")). -

In what follows, in studying the relation between conjugates of primitive recursive numeric func-
ns and primitive recursive tree functions, we find it is useful to have a reasonable embedding of
2 class PR(N) of primitive recursive functions over N into the class PR(T) of primitive recursive
1ctions over T.

143

2.3 Lemma For each n-ary numeric function f € PR(N), there exists an n-ary tree function
f € PR(T) such that for each my, my,...,mn € N

i(_'nﬂ.’ Tl’ ey _%) = f(mlv M2, ...y mn)'

Proof We define tree functions f recursively, as follows:

1. zero, = nil,.

suc(t) = cons(nil, t).
Pni:N* > N=p,;: T" - T.

2. go(g1,..-,91) = go(g1,--» 1)

3. hxg=~h'xg where R'(tt',t",s, s") = h(t,t",s").

Here the notation h * g in the lefthand side stands for the numeric function defined by primitive
recursion from g and h; that is,

(h*g)(£,0) = g(2), (h*g)(F z+1)=h(Z,z,(hxg) 2))

Then it is easy to see by induction on PR(N) that the functions f so defined satisfy the required
property. O :

2.4 Lemma The conjugates cons, : N2 — N, and left,, right, : N — N via the standard decoding
function 7 = v~! : N — T are primitive recursive.

Proof By definition of cons,, we have
cons, (my, ma) = v(cons(T(my), 7(mz))) = v(cons(t1,t2)) = v(t)
where t; = 7(m;) (¢ = 1,2) and t = cons(ty, t2). Then by applying Lemma 1.6 we get

consr(m1,m2) = e fima)+f(my)+1 B
+ Zn<f(m1)(B(n) X B(f(ml) + f(mz)'—'n))
+(m1-g(m1)) x B(f(mz))
+(mz=g(m2))

where

B(m) = (2 x m)! = ((m + 1) x m!),

fim) =pz<mm <3, BM)] (=Ir(m)]),

9(m) = e smy B(n) (= v(Ir(m)]) = v(mnt(r(m)))).
The functions left, and right, can be expressed as

left, (m) = px < m [Jy < mlcons.(z,y) = m]],

right_(m) = uy < m[3z < mlcons, (z,y) = m]]. ‘

Thus the three functions are primitive recursive. O

2.5 Lemma For each t € T, we write (t) = v(t). Then the function § : T — T satisfies the
following: -

e 0 is primitive recursive; that is, § € PR(T).

144

* 0 gives an isomorphism (i.e., order preserving bijection) between (T, %) and (N, <) where < is
the total order in N defined by n < m < n < m.

o There exists g: T — T in PR(T) such that
Vte T,Vne N[f(t) =n < t=g(n)).
By abuse of notation, we write §~! for the function g.
Proof
e 0: T — T is primitive recursive, because

6(cons(t',t")) = wv(cons(,t"))

cons, (v(t'), v(t"))
cons, (V7,1 (7))
cons, (B(), 8(¢")).

(For the definition of cons,, see 2.3.)

¢ The function 8, being the compostion of two isomorphisms v : (T,%) - (N,<) and
(N, <) — (N, <), gives an isomorphism between (T, %) and (N, <).

e Define g: T — T by primitive recursion;

{ g(nil) = nil,

9(cons(s, t)) = next(g(t)).

Then ¢(0) = nil, and g(n +1) = g(cons(nil,n)) = next(g(n)). Therefore by induction g(n) =
next”(nil) = 7(n); thus

t=g(n) =7(n) < v(t)=n < O(t) =n. O

2.6 Lemma If f € PR(N), then f, =6~' o f 0 4. That is,

folti,ntn) = 071(£(6(t1), -, O(t1))).
Proof By Lemma 2.3, we have

LB =s = Fo@)=us
= 106@) = f(+() = v(s) = 6(s)
=) =. 0

2.7 Corollary If f € PR(N), then f, € PR(T).
Proof Immediate from Lemmas 2.6, 2.5 and 2.3. O
2.8 Theorem PR(N), = PR(T), where PR(N), = {f,|f € PR(N)}.
Proof Since inclusion C has been proved, we now verify
Vg € PR(T),3f e PR(N) [g = f,]

by induction on PR(T).

145

1. nil, = v_q ozero, o v = (zeroy,),.
cons = v_jovoconsov_y ov = (cons;), where cons, € PR(N).
(Pni: TP > T)=v_10(pni: N* > N)ov = (pn,i : N™ = N),.

2. If g=goo(g1,.-,91) and g; = (f;)v (= 1,...1), then

g=(foo (fi,-s f1))v-

3. Let g = g1 * go and g; = (f;)» where f; € PR(N) (j =0,1). It suffies to show that the function
f = g» = vogorT belongs to PR(N), since g = f,. From the definition, we have

f(’lﬁ,O) - (VOgOT)(T?l,O)
= v(g(r(mR),nil))
= v(go(T(11)))
= fO("ﬁ)y
f,m+1) = (vogor)(m,m+1)

v(g(7 (), cons(t', £")))

where we write cons(t',t") = 7(m + 1)
v(ga(r(R), ¥, t", g(1(m), 1), g(7 (1), £")))
= fi(m,m',m", f(m, m'), (i, m"))

where

m' = v(t') = v(left(r(m + 1))) = left. (m + 1),
m” = v(t") = v(right(r(m + 1))) = right, (m +1).

Since left,(m+ 1), right,(m+1) <m+1, and left, right, € PR(N), the description of f implies
that f is primitive recursive. (cf. [6]) O

3. Recursive Functions over T

In this section, we define two classes of recursive functions over T and the class of functions
computable by while programs over T. Then we study their properties in connection with conjugates
of recursive functions over N. As in the case of numeric functions, we call a function from a subset of
T" to T a function over T or a tree function.

3.1 Definition We define the class R(T) of recursive functions over T recursively, as follows.
1. (primitive recursive functions) PR(T) C R(T).

2. (minimization) If f : T®*! — T is primitive recursive, then the (partial) function prf :
T"— T defined by

(prf)E) =t < Vs <t[f(t,s) = nil & s=1]

belongs to R(T). We call urf : T"— T the T-minimization function of f along the values
7(0),7(1),7(2),...of 7: N — T.

3. (composition) R(T) is closed under composition. That is, if partial functions g : T!— T and
91,92, 91 : T?— T belong to R(T), then so does the partial function f : T"— T defined by

f@ =5 < 3s1,...,81€ T(g1(t) = s1, ey 91(E) = 81,9(51, -, 81) = 8].

As before we will write g o (91, ..., g1) for the function f.

146

One may wonder whether Definition 3.1.2 is the only reasonable way of defining the minimization
function. For example, how about the following as an alternative?

3.2 Definition For a primitive recursive function f : T"+! —, T, define a partial function un f :
T"— T by

(unf)B) =t <= ImeNft=m A Vn < m[f(,n) =il & n = m)]].

We call unf : T"— T the N-minimization of f : T T along the values 0,1,2,... of bijection
-+ N — N. We will write Rn(T) for the class of tree functions defined exactly as R(T) except
that we replace the minimization operator pr with un. The (partial) functions in RN (T) are called
N-recursive functions.

Next, we define the notion of (high-level) while-programs over T.
3.3 Definition A while-program over T is of the form;
input(Z); S1; Sa; ...; Sk; output(y)
where each S; is a statement, which is either an assignment statement or a while-statement. An

assignment statement is of the form
z:= f(¥)

and a while-statement is of the form
while f(¥) # nil do [S}; S3; ...; Sj].

Here, f is an arbitrary primitive recursive function (in PR(T)), z,y are variables (to store trees
in T), Z is a sequence of distinct (input) variables, and 7 is any sequence of variables. Sj’s in the
while-statement are (either assignment or while-) statements.

The (partial) function computed by a while-program P over T is defined as usual, assuming that the
initial values of all variables other than input variables are set to nil, and it is denoted by fp : T*— T
where n is the number of input variables of the program P.

First, we study the relation between the three classes; the class of conjugates of recursive functions
over N, the class Rn(T) of N-recursive functions, and that of functions computable by while-programs
over T.

3.4 Lemma We extend the definition of £ in lemma 2.3 for f € PR(N) (cf. 2.3) to the case where
f € R(N), as follows.

¢ The function f for f € PR(N) is defined as before.
e If f € PR(N), we define pf = unf; that is,

pfE) =t < t=min{m ¢ N|f(t,m) = nil}.

® go(g1,..,q) = go (g1, g1).
Then the functions f where f € R(N) satisfy the following.
1. i € RE(T)

2. f(m1, m,, wsMp) =m <= f(my, my, vy Myp) =m.
(In particular, f(my,...,my) is defined iff f(my,...,m,) is defined.)

147

3. fu=0"lofod.
Proof By induction on R(N). (For details, see [3].) 0O
3.5 Corollary R(N), C Rn(T) where R(N), = {fi|f € R(N)}.
Proof The inclusion follows immediately from Lemmas 3.4 and 2.5. O
3.6 Lemma Rn(T) C {fp|P is a while-program }.
Proof By induction on Rn(T). For example, the N-minimization function pun f of f € PR(T) can

be commputed by the while-program

input(Z);

y := nil;

while f(Z,y) # nil do [y := cons(nil, y)];
output(y) o

3.7Lemma {fp|P is a while-program } C R(N),; that is, functions computable by while-programs
over T are conjugates via v of recursive functions over N.

Proof Given a while-program P over T, we construct a while-program Q over N which simulates
computation of P step by step. The program Q is obtained from P by simply replacing each primitive
recursive function g (€ PR(T)) in P with its conjugate g,-1 =vogo v=! (¢ PR(N)) and nil with
0. Thus, for assignment statements :

T = g(m becomes x := gv"'(g')’

and for termination conditions in while statements

g(7) # nil becomes g-(¥) # 0.
Under this construction, we can observe the equivalence
fP(tla eny tn) =t & fQ(V(tl)a --',V(tn)) = V(t)

between the function fp computed by while-program P over T and the function fo computed by
while-program Q over N. In other words, we have fp = v~1o foov = (fg),. This completes the
proof, since fo € R(N). O

3.8 Theorem R(N), = Rn(T) = {fp|P is a while-program }.
Proof Immediate from Corollary 3.5 and Lemmas 3.6 and 3.7. O

Next, we see the relation between the two classes of recursive functions over T.
3.9 Theorem R(T)= Rn(T).

Proof To see the inclusion C, it suffices to verify that the T-minimization function purg belongs to
Rn(T) for each g € PR(T), since by definition the class Rn(T) includes PR(T) and closed under
composition. But it is easy; the following while-program over T clearly computes the function prg.

input(Z);

y := nil;

while g(Z,y) # nil do [y := next(y)];
output(y)

148

To see 2, all we need is to show that for each g € PR(T) the N-minimization function ung belongs
to R(T). For the purpose, we define a new function

iy _ 9t ifteN,
g(t.t)= { g(t,nil) otherwise,

and note the equivalence
(ung)(E) =t <= (uzg)(E) =t.

Here we have ¢ € R(T) since ¢/(f,t) = if(N?(t), g(£,t), g(, nil)) (cf. Examples 2.2.3). Thus we get
ung = purg' €eR(T). O

3.10 Corollary R(N), = R(T).

In [3], R(T) is shown to be equal to the class of tree functions which are representable by (type-
free) A-calculus. Due to space limitation, we omit the details.

4. Choice of Coding Functions

In this section, we study how the choice of coding function v : T — N affects the class PR(N),
of conjugates of primitive recursive numeric functions and the class R(N), of conjugates of recursive
numeric functions. The proof idea is originally due to [2] Chapter III.

As before, we write f, for the conjugate ¢! o f o ¢ of function f via bijection ¢, and extend the
notation to classes F of functions as F, = {f,|f € F}.

4.1 Lemma Suppose a: N — N and b: T — T are bijections. Then
1. If suc, € PR(N), then a~! € PR(N),
2. If cons, € PR(T), then b~ ! € PR(T).
Proof In the second case, the function b~! can be defined by primitive recursion since
b~ (cons(¥,t")) = (b= o cons 0 b)(b~1(¢'), b1 (¢")).
where b~! o cons o b = cons, € PR(T). The first case is similar. O

4.2 Lemma Suppose a:N — N and b: T — T are bijections. Then

1. PR(N), =PR(N) <= a,a"! € PR(N),

2. PR(T), = PR(T) < b,b~! € PR(T).
Proof For the direction = of the second case, since the condition implies cons, € PR(T), we
know b~! € PR(T) from Lemma 4.1.2. Since the condition can also be stated as PR(T)p-1 =

bo PR(T)ob~! = PR(T), we get b = (b~!)~! € PR(T) by the same argument. For the direction
<, the assumption b, b~ € PR(T) implies

boPR(T)ob™! C PR(T) and b~! o PR(T)obC PR(T),
from which we obtain PR(T) C b~! o PR(T) o b C PR(T). The first case is similar. O

Based on these facts, we show a necessary and sufficient condition for a bijection p:T—=Nto
satisfy PR(N), = PR(T) (cf. Theorem 2.8).

4.3 Theorem For any bijection ¢ : T — N, the following conditions are equivalent.

149

1. PR(N), = PR(T).
2. suc, € PR(T), and cons,-1 € PR(N).

Proof The direction 1 = 2 is obvious. To see the direction 2 = 1, suppose ¢ : T — N satisfies the
condition 2. Then

vlopoconsop lov € v IoPR(N)ov = PR(T)

because the standard coding function v : T — N satisfies 1 by Theorem 2.8. This, together with
Lemma 4.1.2, implies that the bijection v ~! o ¢ belongs to € PR(T) since v~lop = (¢~ 1o v)~L
Similarly, since the condition 2 implies

vop losucopov ! evoPR(T)o v~! = PR(N),
we get vo¢~! € PR(N) by Lemma 4.1.1. Then
(l/“l op)~t = g lov
= vlo(woplov
€ v~ loPR(N)ov=PR(T).
Thus we get (v o), (v"1og)~! € PR(T), which then implies

PR(T)

(v"lop) loPR(T)o (v 1oyp) by Lemma 4.2.2
¢ lo(voPR(T)or 1oy
= ¢ loPR(N)oyp by Theorem 2.8.

Il

This completes the proof. O

From the theorem, we know that change of the coding function does not affect the notion of
conjugates of primitive recursive functions as long as the conjugate of suc : N — N and that of
cons : T2 — T remain to be primitive recursive. A similar statement holds in the case of recursive
functions, as we see below.

4.4 Lemma Suppose a: N N and b: T — T are bijections. Then
1. If sucg € R(N), then a~! € R(N),
2. If consy € R(T), then b~! € R(T).

Proof The proof idea of Lemma 4.1 is applicable to this lemma, because both R(N) and R(T) are
closed under primitive recursion. U

4.5 Lemma Supposea:N —Nandb:T — T are bijections. Then
1. R(N), =R(N) < a,a-! € R(N),
2. R(T)y=R(T) <}, b-1 € R(T).

Proof AsLemma42. O

Based on above lemmas and Corollary 3.10 that shows R(N), = R(T) for the standard coding
function v, we can prove the following counterpart of Theorem 4.3 for recursiveness.

4.6 Theorem For any bijection ¢ : T — N, the following conditions are equivalent.

1. R(N), = R(T).

150

2. suc, € R(T), and cons,-1 € R(N).
Proof As Theorem 4.3. O

4.7 Corollary For any bijection ¢ : T — N, the following conditions are equivalent.
1. suc, € PR(T), and cons,,-1 € PR(N).
2. PR(N), = PR(T).
3. PR(N), = PR(T), and R(N),, = R(T).

Proof Immediate from Theorems 4.3 and 4.6, and inclusions PR(N) C R(N) and PR(T) C R(T).
)

References

(1] W. S. Brainerd and L. H. Landweber (1974). Theory of Computation, John Wiley & Sons.
(2] S. Eilenberg and C. C. Elgot (1970). Recursiveness, Academic Press.

[3] M. Kimoto (2000). On Computability of Functions over Binary Trees, Master Thesis (in
Japanese), Department of Mathematical and Computing Sciences, Tokyo Institute of Technology.

[4] D. E. Knuth (1973). The Art of Computer Programming, Vol.1 - Fundamental Algorithms, Ad-
dison Wesley.

[5] J. McCarthy (1960). Recursive functions of symbolic expressions and their computation by ma-
chine, Part I, Communications of the ACM, Vol. 3, pp. 184 - 195.

(6] H. E. Rose (1984). Subrecursion - Functions and Hierarchies, Clarendon Press, Oxford.

(7] M. Takahashi (1998). A primer on proofs and types, Theories of Types and Proofs, MSJ-Memoirs
Vol.2 (M.Takahashi, M.Okada, and M.Dezani, eds., Mathematical Society of Japan), pp. 1 - 44.

(8] M. Takahashi (2001). Lambda-representable functions over term algebras, International Journal
of Foundations of Computer Science, Vol. 12, No. 1, pp- 3-29.

[9] J.V.Tucker and J.I.Zucker (2000). Computable functions and semicomputable sets on many-
sorted algebras, Handbook of Logic in Computer Science, Vol.5 (S.Abramsky, D.M.Gabbay and
T.S.E.Maibaum, eds., Oxford University Press), pp. 317 - 525. :

