oboooooooooO 12680 20020 151-154

151

Model-robustness of equilibrium in game for modal logics *
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Abstract. We present the notion of robust models for a mixed strategy
Nash equilibrium of a strategic form game and to introduce a group structure

on the class of these models. From the algebraic point of view we give a
characterization of the class of robust models by the class of epistemic models
with common-knowledge of conjectures about the other players’ actions.
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1. Introduction

This paper investigates the class of robust models for a mixed strategy Nash equi-
librium of a finite strategic form game G.

The concept of Nash equilibrium has become central in game theory, economics
and its related fields. R.J. Aumann and A. Brandenburger (1995) gives epistemic
conditions for Nash equilibrium in the model for the modal logic S5. However it is
still not yet clear just what classes of models leading to a Nash equilibrium in the
epistemic point of view.

The purposes of this paper are two points: First to to introduce a group structure
on the class of robust models for a mixed strategy Nash equilibrium of the game
as models for the modal logic S4, and secondly to characterize the class RS4(G) of
the robust models by the class ES4(G) of all the models satisfying with common-
knowledge of conjectures about the other players’ actions. We show:

Main Theorem. The class ES4(G) is a non-empty subclass of RS4(G). Further-
more ES4(G) almost coincides with RS4(G). '

2. Knowledge structure

Let £2 be a non-empty finite set called a state-space, N a set of finitely many players
{1,2,...,%,...n} atleast two (n 2 2), and let y be a probability measure on 2 which
is common for all players. Each member of 29 is called an event and each element
of 12 called a state.

Definition 1. By a knowledge structure we mean a pair (2, (Ki)ien), in which
2 be a non-empty set called a state-space, K; is a mapping of 2% into itself
called player i’s knowledge operator. A common-knowledge structure is a quadruple
(2,(K)ieN, KEg, Kc) in which Kg is the mutual knowledge operator on 29 defined
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by KgE = NienK;E. and K¢ is a common-knowledge operator on 2% satisfying
the fixed point property:

FP KcF C Kg(FNKcF)  for every F of 29.

The event K;E is interpreted as the set of states of nature for which i knows E
to be possible. The event KgF is interpreted as that all players know E.

The iterated common-knowledge operator K¢ is defined in the following way:
Construct the descending chain {K™} such that

K°F := KgF; K™ 'F:= Kg(Fn K™ 'F);
K"F:= K™ 'FnK™1F
The operator K¢ is given by the infimum of the chain:
KcE= () K™E.
m=0,1,2,.-.

It is plainly observed that K¢ satisfies Axiom FP. The event KcF is interpreted
as that ‘all players know that all players know that - -- that all players knows E.’

Definition 2. A knowledge structure (or a common-knowledge structure ) is called
a K knowledge (or a K common-knowledge) structure if it satisfies the properties:
For any E, F € 29,

N K2=0 and K0=90;

K K,(EﬂF)=K,EﬂK,F

It is called a T knowledge (or a T common-knowledge) structure if it satisfies in
addition

T Ki(E)SE forevery E € 29,

It is called an S4 knowledge (or an S4 common-knowledge) structure if it satisfies
in addition

4 K;(E)S Ki(Ki(E)) forevery E €29,

Finally it is called an S4 knowledge (or an S4 common-knowledge) structure if it
satisfies in addition

5 Q\KECK(?\KE) foreveryE €29,

3. Associated information structure

An information structure is a pair (§2,(Q;)ien) in which 2 is a non empty state-
space and Q; is a mapping on 2 into 292. It is called an RT-information structure
if each Q; satisfies the two conditions: For each w of 2,

Ref we Q;(w);and

Trn £ € Qi(w) implies Q;(¢) E Q:i(w).
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Definition 3. The associated information structure (P;);c v with a knowledge struc-
ture (§2,(K;)icn) is the information structure (2,(P,)ien) defined by Pi(w) =
NriT € 29 |w € K;T}.

Remark 1. For each L = K, T, S40rS5, an L knowledge structure (£, (K;)ien) is
uniquely determined by the associated information structure ({2, (P;)ien) as follows:
KiE={weR|PW)EE}

Let K;P, : 2 — 22 be the mapping defined by K;P;(w) = K;(P;(w)). It is
plainly observed that (K;P;)icn is an RT-information structure for any L knowledge
structure (12, (K;)ien)- It is noted that the associated information structure of an
S4 knowledge structure is an RT-information structure, because K;P; = P;. Then
P;(w) is interpreted as the set of all the states of nature that i knows to be possible
at w.

4. Robust models

Let 2 be a non-empty finite state-space and p a probability measure on 2 which
is common for all players. Let G = (N, (A:)ien, (gi)ien) be a finite strategic form
game: A; is a finite set of i’s actionsand g; is i’s payoff-function of A := X;enA; into
R. i’s overall conjecture ¢; is a probability distribution on A_;. For each player j
other than i, this induces the marginal on j’s actions called ¢’s individual conjecture
about j. Let a = (ai,...,a,) be a random variable of A. If x is a such function and
z is a value of it, we denote by [x = z] (or simply by [x]) the set {w € £2|x(w) = z}.
Accordingly P; with p yields the i’s overall conjecture defined by the marginal
¢;(a_i,w) = p(la—; = a_;]|K;P;(w)) viewed as a random variable of i’s conjecture
¢:. Denote [¢i] = Na_.ca_,[¢:(a—i,") = ¢(a—)] and [¢] = Nien[¢i]. We assume here
that [a;] S Ki([as]) for every a; of A;. An player i is said to be rational at w if each i’s
actual action a; maximizes the expectation of his actually played pay-off function g;
at w when the other players actions are distributed according to his conjecture ¢, (w).
Formally, letting a; = a;(w), Exp(gi(ai, a—:);w) 2 Exp(gi(bi, a—i);w) for every b; in
A;, where Exp is defined by Exp(gi(bi,a_);w) := > gi(bi,a—s) ¢i(a_i,w).
a_i€A_;
Let R; be the set of all the states at which an player i is rational, and denote
R :=NjenR;.

For a profile of conjectures ¢ = (¢;)ic N, we denote by Bg“ (G) the class of all the
epistemic models B = (£2, u, (K;)ien, (a:)ien) on the game G for the logic S4, and
denote BS4(G) = Ugex,cnaa_)B3H(G). We call B34(G) the class of all Bayesian
models on G. Let E$%4(G) be the subclass consisting of all the models B € B34(G)
with Kc([¢]) N KR # 0, and denote ES4(G) = Uge xiena(a_) E34(G), called the
class of models with epistemic conditions for G. Let NE(G) be the set of all mixed
strategy Nash equilibria and let o = (0;)ien € NE(G). We set by R34(G) the class
of all the models B such that there exists a profile of conjectures ¢ € X;e NA(AZ)
with the property that for every 4,5 € N,i # j and for all a; € A;, ¢(a;) = oi(as).
We will call R54(G) the class of robust models for a Nash equilibrium o of G.
Denote RS4(G) = Uaem(g)R§4(G).



5. Proof of Main theorem

For the first part that ES4(G) ¢ RS4(G): It can be plainly observed that for
o € NE(G), E34(G) # 0 and so ES4(G) # 0. Let B = (12, , (Ki)ien, (ai)ien) €
ES4(G) and B e E3*(G). Take w € Kc([¢]) N KER. Set 0i(a;) := #i(a;) with j # i
and o = (0;)icn. We can observe that for every a € [Licn Supp(ai), di(a_;) =
o1(a1) - 0i-1(ai—1)0ip1(aitz1) - - -0pn(ay), and thus we obtain that each action a;
appearing with positive probability in o; at w maximizes g; against ¢;(a—;). This
implies that o = (0;)ieny € NE(G), and so B € R34(G).

For the second part: We can introduce the operation @ : BS4(G) x BS4(G) —
BS%(G) such that the structure (BS4(G), @) is an abelian semigroup. Now we can
explicitly state the second part of the main theorem as follows:

Theorem 1. Let the notation be the same as above. Then the following statements
are true:
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(i) Both structures (E54(G), @) and (RS4(G), D) are sub-semigroups of (BS4(G), D).

Furthermore, ES4(G) is a sub-semigroup of RS4(G).
(ii) The quotient group G(ES4(G)) of ES4(G) is isomorphic to the quotient group
G(R3(G)) of RS4(G).

Proof. For (i): It is easy to verify (i). For (ii): First we note that the cancellation law
holds in the abelian semigroups (ES4(G), @) and (R54(G), @) respectively. This
implies that the quotient groups G(ES4(G)) and G(RS4(G)) of (E%4(G), ) and
(R54(G), @) respectively are constructed, and it can be verified that G(ES4(G)) =
G(RS4(G)).

6. Concluding remarks

1. A model B for the S4 logic is called a model for the logic S5 provided that for
any E € 29,
5 2\KECKi(2\K;E).
Or equivalently, the associated information structure (Pi)ien makes an infor-
mation partition; that is, for each w € £2,
Sym ¢§ € Pi(w) implies P;(¢) = P;(w).
In view of R.J. Aumann and A. Brandenburger (1995) it can be shown that
ES5(G) S RS4(G) in the models for the logic S5.

2. Furthermore, the main theorem is still true in the class of models for each modal
logics K, KT, S4 = KT4 and S5 = KT45.
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