Remarks on locally inverse *-semigroups

島根大学総合理工学部 今岡 輝男 (Teruo Imaoka) 藤原 浩示 (Koji Fujiwara)

Department of Mathematics, Shimane University Matsue, Shimane 690-8504, Japan

A semigroup S with a unary operation $*:S\to S$ is called a regular *-semigroup if it satisfies

(i)
$$(x^*)^* = x$$
; (ii) $(xy)^* = y^*x^*$; (iii) $xx^*x = x$.

Let S be a regular *-semigroup. An idempotent e in S is called a *projection* if $e^* = e$. For a subset A of S, denote the sets of idempotents and projections of A by E(A) and P(A), respectively.

Let S be a regular *-semigroup. Define a relation \leq on S as follows:

$$a \le b \iff a = eb = bf \text{ for some } e, f \in P(S).$$

A regular *-semigroup S is called a *locally inverse* *-semigroup if eSe is an inverse semigroup for any $e \in E(S)$.

Let G be a non-empty set with a partial product \cdot , a unary operation * and a partial order \leq . We simply write ab instead of $a \cdot b$. If ab is defined for $a, b \in G$, we sometimes write $\exists ab$. An element $e \in G$ is called an *idempotent* if $\exists ee$ and ee = e. If an idempotent e satisfies $e^* = e$, it is called a *projection*. Denote the sets of idempotents and projections of e0 by e1 by e2, respectively.

If G satisfies the following axioms, it is called an ordered *-groupoid.

- (A1) a(bc) exists if and only if (ab)c exists, in which case they are equal.
- (A2) a(bc) exists if and only if ab and bc exist.
- (A3) $(a^*)^* = a$.
- (A4) If ab exists, then b^*a^* exists and $(ab)^* = b^*a^*$.
- (A5) For any $a \in G$, a^*a exists and a^*a is the unique projection of G such that $\exists a(a^*a)$ and $a(a^*a) = a$. We write $a^*a = d(a)$ and call it the domain identity.
- (A6) $a \le b$ implies $a^* \le b^*$.
- (A7) For $a, b, c, d \in G$, if $a \le b$, $c \le d$, $\exists ac$ and $\exists bd$, then $ac \le bd$.

- (A8) Let $a \in G$ and $e \in P(G)$ such that $e \leq d(a)$. Then there exists a unique element (a|e), called the *restriction* of a to e, such that $(a|e) \leq a$ and d(a|e) = e.
- (A9) E(G) is an order ideal.

Lemma 1. [3] Let G be an ordered *-groupoid.

- (1) For any $a \in G$, aa^* exists and aa^* is the unique element of P(G) such that $\exists (aa^*)a$ and $(aa^*)a = a$. We write $aa^* = r(a)$ and call it the range identity.
- (2) Let $a \in G$ and $e \in P(G)$ such that $e \leq r(a)$. Then there exists a unique element (e|a), called the corestriction of a to e, such that $(e|a) \leq a$ and r(e|a) = e.

An ordered *-groupoid G is called a locally inductive *-groupoid if it satisfies

(LG) For any $e, f \in P(G)$, there exists the maximum element in $\langle e, f \rangle = \{(g, h) \in P(G) \times P(G) : g \leq e, h \leq f \text{ and } \exists gh\}$.

Let S be a locally inverse *-semigroup. The representation in [4] raise us a new partial product \cdot on S, which is called a *restricted product*, as follows:

$$a \cdot b = \left\{ egin{array}{ll} ab & ab \in R_a \cap L_b \ ext{undefined} & ext{otherwise} \end{array}
ight.$$

where R_a and L_a denote the \mathcal{R} -class and the \mathcal{L} -class containing a, respectively.

Lemma 2. [3] $S(\cdot, *, \leq)$ is a locally inductive *-groupoid, which is denoted by G(S).

Conversely, let $G(\cdot, *, \leq)$ be a locally inductive *-groupoid. For any $a, b \in G$, there exists the maximum element (e, f) in $\langle d(a), r(b) \rangle = \{(g, h) \in P(S) \times P(S) : g \leq d(a), h \leq r(b), \exists gh\}$. We define a new product \otimes on G as follows:

$$a \otimes b = (a|e)(f|b),$$

and we call it a pseudoproduct of a and b.

Lemma 3. [3] $G(\otimes, *)$ is a locally inverse *-semigroup, which is denoted by S(G).

Lemma 4. [3] (1) For a locally inverse *-semigroup S, we have S(G(S)) = S.

(2) For a locally inductive *-groupoid $G(\cdot, *, \leq)$, we have $G(S(G(\cdot, *, \leq))) = G(\cdot, *, \leq)$.

Let S and T be regular *-semigroups. A mapping $\phi: S \to T$ is called a *prehomomorphism* if it satisfies

- (i) $(ab)\phi \leq (a\phi)(b\phi)$,
- (ii) $(a\phi)^* = a^*\phi$,

for all $a, b \in S$.

Lemma 5. [2] Let S and T be locally inverse *-semigroups and $\phi: S \to T$ a mapping.

- (1) ϕ is a prehomomorphism if and only if it preserves the restricted product and the natural order.
- (2) ϕ is a homomorphism if and only if it is a prehomomorphism which satisfies $(ef)\phi = (e\phi)(f\phi)$ for all $e, f \in E(S)$.
- (3) The product of prehomomorphisms between locally inverse *-semigroups is also a prehomomorphism.

A functor between two ordered *-groupoids is said to be *ordered* if it is order-preserving. An ordered functor between two locally inductive *-groupoids is said to be *locally inductive* if it preserves the pseudoproduct.

Now, we have the main result.

Theorem 6. The category of locally inverse *-semigroups and prehomomorphisms is isomorphic to the category of locally inductive *-groupoids and ordered functors. Moreover, the category of locally inverse *-semigroups and homomorphisms is isomorphic to the category of locally inductive *-groupoids and locally inductive functors.

References

- [1] Imaoka, T., Prehomomorphisms on regular *-semigroups, Mem. Fc. Sci. Shimane Univ. 15 (1981), 23-27.
- [2] Imaoka, T., Prehomomorphisms on locally inverse *-semigroups, in: Words, Semigroups and transductions, edited by M. Ito, G. Paun and S. Yu, world Scientific, Singapore, 2001, 203-210.
- [3] Imaoka, T. and K. Fujiwara, Characterization of locally inverse *-semigroups, Sci. Math. Japon., to appear.
- [4] Imaoka, T. and M. Katsura, Representations of locally inverse *-semigroups II, Semigroup Forum 55 (1997), 247-255.
- [5] Lawson, M. V., Inverse semigroups, World Scientific, Singapre, 1998.