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Dynamics of Polynomial Automorphisms of C?:
Herman ring

i H4v (Teisuke Jin)
REKFRERBERRFM7EH
(University of Tokyo, Graduate School of Mathematical Sciences)

Abstract

Herman ring is a periodic set which is biholomorphic to an annulus and rotates irrationally by iteration.
Though the structure is known well its existence is unknown. We will show that there are no Herman rings under
some conditions in the dynamics of the title.

1 Introduction

In this paper we denote 2z = (z,y) € C2. Take an appropriate m € N. Let P;(y) be polynomials such that degree
dj > 1forj =1,...,m. Wecall fi(z,y) = (v,pj(y) — §;x) generalized Hénon mappings, where §; # 0.
Moreover we define

f=fmo---0fi, §=61-"-0m, d=di---dm.

Note that § is the Jacobian determinant of f, and that fj‘1 are also generalized Hénon maps.
In [FM] Friedland and Milnor classified the polynomial automorphisms of C?2 into three types:

e an affine mapping: (z,y) — (11T + p12y + A1, pZ + p2oy + Az),

® an elementary mapping: (z,y) — (p1z + A, p2y + p(x)),
e acomposite of generalized Hénon mappings: (z,y) — f(z,y).

Since the dynamical structures of the former two mappings are simple, they were investigated sufficiently in [FM].
So we study the last one.

We define K* = {2z € C? | {f*"(z) | n € N} is bounded}, J* = 9K*, K = K*nK~-,J = J+nJ-. They
are closed invariant sets and are important objects in dynamical systems. Moreover we define I* = C2 \ K%,
For R > 0, we define V* = {2z € C? | |z| > max{ly|,R}}, V™ = {z € C? | |y| > max{|z|, R}} and
V = {2z € C?||z|, |y| < R}. Itis known that K* C V U V* for sufficiently large R > 0.

We define the Green functions G* as (cf. [BS1, Section 3D

G¥(2) = lim —log* |/"(2)].

n—

G#* are non-negative continuous plurisubharmonic functions such that G (2) > Oif and only if 2z € I, G*|=+
are pluriharmonic, and G* o f = d*!. G%.

Before we define Herman ring, we state a classification of Fatou components. We proceed with the following
volume property.

Proposition 1.1. ([FM, Lemma 3.7]) Denote by Vol() the usual Lebesgue volume in C2. We have
e if|6] < 1, then Vol(K+) = 00 or 0, Vol(K~) = 0,
e if || =1, then Vol(K*) = Vol(K~) < oo,
® if|6] > 1, then Vol(K*) = 0, Vol(K~) = oo or 0.
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In this paper we assume |§| < 1, i.e. dissipative. Then only Kt can have non-empty internals by the above
proposition. We call each component of int K+ Fatou component. Its classification theorem is as follows.

Theorem 1.2. ([BS2, Section 5)) Each connected component of int K is classified as follows.

wandering domain
non-recurrent domain

g . basin of a sink
periodic domain . . .
recurrent domain < Siegel cylinder

Herman cylinder

Before we define the names, we mention about existence and non-existence of the above domains.

As far as the author knows, it is unknown whether wandering domains exist or not. Non-recurrent domains
exist and have been investigated only a little ([Hak, U1, U2, W]). Of course there are basins of sinks. Fornzss
and Sibony investigated in [FS, Section 2] that there are Siegel cylinders. It is unknown whether Herman cylinders
exist or not.

The only known fact with respect to non-existence of Herman cylinder is as follows: if f is uniformly hyper-
bolic on J, then Fatou components consist of basins of finite sinks (cf. [BS1, Theorem 5.6}).

Let us return to the definition of the names. Fatou component U is wandering if f*(U)NU = @foranyn € N,
periodic if fP(U) = U for some p € N. We call p period for the minimum p. We say U is recurrent if there are
compact C C U and z € U such that f*(z) € C for infinitely many n € N.

For E C C2, we define

W*(E) = {z € C? | d(f"(2), f*(E)) — 0 (n — 00)},
W*(E) = {z € C? | d(f™(2), f*(E)) — 0 (n — ~o0)},
sEY= | we©)

C C E:compact
WE(E) = U wW*(C).
CC E:compact

Let z; be a periodic point with period p. We call z; sink if both eigenvalues of D f?(z,) are lower than 1
in modulus, source if greater, saddle point if one lower and another greater. We say U is a basin of a sink if
U = W?*(z,) for some sink z;.

We call D C C?2 Siegel disk if D satisfies the following properties: D is a periodic set with period p and there
is a bijective holomorphic map ¢ : A — D such that fP(p(¢)) = @(b() for { € A, where A is a unit disk on a
complex plane and b is an irrational rotation, i.e. b = '™ for some 8 € R\ Q. Here, we have to take the maximum
D with respect to inclusion. We call U Siegel cylinder if U = W (D) for some Siegel disk D.

We call H C C2 Herman ring if H satisfies the following properties: H is a periodic set with period p and
there is a bijective holomorphic map ¢ : A — H such that fP(p(¢)) = ¢(b¢) for ( € A, where A = {( € C |
71 < |¢| < 72} is an annulus and b is an irrational rotation, i.e. b = €' for some 6 € R\ Q. Here, we have to take
the maximum H with respect to inclusion. We call U Herman cylinder if U = W (H) for some Herman ring H.

‘We have arrived at a good position to describe our question.

Problem. ([BFGK, Problem 10.2.2(i)]) In case of dissipative, does a Hénon map admit a Herman ring (Herman
cylinder) ?

In section 2, we will investigate several properties of a Herman cylinder. In particular, Proposition 2.9 will give
a classification. In Theorem 3.1 of section 3, we will show that one of the types in the classification is impossible.
Perhaps it might be a clue either to prove there are no Herman rings or to construct a Herman ring.

2 Fundamental properties of Herman cylinder

2.1 Functional properties

Note that we assume |§| < 1 in this paper. The following is a known fact.
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Proposition 2.1. ([BS2, section 5]) Define L(¢,n) = (b(, %n). Then there exists a biholomorphic map ® :

A x C — Wg(H) such that ®(A x {0}) = Hand fPo® = ®o L.

Proposition 2.2. Let U be an arbitrary Fatou component and M simply connected one dimensional complex

manifold in C2. Then M N U is simply connected.

Proof. Assume that M N U is not simply connected. Then there is a point z; € M \ U which is surrounded by
M N U on M. By perturbing M to M’, we can take 2 € M’ \ K+ which is surrounded by M’ N U on M’. We
recall the Green function G+, which vanishes on M’ N U and is positive on M’ \ K. It contradicts the maximum

principle.

We define us(n) = u(a,n) = G~ o ®(a,n) for a € A, n € C. Then u, is a subharmonic function on C.

In general, let v be a non-negative subharmonic function. We define the order of v by

1 =
ord v = lim sup 08 maXjq)=r v(1)
r—00 logr

Let p be the order of v, then we say v is of mean type of order p if

maXjy|=y ¥V
r—o00 re

00.

Proposition 2.3. For a € A, u, is of mean type of order:

logd
log(1/18])

Proof. 1t is sufficient to show that u, is of mean type under the assumption that p = a“-’fﬁm.

p=orduy; =

MaXy|=r % . max,|—, %
sup lim supM < lim sup max Inl ; c(’?).
[Kl=la] r—oo0 T r—oo [¢I=lal r

For r > 1, we take n € Z such that 1/|6|P" < r < 1/|§|P(n+1),

ue(n) G~ o ®(¢,7)
< max max hafiiiad \ TR/}
~ o fP(ntl) n+1
= max max G of °0®o L™ (¢, m)
ICI=lal |n}=1/|5|P(n+1) P
— max max Tt G~ o B I(,m)
[¢l=lal Inl=1 dw

=dP max maxu .
e o uc (n)

Therefore we have
maxipj—, %
lim sup ——lnl=rZalll] a("l) < 0o
r—o0 re

Similarly we can compute as follows.

inf lim sup
Ki=lal r—oo

For r > 1, we take n € Z such that 1/|§|P" < r < 1/|6[P(»+D),

u¢(n) : G~ o ®(¢,n)
ax ———- 2> min max -————————
Kl=lal Inl=lal T 7 [¢|=la] Inl=1/|8]P" (1/|6|P(ﬂ+1))p
: G~ of ™ 080 L*(¢,n)
= min max
[¢I=lal Inl=1/]6]P" dr(n+1)
d’™ -G~ o 2(b"¢, )
dr(n+1)

L& nl=r %c1) uc(n) > lim sup min —_max,,ﬂ:,u((n)' '
TP T rooo [¢l=la] TP

= min max
I¢l=la} |nl=1

=d™? min maxu¢(n).
(T g e ()

(]
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Let us show that the last side is positive. Assume for some a’ with |a’| = |al, ua’|jpj<1 = 0. Then

u({p™"a'} x {n € C | |n| < 1/|8/""})
=w(L™"({a'} x {ne€C|n| <1}))
=d"u({a’} x{n€C|n| <1}) =0
Since | JS2o{b~"a’} x {n € C | |n| < 1/|6*"} is densein {C € C | I¢| = la|} x C, ua = 0.
On the other hand, G~ |y+ > 0 and the range of the non-constant holomorphic map &, is contained in VUV,

So u, # 0. It is a contradiction.
Therefore we have

maXiy|=r uq(n)

lim sup > 0.
r—00 rP
O
2.2 Formal classification
Let C = {c1,...,cn} be a finite ordered subset of a metric space with a metric d. We call C e-chain if
d(cj,cj41) <eforany1 < j < n.
Lemma 2.4. Let {¢;};cn be a positive decreasing sequence converging to 0. Take €;-chain C; = {cj1,-- -1 Cjn; }-

Assume {c;j1}jeN converges and U;';l C; is compact. Then the w-limit set:

A0e

k=1j=k

<.

is a connected compact set.

Proof. Assume E = (7o, U;"; . Cj is not connected. Then there exist compact sets E; and E; such that E =
E; U E5 and Eq N E3 = . Observe that d(E1, E2) > 0. We may assume {cj1};en converges in E;. Then there
is a sequence {cjk, } jen Which accumulates on E3.

On the other hand, because {e;} decreases to 0, there is a sequence {c;i,}jen Which accumulates on {w €

UC; | min{d(w, E1),d(w, E2)} > d(E, E2)/3}. It is a contradiction. 0

Lemma 2.5. Let X C R2 be a closed subset and Y a compact component of X. Then there is a simple closed
curve ' C R?\ X which winds Y once.

Proof. At first we show that there is £ > 0 such that the subset of X which can be joined to Y by e-chain on X is
compact.

Assume the contrary. Take a positive decreasing sequence {&;} converging to 0 and w; € ¥ and r > 0 with
Y C B(wi,r). By the assumption, for any j € N we can take €;-chain C;j C X such that the start point of C;
is wy and C; \ B(w1,7) # @ and C; C B(w;, 2r). By the previous lemma, we can conclude that the connected
component of X containing w; exceeds B(ws, 7). It is a contradiction.

Let Y’ C X be the compact set which can be joined to Y by e-chain. Each point on X \ Y” is at least ¢ far
from Y. It is not difficult to find a simple closed curve I' C C \ X which winds Y” once. O

We proceed with investigating the structure of a Herman cylinder. _
We define K = ®1(K~), Ko = {n € C | ®(a,n) € K~} fora € A. Note that K = {(¢,n) € AxC|

u(¢,n) = 0}, Ko = {n € C | ua(n) =0}.
Definition 2.6. We say K, is bridged if the component of K, containing 0 is unbounded.
Lemma 2.7. The following are equivalent.

(1) K, is bridged.

(2) The component of f("a containing Q is not a point.
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(3) K o has an unbounded component.

Proof. (2)=>(1). Assume the component of K, containing 0 is bounded, i.e. the component is contained in
B(0,r) = {n € C | |n| < r} for some 7 > 0. Take an increasing sequence {n;}jen C N such that b="iq
converges to a. Then

{670} x Kyon,, = L™ ({a} x Ka) = {b~™a} x (b/6?) K, C K.

Let {€;}jen be a positive sequence decreasing to 0. We take ¢;-chain C; in {b~"5a} x (b/6P)" K, so that the
starting point of C; is (b~"7a, 0) and C; C {b~™ia} x B(0, 2r). Moreover we can assume C; ¢ {b~"a}x B(0,r)
for any sufficiently large j because of the hypothesis (2). By Lemma 2.4 we can conclude that the component of
K, containing 0 exceeds B(0, ). Itis a contradiction.

(3)=(2). Take an increasing sequence {n;};en such that b™ia converges to a. Then

(" a} x Kyriq = {b™a} x (57 /b)" K.

Let E be an unbounded component of K,. We can take r > 0 such that B(0,r)NE # 0. Let {¢;}jen be a
positive sequence decreasing to 0. We take ¢;-chain C; in {b"a} x (6P /b)™ E so that the starting point of Cj
converges (a,0) and C; C {4"™a} x B(0,2r) and C; ¢ {t™a} x B(0,r). By Lemma 2.4, we can conclude that

the component of K, containing 0 is not a point. O
Lemma 2.8. Fora € A the following hold.

(1) If K, has no compact components, then so is IZ'C Sor any || = la].

(2) IfI?,, is bridged, then so is I?gfor any (| = |a|.

Proof. The proof of (2) is similar to the previous lemma. So we give only the proof of (1).
To prove (1), we show that if K, has a compact component then so is K,, for |a’| = |a|. By Lemma 2.5, there

is a curve I" which surrounds the component and never intersects K,. Takem; € K, surrounded by I'. Then there
existse > Osuchthat', = {( € A| | —a| <€} x I"nevermtersectsK

Consider u¢. Note that u¢(n) = 0 if and only if n € K. We define c = min(¢ )er. u((n) > 0. Whene >0
is sufficiently small, u¢(m) < c for any ¢ with |{ — a| < €. Recall that u¢ is harmonic in C \ K( and continuous

on C. So u¢ has zero points inside of T, i.e. for { with [ —a| < ¢, K( has at least one compact component inside
of .
Take n € N such that |b"a —a| <e. Then

Ko = (b/6”)" Kona.
Because I?bna: has a compact component, so is I?a' . ]
We obtain the following classification.

Proposition 2.9. Fora € A, K, is classified into the following three types:

(1) K, has no compact components,

(2) I?a is bridged and has compact components,

(3) each component of K, a is compact.
Moreover, for any ¢ with |(| = |a], K, and I?( are classified into the same category.

2.3 Continuity about irrational rotation
In the following, we show several kinds of continuities of sets along irrational rotation.

Lemma 2.10. Take a,a’ € A with |a] = |a’|. Let {n;};en C N be a sequence such that ab™ — a’ as j — oo.
Then

ﬁ(’j( 2)" Rac R

k=1j=k
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Proof. Since

{ab™} x (‘%)W K, =L"({a} x K,) C K,

we have

00 5P Lo
|J{abms} x (T) K,CK,

=k

ﬁ D{abnj} X (sz)nj K, c {a'} x Kq.

k=1j=k

On the other hand, we take

ne ﬁ D (%)nj K,.

k=1j=k

This means that for any € > 0 and k € N, there is | > k such that

()R

d ((a','r)), {ab™} x (fsbf)nj f{a) < z-:.'

N M

Then, there exists j > k such that

This implies
(a’,n) € ﬂ U{ab":} X (—b-) K,.
k=1j=k
Therefore
= m N = ® 5P\
@ NU(F) &N Uty x (3) &
‘We obtain the assertion. 0

We define ] = A x C \ KandI, =C \ K, for a € A. Under the hypothesis of the above lemma, we have
[o o] [ o] n;
) SP\™ -~
U int n (?) I, D I,.
k=1 i=k

‘More precisely we obtain the following.

Proposition 2.11. Take a,a’ € A with |a| = |a’|. Let {n;}jen C N be a sequence such that ab™i — a’ as
j — oo. Then each component of

=) ) 0o SP\™ ~
kL:Jlmt O (—5—) I,

is either in agreement with a component of I,/ or contained in K.



130

Proof. Take an arbitrary component I; from
[o o] o n;
) P\
U int ﬂ (T) Ia.
k=1  j=k

We may assume I; contains some component of Z,:. Take a compactly contained open set V C z,'. Then there is
k € N such that for any j > k,

P\ I
(?) Ia ) V, 1.C. Iab"j oV

Since u is continuous on A x C,
Ugps [V — Uarlv
uniformly as j — oo. On the other hand, since u,;~; is harmonic on .‘[;b"j ,
ugpms € H(V)
for any j > k. Because V € I, is arbitrary,
ug € H(Ih).

Recall that I; contains some component of I~a:, on which u,- is a positive harmonic function, and u,- vanishes on
C\ I,. Because I is connected, I; coincides with some component of I,. (]

For ¢ > 0, we define
L={neClun)>c},
which is a subset of Z, The next lemma tells that Z’, plays a role similar to Ta

Lemma 2.12. Take a,a’ € A with |a| = |a’|. Let {n;}nen C N be an increasing sequence such that ab™ — g
as j — oo. Then

. [ o] 00 ‘sp n; ~ [ o] oo 6p n; -
I, C U int n (T) Ia C U int n (T) I,.
k=1 j=k
Moreover, each component of the middle side is either in agreement with some component of I,. or contained in

K.

Proof. 1t is sufficient to show the left inclusion.
n € I, if and only if u,(n) > c. Therefore

o~

oP\ " ~ SP\
ne (T) T, = (ab™,m) € {ab™} x (7) 7
<= (ab™,7) € L™ ({a} x I})
< L™™i(ab",n) € {a} x I
<= u(L™ " (ab™,n)) > ¢
e d" u(ab™,n) >c.

Take 1 € I,/ Then there is £, > 0 with B(n,3¢1) C I,. Note that
Ua’|B(m,3¢,) > 0.
Since u is continuous, there is k; € N such that for any j > kj,

Uqap™i | B(my,2¢1) > 0.
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Moreover there exists ko € N for arbitrary j > ka2,
P -

j
c .
Uass | Bom.er) > T e B(m,e1) C (7)—) I;.

Therefore we have
oo n;
SP\™ -
mewt N (§) T
Jj=ka2

This implies the left inclusion in the assertion. O

3 In case that K, has no compact components

We have the following non-existence of Herman rings.
Theorem 3.1. The case (1) in Proposition 2.9 is impossible.
Corollary 3.2. The case that I~(a is connected is impossible.

To prove the theorem we use a Bottcher function ¢~ (cf. [MNTU, Section 7.3]). ¢~ is holomorphic on V+
for sufficiently large R > 0, and satisfies = o f~1(2) = (¢~ (z))¢ and log |~ (2)| = G~ (2) for z € V*. There
is M > 1 such that 1/M < |o~(z,9)|/Iz| < M for (z,y) € V*. When |w| (w € C) is sufficiently large,
{z € V* | ¢~ (z) = w} is a simply connected one dimensional complex manifold in v+

We use a notation ¥¢(n) = ¥%({,n) = ¢~ o ®((, 7). Note that log |)a| = ua.

Lemma 3.3. If K, has no compact compohents, then
Vua(n) # (0,0)
foranyn € j; ‘

Proof. Assume the contrary i.e. there is 7o € I, such that a;—3'3’“(7)0) =0. ‘

By Proposition 2.3, for any ¢ > 0 the number of components of {n € C | ua(n) > c} is at most max{1, 2p}
(cf. [Hay, Theorem 8.9]). Since the number is monotone increasing along ¢ > 0, we can take ¢ > O so that the
number attains its maximum.

Then %“nﬂ has no zero points in I, = {n € C | ua(n) > c}. In fact, let us assume the contrary, i.e. there is

m € I, with Vua(m) = (0,0). Define ¢’ = uq(no). There are n > 2,0 < 6 < 2mand £; > 0 such that

uq(no + texp(i(6 + 27j/n))) > ¢,
Ua(o + texp(i(8 + 2n(j + 1/2)/m))) <
forany 0 < j < nand 0 < t < 2¢e;. Define

I = {n € C| uqa(n) > ¢, nis in the component of T’ containing 7o}

Because of the definition of ¢, I; is a connected open set. Moreover, I is simply connected because so is 1.
Therefore there is an arc I' C I; which joins

no + €1 exp(i6) and o + &1 exp(i(6 + 27/n)).

We can extend T in a neighborhood of 79 and obtain a closed curve I'' so that ug > ¢’ on . But there is a point
inside of I on which u, < c’. It is a contradiction. _
Let {n;}jen C N be a sequence such that ab™/ — a as j — oco. Then forn € (6P /o)™ I,

uqpns (n) = u(ab™,n)
= u(L"™ (a, (b/8%)"™n))
= d~"u(a, (/7)™ n)
= d™" ug((b/6%)" ).
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6‘Uab"j — J-n; i i aua
Trm=a(5) B

On the other hand, by Lemma 2.12, there are €p > 0 and k € N such that for any j > k,
P\™ -,
B(T]o,eo) C (T) Ia.

Because u is continuous, ug,~; converge to u, uniformly in B(7y, £9) as j — oo.
When harmonic functions ug;»; converge to a non-constant harmonic function u, uniformly on B(7o, eo)

then antiholomorphic functions 2"—5"5—— converge to 7; uniformly. By Hurwitz theorem, each zero point of 2 -

is an accumulation point of zero points of —33’— But —5;— has no zero points in B(no, &) for any j > k. It is
a contradiction. O

We use a notation H = {¢{ € C | Re¢ > 0}.

Lemma 3.4. Assume K, has no compact components. Then for any component Iy of I, and Jor any ¢ > 0 the
number of components of

{n€ Io|ua(n) >c}
is exactly one.
Proof. Since Iy is simply connected, there is g € O(Ip) such that Re g = u,. Then
g:Iy — H.
By the previous lemma, for each ¢ > 0 its level set
{n € Io|ua(n) = ¢}

is a set of smooth simple arcs, whose all ends go to infinity. Therefore g : Io — H is locally biholomorphic and
proper. This implies g is bijective. Hence the above each level set consists of single arc. We obtain the required
result. , ]

Lemma 3.5. Assume K, has no compact components. Let Iy be an arbitrary component of I,. Thenitis possible
to define

log, : Io — H
by analytic continuation. Moreover it is biholomorphic.
Proof. For sufficiently large ¢ > 0, v, is defined on
Io = {n € Io | ua(n) > c},

because the set is contained in ®~1(V'*). Since Ij is simply connected, log 1, is well-defined on I}.

We take g used in the previous proof. Because Relogy, = uq, log ¥ — g is a purely imaginary constant.
Then log 1, can be analytic continued to Iy because Ij is connected. Since g : I — H is biholomorphic, so is
log 1. O

Let us investigate the structure of I.

Proposition 3.6. For any a € A there are N € N and a closed curve
v:[0,N]— T
such that
ma 0v(t) = aexp(2mit),

where m4 : A x C — A is a natural projection.
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Note that we take the minimum N > 1 when we use the proposition.

Proof. Assume I, has ¢’. We know ¢’ < max{1,2p} < co. Take71,...,7q € I, so that any two of them belong
to distinct components of I,. There is small €9 > 0 such that

q/
T = U{(ae“,nj) |0<t<2g}Cl.
j=1

We define a sequence {n;}; C Z as follows. We take n; € Z such that
g0 < argab™ —arga < 269 (mod2rw).
Then we take ng € Z such that
g0 < argab™ — argab™ < 2¢p (mod2m).
By repeating the procedure, we return to the starting point, i.e. there is k € N such that
0 < arga — argab™ < 2ey (mod2w).

Then we can draw arcs in I as follows. For 7;,, draw an arc from (a, 7;,) to (ab™,n;,) along T. Choose
(67 /b)™n;, so that n;, and (67 /b)™*n;, are in the same component of Iopn1 , then draw arcs joining the two points
in the component. In the sequel draw an arc from (ab™,7;,) to (ab™?,n;,) along L™ (T). By repeating the
procedure, we can draw an arc from each 7, ..., 7y to L.

If for some 7); the arc returns to the component of I, containing the same 7nj, we can draw an arc in the
component joining the start point and the end point, and obtain a closed curve. Otherwise repeat N times the
above procedure and at last some end point arrives at the same component of its start point. So we can draw a
closed curve.

Finally by perturbing the closed curve we obtain v as required. _ a

Lemma 3.7. If K, has no compact components, ~y in Proposition 3.6 is unique in the following sense. Let vy
[0, N'] — I be another closed curve satisfying the same condition, and y(0) and +'(0) are in the same component
of I,. Then N = N’ and for any t € [0, N}, ¥(t) and ' (t) are in the same component of I, exp(2nit)-

Proof. We may suppose N < N’. Let us assume for some ¢ € [0, N}, ¥(t) and +'(t) are in distinct components of

I, exp(2nit)» and derive a contradiction.
By iteration of L1, we may assume 7,7’ C ®~1(V+). Then 9 is defined in a neighborhood of y and v.
The set

{t € [0, N]| 7(t) and +(t) are in the same component of Taexp(zﬂt)}

is open. In fact, take ¢, from the set. Then there is an arc C C I, exp(2mit,) joining (t1) and ' (t1). Because
U %
iK1=lal

is open in {¢ € A | |[¢| = l|a|} x C, a neighborhood of C is also contained in the above open set. So in a
neighborhood of t1, v(t) and +'(t) are joined by an arc in J; exp(2nit)-
Define

t, = min{t € [0, N] | ¥(t) and +'(t) are in distinct components of faexp(zm-t)},
(a2, m2) = 7(t2) and (az,n5) = 7' (t2). Take €1, €2 > 0 such that
{az exp(2mit) | —&; <t < 0} x B(na,2) C @~ }(V*) C 1T,
{azexp(2mit) | —e1 <t <0} x B(nj,e2) C @ }(VH) C T,

({ag exp(2mit) | —e1 <t < 0} x 8B(n2,€2)) Ny =0,
({az exp(2mit) | —e1 <t < 0} x 8B(ny,e2)) Ny = 0.
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By Lemma 3.5, for each { € {azexp(2mit) | —&1 < t < 0}, logy is well-defined in the component of f(
containing 72 and 73. We choose the branches of the logarithms so that log ¢ (n2) varies continuously with respect
to ¢. Then

log 9¢(n3)

varies continuously on { € {azexp(2nit) | —e; < t < 0}. Moreover since Y¢ converges t0 Y., as { — a3
uniformly in a neighborhood of 75, there is £ such that

log¥¢(mz) — &2

as ( — Q2. -~
On the other hand, there is 73 in the component of I,,, containing 7, such that

log ¢a2 (7’3) = 627
where log v, is defined so that log ¥¢(12) — log ¥, (12) as ¢ — ay. Observe that

log Y¢(m3) — &2

as ( — ay, because 1 is continuous in a neighborhood of (a2, n3).
Therefore, both log ¥¢(n3) and log ¢ (n3) converge to &,. It contradicts with the injectivity of log y¢.

Hence y(N) and +/(N)) are in the same component of I,. We can draw a curve in the component from v/(N)
toy'(0),i.e. N = N, O

Lemma 3.8. Assume K, has no compact components. Take an arbitrary closed curve v as in Proposition 3.6.
Then ®(vy) is trivial in w,(I™).

Proof. Since I, has finite components, there is ¢ € N such that bothe -y and L9(y) intersect a common component
of I,. We know by Lemma 3.7 that for each ¢ € [0, N|

7(t) and LI(7y(t + o)) (modN)

are in the same component of -i;xp(21rit) for some tp € R.
We can draw a curve in Z,exp(g,,“) between (t) and LI(~/(t + tp)). We can extend the curve alongttoa
strip, i.e. y(t) and L9(~(t + to)) are locally homotopic. since each component of I is simply connected, we can

Jjoin the homotopies and have that y and L9 () are homotopic in I.
On the other hand, there is an isomorphism a : 711(I~) — Z[1] such that

a(f(C)) = 3a(0)
for any C € my (/) (cf. [MNTU, Section 7.3}).
Since -y and L9(-y) are homotopic in I = ®~1(I7), ®(7) and ®(LI(7)) are homotopic in I—. We obtain
%0(‘1’(7)) = a(fP(2(7))) = o(2(L(7))) = a(®(7)).

Therefore a(®(vy)) = 0. o

Proof of Theorem 3.1. Take 7 as in Proposition 3.6. By iteration of L1, we may assume ¢ is defined on the curve.
Letmc : AxC — C be a natural projection. For each t € [0, N1, let I, be the component of I, exp(2xit) CONtaining
7c © ¥(t). By Lemma 3.5, we have

log ¢aexp(21n't) : Iy - H.

We choose the branch of the logarithm so that log 1, exp(2rit) (Tc o y(t)) varies continuously. Here, we regard
Ya exp(2rit) ANd Yo exp(2ri(e+1)) as different functions.
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Then in general, 10g ¥ exp(2ri-0) and 10g ¥4 exp(2ri- ) d0 not have to be coincide. But since ®(+y) is trivial in
m1(I7), they coincide. In fact, there is a 1-form w in I~ such that

m(I7) 5 C /cw — a(0) e 2[3]

and f w = log ¢~ (indefinite integral) (cf. [MNTU, Section 7.3]). Therefore

IOg ¢a exp(2ni-N) (WC o 7(0))
= log "paexp(’hri-N) (”C o 7(N))
=log v, exp(2mi-0) (WC o 7(0)) + / ®*w
¥

=log ¥, exp(2ni-0) (7rC o 7(0))

Take an appropriate £ € H so that Re¢ is sufficiently large. Then for each ¢ € [0, N], there is a unique point
7¢ € I such that

10g Y exp(2mit) (1) = &-
Then _
[0, N] >t — (aexp(2wit),n:) € T
is a closed curve and satisfies
Y(aexp(2mit), n;) = €b.

for any t € [0, N].
Therefore

[0, N] > t — ®(aexp(2mit),n:) € W5 (H)
is a non-contractible closed curve, and satisfies
{®(aexp(2mit),n:) | t € [0, N]} C (¢7) 7 (e*)-

This contradicts with Proposition 2.2. . ]
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