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Abstract

Renormalization can be considered as an operator extracting from a given poly-
noomial a skew map on Zy X C over k — (k + 1) on Z, whose restriction on each
fiber is a polynomial. By using a quasiconformal surgery, we construct the inverse
of this renormalization operator in some case, that is, from a given N-polynomial
with fiberwise connected Julia sets, gluing N-sheets of the complex plane together
and construct a polynomial having a renormalization of period N which is hybrid
equivalent to it and whose small filled Julia sets have a repelling fixed point of the
constructed polynomial.

1 N-polynomial maps

We first give a notion of N-polynomial maps. An N-polynomial map is simply a skew
map from a union of N sheets of the complex plane Zy xC to itself, whose restriction of
each sheet is a polynomial mapped to the next sheet. We can easily generalize the the-
ory on dynamics of usual polynomials to N-polynomial maps. In this section, we give
an overview of its dynamical properties. Furthermore, we consider a renormalization
of a given polynomial as an N-polynomial-like restriction. So we can also consider it
as the operator extracting an N-polynomial map from a given polynomial.

Definition. Let N > 0. An N-polynomial map is an N-tuple of polynomials. An N-
polynomial map F = (Fo,...,Fy-1) is considered as a map on Zy x C to itself as

follows:
F(k,z) = (k+ 1, Fi(2)).
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The filled Julia set K(F) is the set of all points whose forward orbits by F are
bounded. The Julia set J(F) is the boundary of K(F). The k-th small filled Julia set is
defined by Kx(F) = {z|(k,z) € K(F)} and k-th small Julia set Ji(F) = 0Ky (F).

Definition. An N-polynomial-like map is an N-tuple of holomorphic proper maps F =
(Fr: U > Vk+1)keZN such that:

e U, and V}, are topological disks in C.
e U, is a relatively compact subset of V.

We also consider an N-polynomial-like map F as a map between disjoint union of
disks:

FII__IUk—-)UVk FIUk=Fk-

keZy keZy

The k-th small filled Julia set Ki(F) is defined by

Ki(F) = {z € Ug | F"(2) € Upui)

and the k-th small Julia set Ji(F) is defined by the boundary of K| k(F).. The (resp. filled)
Julia set is defined by the disjoint union of the k-th small (resp. filled) Julia sets. We
say the (filled) Julia set is fiberwise connected if k-th small (filled) Julia set is connected

for any k.
For an N-polynomial or an N-polynomial-like map F = (Fy), we write
F? = Fiyn-1 0+ 0 Fiy1 0 Fy, |

so that F"'(k, z) = (k + n, F;(2)).

Although the degree of an N-polynomial map (or an N-polynomial-like map) F
is not well-defined (deg(F}) may be different), the degree of F' N is well-defined (it is
equal to [] deg(F%)). In this paper, we always assume deg F" > 1.

Definition. Let F = (F : Uy = Viy1) and G = (G : U, — V) be N-polynomial-
like maps. We say F and G are hybrid equivalent if there exist quasiconformal home-
omorphisms ¢; (k € Zy) between some neighborhoods of Ki(F) and Ki(G) such that
Gk © ¢ = Prs1 © F and 8¢y = 0 on K(F, k).

Theorem 1.1 (Straightening theorem for N-polynomial-like maps). For any N-
polynomial-like map F, there exist an N-polynomial map G of the same degree as
F (that is, deg(F;) = deg(Gy) for all k) hybrid equivalent to F.

Furthermore, if F has fiberwise connected Julia set, then G is unique up to affine
conjugacy.
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Usually, we consider a renormalization as a polynomial-like map with connected
Julia set which is a restriction of some iterate of a polynomial. But here, we consider it
as an N-polynomial-like map;

Definition. A polynomial f is renormalizable if there exist disks U and Vi (k € Zy)
such that:

e G =(f: Ux = Vist)iez, is an N-polynomial-like map with fiberwise connected
Julia set.

e Ui N Uy contains no critical point of f if k # k’.

e When N = 1, Uj does not contain all the critical points of f.

We call G a renormalization of period N.

The small filled Julia sets of a renormalization are “almost disjoint” (they intersects
only at a repelling periodic orbit [Mc], [In]). So we define the (resp. filled) Julia set of
a renormalization by the union (not the disjoint union) of the small (resp. filled) Julia
sets.

We may assume an N-polynomial map F is monic (that is, each F} is monic). Let

= {|z| < 1}. Easy calculation shows:

Proposition 1.2 (The existence of the Bittcher coordinates). For a given monic N-
polynomial map F, there exist conformal maps ¢y : (C\ A) — (C\ K(F,k)) such that
Prr1 (ZEFE) = Fy 0 0i(2).

In fact, we only take ¢; the Bottcher coordinate for the monic polynimoal Fy_; o
-+ 0 Fgyy 0 Fy.
So, we can define external rays for F just as the usual polynomial case.

Definition. Let F, ¢, as above. The k-th external ray Ri(F; 6) of angle 6 for an N-
polynomial map F is defined by:

Ri(F; 6) = { p(r exp2if)) | 1 <7 < oo}

If the limit
linll @(r exp(2nif))
r—

exists, say x, then we say Ry(F; 0) lands at x and 6 is the landing angle for (k, x).
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Let R > 1. We also define

Re(F;6,R) = {p(r exp(27i6)) | 1 <7 < o0},
Ri(F; 6,R, €) = { @(rexpQnmin) | 1 <r < 00, n =6+ €log r}.

If R(F;6) lands at x, then R(F;0,R,€) also converges to x. By the proposition
above,

F(Ri(F; 6)) = Ris1 (F; deg(F) - 6),
F(Ri(F; 6,R)) = Rev1 (F; deg(Fy) - 6, R©EW),
F(R(F;6,R, €)) = Re1 (F; deg(Fy) - 6, R¥E™P, ¢).

We say the ray is periodic if F*(Ri(F;0)) = Ru(F; ) for some n > 0. The least
such n is called the period of this ray. Clearly, the period of every periodic point is
divisible by N.

Let x = (k, z) be a periodic point of F with perlod n. If x is repelling or parabolic,
then there are finite number of rays landing at x and they have the same period. Let g

be the number of rays landing at x and let 6, ... 6, be the angle of these rays ordered
counterclockwise. Since F permutes the rays landing at x and it perserves the cyclic
order of them, there exist p such that F"(Ri(F; 6;)) = F"(Ri(F; 6i1p)) for every i € Z,.
We say that the (combinatorial) rotation number of this point x is p/q.

We also consider external rays for N-polynomial-like maps. They are defined by
the inverse images of external rays for N-polynomial maps by the hybrid conjugacy in
Proposition 1.1.

2 Results

Let F be an N-polynomial map with fiberwise connected Julia set and O = { (k, xz) | k €
Zy)} be arepelling periodic orbit of period N with rotation number po/qo.

Definition. We say a polynomial (g, x) with marked fixed point x is a p-rotatory inter-
twining of (F, O) if:

e g has a renormalization of period N hybrid equivalent to F.
e x corresponds to O by the hybrid conjugacy.

e x has a rotation number p/(Nqo).
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e deg(g) = Y.(deg(Fi)—1) + 1. (Equivalently, all critical points of g lie in the filled
Julia set of the renormalization above.)

Note that the filled Julia set of such a polynomial is connected.
To construct a p-rotatory intertwining of (F, 0), we need some combinatorial prop-
erty of the dynamics near the fixed point x.

Definition. A 4-tuple of integers (N, po, o, p) is admissible if p = py mod g and )/
and N are relatively prime.

Note that the above definition also makes sense when N and gy are integers, p, €
Z,, and p € Zy,,.

Proposition 2.1. If a p-rotatary intertwining of (F,O) exists, then (N, po, qo, p) is ad-
missible.

Theorem 2.2. Let F be an N-polynomial map with fiberwise connected Julia set and
O = {(k, xx)} is a repelling periodic orbit of period N with rotation number Po/qo.

When an integer p satisfies that (N, po, qo, p) is admissible, then there exists a p-
rotatory intertwining (g, x) of (F,O) and it is unique up to affine conjugacy.

The following two sections are devoted to prove this theorem.

3 Construction

In this section, we prove the existence part of Theorem 2.2. We use the idea of the
intertwining surgery [EY].

Let (F,O) be an N-polynomial map with marked periodic point satisfying the as-
sumption of Theorem 2.2. Fix R > 0 and let

Vi = {(k.2) | len(@)l < R} U Ke(F)

and U = F;'(Viyy). Let V = | Vi and U = | | Ug. Then (Fx : Uy — Viyy) is an
N-polynomial-like map (we also use the word F for it and write F : U — V).
Let 6p, .. .,0,,-1 be all the external angles for (0, xp) ordered counterclockwise.
Lete>0and 0 <6 < €/2. For 0 <k < N and / € Z,, consider arcs

Yo(k + NI) =R0(F;0k,R, (%— %)6),

Yok + ND) =RO(F;6k,R, (I—’:I- - %)ei&).
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When € is sufficiently small, these arcs are mutually disjoint. For j € Zy,,, let

YD = Fr(Vr-1(j— p) N Ur-1), (1)
Ye() = Fulyi,(G—p) O Uk1)

fork=1,...,N —1. Let Sx(j) (resp. Ly(j)) be the sectors in V; between yx(j— 1) and

Yi() (resp v (J— 1) and Y ().
Then, since the rotation number of xq for F” is po/qo, we can easily verify FN (yo())N

N (Vo)) = yo(j + Npo). Therefore, by the assumptlon that (N, po, 9o, P) is adm15s1b1e

Fy-1(yn-1(j = p) N Un_1) = FY (yo(j — Np) 0 Fg¥ "1 (Uy-1))
= yo(j—Np + Npo)
= Yo().

This equation also holds for ¥; instead of yx. Therefore, the equation (1) holds for any
k e ZN.

Since O is repelling, it is linearlizable. Namely, there are a neighborhood Oy of xi
and a map ¥ : O — C for each k such that yx(xx) = 0 and Y41 © Fr(2) = Ayr(z) on
O,» where A; = F} (x) and O is the component of F; 1(Og41) containing xx.

For each j € Zy,,, the quotient space (Lx(j) N Ox)/F ,ICV % js an annulus of finite
modulus. So we denote the modulus of this quotient annulus by mod Li(j). Since Fi
maps Ly(j)NO,) univalently to L1 (j+p)NOr+1, We have mod Li( ) = mod L1 (j+p).

" Now we deform the N-polynomial-like map F : U — V by a hybrid conjugacy
so that we can identify N disks Vj ... Vy_; quasiconformally and define a quasiregular
map on it.

Lemma 3.1. There exists an N-polynomial-like map F = (Fy : Ox = Vis1rezy hybrid
equivalent to F such that the sector Li(j) which corrseponds to Li(j) satisfies that

mod Lx(j) = mod L ()
forany k,k' € Zy and j € Zy,,.

Let &, #(), 7)), Sk(j), Ok and O, correspond to xi, yx(J), ¥; (), Si(j), Ok and
O, respectively by the hybrid conjugacy in the above lemma.

Now we construct quasiconformal maps 7z : Vo = Vi (k € Zy) to identify
Vo, ..., Vy_1 together. First of all, take C! diffeomorphisms

T : U () — U ?k+i(J)
j j
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Fry ot =Tray o By (2)
T (¥e() = Yr+1(J) 3)

and let 7, = T4t 0- - - 0To on U 9(j). Next, let Telz, ;) : Lo(j) = Lx(j) be the conformal
isomorphism which sends xp to xi, ¥5(j — 1) to ¥5(j — 1), and ¥5(j) to ¥5(,)-
The following lemma is due to Bielefeld [Bi, Lemma 6.4, 6.5].

Lemma 3.2. We can extend Ty quasiconformally to Ty : Vo — Vi (k € Zy).
LetV = Vo and
v= |J = (Sk(jN +kp) N Uk).
j€Zgk=0,....N-1

Define a quasiregular map g : U — V as follows. When z € $o(Nj + kp) N U for some

JE€Zy, let
8(2) = 15, o Fy o Ti(2).

By (2), g extends continuously on U.

Lemma 3.3.
1. 2(USo\ Lo N U) € UBo() \ Lo()). Namely, E = U8o() \ Lo(j) is

forward invariant by g.
2. 10 gV o 17! is conformal on Sx(jN + kp) \ Lx(jN + kp).
Let 0 be the standard complex structure. On So(jN + kp) \ Lo(jiN + kp),
o0 = (T 0 g¥ o 131)"(00)
= (1)~ 0 (&) (1}00).
by the previous lemma. Therefore,
@")" (r300) = 1300 4

on $o(jN + kp) \ Lo(jN + kp).
So define an almost complex structure o on V as follows:

o= (te0 8’00 on g (So(Nj+ kp)).
Jo elsewhere.
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Lemma 3.4. o is well-defined and it is really a complex structure.

Proof. On So(Nj +kp) \ Lo(GN +kp) (1 > k < N),

g'o = (13! 0 Fy1 © T4-1)"(1300)
= T4 (F-100)
= T}-100

= 0.

Therefore, together with (4), o is invariant under g on E. (Note that E is forward
invariant by g.) Since o~ # o only on | g*(E), o is well-defined.

Furthermore, § is conformal except on §~!(E). So the maximal dilatation of o on
V is equal to that of o on §~!(E), which is bounded. So o is a complex structure. O

Therefore, there exists a quasiconformal mapping k : V — C such that h*0o = 0.
g = ho o his a polynomial-like map, so there exists a polynomial g hybrid equivalent
to g.

It is easy to check this g is a p-rotatory intertwining of F.

4 Uniqueness

In this section, we show that two p-rotatory intertwinings (g, x) and (g’, x’) of (F,0)
are affinely conjugate.

4.1 Puzzles

Let (g, x) be a p-rotatory intertwining of an N-polynomial map (F,O) with marked
periodic point of period N. Denote K by the filled Julia set of the renormalization
G = (g : Ur = Vis1)rez, corresponding to F. Let wo, . .., WNg-1 be the landing angles
of x ordered counterclockwise.

Let ¢ : (C\ A) — (C\ K(g)) be the Bottcher coordinate of g. Fix R > 0 and small
€ > 0 so that sectors

So,j = [<p(rexp(27ri6)) | 1<r<R, |0-wj< elogr} .

are mutually disjoint. Let Do = ¢({lzl < R}) U K(g) and D, = g7"(Do) for n Z_(.).
Let By ; be the component of Do \ [ So,; between So ;-1 and So ;. Let So,; = So.j»
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Po,j =17’(;and

P, = {the closures of components of g™*(Py, ) (e ZNq)}
S, = {the closures of components of g™"(S 0,j) (J€ ZNq)} .

We call an element of P, a piece of depth n and an element of S, a sector of depth n.
Then P, and S, have the following properties. Let n > 0.

1. P, US, is a partition of D,,.

2. For any x € K(g) \ U; g~ /(x), there exists a unique piece P,(x) of depth n which
contains x. In particular, $, covers K(g).

3. For any P € P,.1, there exists some P’ € P, with P c P’.
4. When P € P,,;, we have g(P) € P,.

5. When S € S,.,;, either there exists some S’ € S, with S = S’ N Dy, 1, or there
exists some P € P, with S C int P.

6. Forany X € P, U S,, intX n g"'*l(‘K) # O or there exists a unique y € g7"(xp)
withy € X.

7. For any P € P,, there exists a unique component E of g=*(K \ g "(xo)) with
E c P. This map P — E is a bijection between £, and { components of g~"*(%K \

87" (x0)))}-
Theorem 4.1. The set K(g) \ U,>0 & (%K) has zero Lebesgue measure.

For a later use, we give a canonical form of the renormalization G. Take small
r > 0and n > 0. For j € Zy,, let Py ; be the union of B(x,r) and the domain in
Do \ B(x,r) between R(g; wj_1 — 1, R) and R(g; w; + 1, R). Let Q; be the component
of g 1By ,j) which is contained in Py ,j- Let Ur and V; are disks obtained by smoothing
the boundary of ez, Qk+nj and Ujez, Poxsnj. Then G = (g : Up = Viur) is a
renormalization hybrid equivalent to F.

4.2 Proof of the uniqueness

Let (g, x) and (g’, x’) be two p-rotatary intertwinings of an N-polynomial map (F,O)
with a marked periodic point of rotation number pp/q. We use the notation in sec-
tion 4.1 for g. For g’, we attach a prime to each notation (e.g., K’, D, P5,S,, ... ).
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In this section, we show that g and g’ are affinely conjugate. Since K(g) and K(g’)
are connected, we need only show that g and g’ are hybrid equivalent. To do this, we
first construct a standard hybrid conjugacy between renormalizations G and G’, next
by pulling back it repeatedly, we construct a quasiconformal conJugacy between g and
g’, and show it is actually a hybrid conjugacy.

Lemma 4.2. There exists a quasiconformal map ®g : Dy — 53 satisfies the following:
. 3@0 = 0 on K(G).
e Doog=g"0o®yon U(Pl,j USo,;) U oD, .

Proof. For each k € Zy, take a C!-diffeomorphism O : Vi \Up — Vi \ U, which
satisfies the following:

1. ®x(dVy) = AV, and ®(8UR) = AU,

2. For j € Zy, with Py j C V; (equivalently, j = k mod N), we have &(3(Po,; \
Ur)) = 8P, ; \ Up) and D(Po,j \ Ux) = Py, ; \ U

3. For z € Uy, ®r11(g(2)) = g'(Pr(2)).

Asin [DH] we can extend @y to a diffeomorphism on Vi \ Ki(G) to V’ \ Kx(G’) by
the equation ®;(g(2)) = g'(®x(z)). Furthremore, since G and G’ are hybrld equivalent
(they are both hybrid equivalent to F), this &, extends to a hybrid conjugacy of G to G’.
(To do this, we should use [DH, Proposition 6]. So we need to check (Do, v, 8" @)=
0 in Zy.g(Gny where ¥ is a given hybrid conjugacy of G and G’ considered as classical
polynomial-like maps. But it is trivial because of the property 2 above.)

Now we define @, first on |J So,;. For each Sy ;, define a quasiconformal map
Dols,, : So,; — Sg ; so that

®g 0 g =g’ oDy,
Dolregiw, R0 = D)t lRgw,R -0
Dolrgiw ko) = PjlRgw R0
and

Dolos ,.inape = () j-1  on aneighborhood of ¢(R exp(27ri(w j — €log R))),
Doas ;napo ) on a neighborhood of ¢(R exp(27i(w j + €log R))).

Let & : Vi \ Uy — V; \ U, be a C!-diffeomorphism such that for k, k' € Zy and
JJ €Zygwith j=k modN
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o & = & on A(Vi \ Up).

o g ody(z) = ('i)k; o g(z) when z lies in Pg j N 8Dy N g~ (Po 7).
e g’ o ®y(z) = @y o g(z) when z lies in Py j N AD; N g~1(So, ).
o & = &, ond(Vi \ Up) NIP;. |

As in the case of ®;, we can extend (i)k quasiconformally to V; and obtain hybrid
equivalence between G and G’.

Now let @y = &; on P j where k = j mod N. It is easy to check this @y has the
desired properties. o

Then we define @, : Dy — 5{; inductively. Suppose @, is defined and satisfies:
e 0, =00n g (K.
e ®,0g=g"o®,onlJg™(Py,;jVUSo,;j) V(D1 \ Dns1).

First of all, let ®p41l5, 5 = ©n. Let P € Ppyy. When int P N g~*(K) # 0, define
®p11lp = @,. Otherwise, by the property 6 in p. 9, there exists a unique y € g™"(x) € P.
Let P’ NPy, be the piece of depth n + 1 which combinatorially corresponds to P, i.e.
which satisfies that ®,(g(P)) = g(P’) and ®,(y) € P’ (when y is not a critical point,
such P’ is unique. When y is a critical point, P’ is determined by the cyclic order at y
to make @, continuous). Then, since C(g) C K, glp is conformal and so is g’|p-. So
define

@p1lP = (g'lp) " 0@uo0g: P> P

(In other words, ®,,; lm is defined by lifting ®, by the branched covering g and g’.)

Then @, also satisfies the property above. First, we show the continuity of ®,,;.
By the construction, ®,,; is continuous on and outside D,,;. Furthermore, for z €
oD n+ls

D®pi1(2) = 'lp) ! o @y 0 g(2)
= (g'lp) " 0 g’ o ®y(2)
= Dp(2)

by the second property above for ®,. So ®,,; is continuous.

For every X € Ppy1 N Spe1, Pn+1lx is a quasiconformal homeomorphism from X
to corresponding piece or sector for g’ and so is (I),,HIE;\DM = ¢®,. Hence ®,,; is a
quasiconformal homeomorphism. By the construction, it is clear that ®,,; = 0 on

g H(%K).
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It is also clear that g’ o @pyq = @peg © g ON Epyy = Ug " (Pr,j U So,j). Let
2 € 8Dy12 \ Epyy. Then z lies in some P € P,y with int P N g™*(K) = 0. Therefore,

g 001X =g 0 (glp) " 0 Pnog2)
= @, 0 g(2).

Since g(z) € 8Dy.1, we have ®,(g(z)) = ®p+1(g(2)) and the second property holds for
(Dn+1 .

Since all @, are quasiconformal with same dilatation ratio, it is equicontinuous.
Furthermore, ®, = @, except on Dpyp \ g ™(%C). Therefore, ® = lim @, exists and
is quasiconformal. Also, it satisfies that 3® = 0 on J g™(%X) and that g’ o @ = Do g.
Since K(g) \ U g~™(%) has zero Lebesgue measure, @ is a hybrid conjugacy between g
and g’.

Therefore, a p-rotatory intertwining of (F, O) is unique up to affine conjugacy.
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