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Abstract

We give aversion of Shimizu’s lemma for groups of complex hyper-
bolic isometries one of whose generators is aHeisenberg screw motion.
Our main result interpolates between known results for groups with a
generator that is avertical translation or aHeisenberg rotation. We
also give an interpretation of our result in terms of the relation be-
tween radii of isometric spheres and their distance from the axis of the
Heisenberg screw motion.

1Introduction

Shimizu’s lemma [12] gives anecessary condition for asubgroup of PSL(2, R)
containing aparabolic element fixing $\infty$ to be discrete. It was generalised
for discrete groups of higher dimensional real hyperbolic isometries contain-
ing aparabolic element by Leutbecher [8], Wielenberg [14], Ohtake [9] and
Waterman [13]. The hyperbolic plane is not only real hyperbolic 2-space
$\mathrm{H}_{\mathbb{R}}^{2}$ , but also complex hyperbolic 1-space $\mathrm{H}_{\mathbb{C}}^{1}$ . Therefore it is natural to
generalise Shimizu’s lemma to discrete groups of isometries of higher dimen-
sional complex hyperbolic $\mathrm{H}_{\mathbb{C}}^{n}$ space containing aparabolic element. This
is part of awider project to give generalisations of Jorgensen’s inequalit
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for complex hyperbolic space, see $[1, 4]$ . Parabolic isometries of $\mathrm{H}_{\mathbb{C}}^{n}$ are ei-
ther Heisenberg translations or screw-parabolic transformations (also called
elliptic axabohc transformations). The latter are the composition of an el-
liptic transformation and aHeisenberg translation preserving the fixed point
set of the elliptic map. For screw-parabolic maps in (complex) dimension
$n=2$ the Heisenberg translation involved is necessarily vertical, although
in higher dimensions non vertical translations are also possible. The elliptic
transformation and its fixed point set are called the holonomy and the axis
of the screw parabolic transformation respectively.

In [6], Kamiya generalised Shimizu’s lemma for vertical translations and
in [7] he gave ageometric version which says that there must be aprecisely
invariant horoball whose height depends only on the length of the trans-
lation. In [10], Parker observed that Kamiya’s result may be extended to
groups containing ascrew-parabolic map whose holonomy has finite order.
On the other hand, also in [10], he showed that, for groups containing a
non-vertical Heisenberg translation (Proposition 7.3) or ascrew-parabolic
map with infinite order holonomy (Proposition 6.4), there is no precisely in-
variant horoball (compare [9] for the corresponding real hyperbolic result).
In [11], Parker showed that for non-vertical Heisenberg translations there
is aversion of Shimizu’s lemma where the radius of an isometric sphere is
bounded in terms of the translation length of the Heisenberg translation at
its centre (see [13] for an analogous result in real hyperbolic space).

This paper summarises the results of [5] which gives ageneralisation of
Shimizu’s lemma to groups of isometries of $\mathrm{H}_{\mathbb{C}}^{2}$ ascrew-parabolic element.
This will give analogues of Shimizu’s lemma for all parabolic isometries of
complex hyperbolic 2-space. However, our result does not lead to anice
expression for aprecisely invariant sub-horospherical region.

Screw motions are the most complicated of all parabolic maps. They
combine features of boundary elliptic maps as well as pure parabolic maps.
Indeed, by letting the holonomy tend to the identity ascrew motion tends
to avertical translation and, similarly, letting the translation length tend to
zero ascrew motion tends to aboundary elliptic map. Below we will show
that our main theorem interpolates between similar results for these types of
isometry. Specifically, we show that as the holonomy tends to the identity,
our result will tend to Kamiya’s result [6]. On the other hand we will show
that as the translation length goes to zero our result will tend toward the
version of Jorgensen’s inequality for boundary elliptic maps proved in [4].

Our main result depends on anormalisation our screw parabolic map as
aparticular Heisenberg screw motion. In the last section of the paper we
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will restate the result to give abound on the radii of isometric spheres in
terms of the distance of their centres from the axis of the screw-parabolic.
As indicated above, in Proposition 6.4 of [10] it is shown that there is no
precisely invariant horoball for groups containing ascrew-parabolic map. In
this construction, the isometric spheres of very large radius are along way
away from the axis of the screw-parabolic (in particular, it has avery large
translation length at the centre). Our result will indicate that this condition
is necessary. Specifically, we show that if $A$ is ascrew parabolic map and $B$

is an element of PU$(2, 1)$ with isometric sphere of very large radius $rB$ and
if $\langle A, B\rangle$ is discrete, then the centre of the isometric sphere of either $B$ or
$B^{-1}$ must be very far from the axis of $A$ .

This work was begun while the first author was aresearch assistant at
the University of Durham and conclude while the second author was visit-
ing Hunan University. We would like to thank both universities for their
hospitality.

2Complex hyperbolic space

We give the necessary background material in this section. More extensive
details can be found in [3].

Let $\mathbb{C}^{2,1}$ denote the complex vector space of dimension 3, equipped with
anon-degenerate Hermitian form of signature $(2, 1)$ . There are several such
forms. We will use the following form, called the second Hermitian form in
[2]

$\langle \mathrm{z}, \mathrm{w}\rangle=z_{1}\overline{w}_{3}+z_{2}\overline{w}_{2}+z_{3}\overline{w}_{1}$ ,

where $\mathrm{z}$ and $\mathrm{w}$ in $u^{1}$, are the column vectors with entries $(z_{1}, z_{2}, z_{3})$ and
$(w_{1}, w_{2}, w_{3})$ respectively.

Consider the following subspace in $\theta^{1},$ :

$V_{0}$ $=$ $\{\mathrm{z}\in \mathbb{C}^{2,1}-(0,0,0) : \langle \mathrm{z}, \mathrm{z}\rangle=0\}$

$V_{-}$ $=$ $\{\mathrm{z}\in \mathbb{C}^{2,1} : \langle \mathrm{z}, \mathrm{z}\rangle<0\}$ .

Let $\mathrm{P}$ : $\mathbb{C}^{2,1}-\{0\}arrow \mathrm{P}\mathbb{C}^{2,1}$ be the canonical projection onto complex projec-
tive space. Then $\mathrm{H}_{\mathbb{C}}^{2}=\mathrm{P}(V_{-})$ associated with the Bergman metric is com-
plex hyperbolic space. The biholomorphic isometry group of $\mathrm{H}_{\mathbb{C}}^{2}$ is PU$(2, 1)$

acting by linear projective transformations. Here PU$(2, 1)$ is the projective
unitary group with respect to the Hermitian form defining $\mathbb{C}^{2,1}$ . This mean$\mathrm{s}$

147



that the inverse of $B\in \mathrm{P}\mathrm{U}(2,1)$ has the following form

$B=\{\begin{array}{lll}a b cd e fg h j\end{array}\}$ , $B^{-1}=$ $\overline{\frac{\frac{f}{e}}{d}}\overline{\frac{\frac{c}{b}}{a}}]$ (1)

The boundary of $\mathrm{H}_{\mathbb{C}}^{2}$ is $\partial \mathrm{H}_{\mathbb{C}}^{2}=\mathrm{P}(V_{0})$. It may be identified with the one
point compactification of 3-dimensional Heisenberg group $\mathfrak{R}$ , which is $\mathbb{C}\cross \mathbb{R}$

with the group law

$(\zeta_{1},v_{1})0$ $(\zeta_{2},v_{2})=(\zeta_{1}+\zeta_{2},v_{1}+v_{2}+2\Im(\zeta_{1}\overline{\zeta}_{2}))$ .

The identification between $\mathfrak{R}$ $\cup\{\infty\}$ and $\mathrm{P}(V_{0})$ is given by

$(\zeta, v)-[_{1}^{-|\zeta|^{2}+iv}\sqrt{2}\zeta]\in \mathrm{P}(V_{0})$ , $\infty-$ $\{\begin{array}{l}100\end{array}\}\in \mathrm{P}(\mathrm{V}0)$

where $(\zeta,v)\in \mathfrak{R}$ .
The Heisenberg group has several natural metrics. We choose to work

with the Cygan metric. This is defined by

$\rho 0((\zeta_{1},v_{1})$ , $(\zeta_{2},v_{2}))=||\zeta_{1}-\zeta_{2}|^{2}+i(v_{1}-v_{2}+2_{S}^{\alpha}(\zeta_{1}\overline{\zeta}_{2}))|^{1/2}$

The Heisenberg group acts on itselfby (left) Heisenberg translation: trans-
lation $T_{(\tau,t)}$ by $(\tau,t)\in \mathfrak{R}$ is given by

$T(\tau,t)$ : $(z, v)\mapsto(\tau, t)0$ $(z, v)=(z+\tau,v+t+2\Im(\tau\overline{z}))$ .

Heisenberg translation by$(0, t)$ for any given $t$ $\in \mathrm{R}$ is called vertical trans-
lation by $t$ . The unitary group $\mathrm{U}(1)$ acts on the Heisenberg group by
Heisenberg rotation: rotation $R_{\lambda,0}$ with holonomy $\lambda\in \mathrm{U}(1)$ and axis the
chain $(0, v)\subset \mathfrak{R}$ is given by

$R_{\lambda,0}$ : $(z, v)\mapsto(\lambda z,v)$ .

For any $\tau\in \mathbb{C}$, the Heisenberg rotation $R_{\lambda,\tau}$ by A $\in \mathrm{U}(1)$ with axis $(\tau, v)\subset \mathfrak{R}$

is given by conjugating $R_{\lambda,0}$ by $T_{(\tau,t)}$ .
The product of aHeisenberg translation and aHeisenberg rotation is a

Heisenberg screw motion. The easiest example would be the product of
vertical translation $T_{(0,t)}$ with $R_{\lambda,0}$ . This is $S_{\lambda,0,t}$ given by

$S_{\lambda,0,t}$ : $(z,v)\mapsto(\lambda z,v+t)$ .
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It has axis the chain $(0, v)$ $\subset \mathfrak{R}$ , rotates about the axis with holonomy
$\lambda\in \mathrm{U}(1)$ and translates along the axis by aCygan distance $\sqrt{|t|}\in \mathbb{R}$,
its translation length. Other Heisenberg screw motions may be obtained
by conjugating this one by aHeisenberg translation or by composing other
Heisenberg translations with other Heisenberg rotations.

Heisenberg translations, rotations and screw motions are all isometries of
the Cygan metric, indeed the group of Heisenberg isometries is generated
by $TR(\tau,t),\lambda,0$ where $(\tau, t)$ and $\lambda$ vary over $\mathfrak{R}$ and $\mathrm{U}(1)$ respectively.

The action of Heisenberg isometries can be extended to complex hyper-
bolic space. The Heisenberg translation $T_{(\tau,t)}$ , Heisenberg rotation $R_{(\lambda,0)}$

and Heisenberg screw motion $S_{\lambda,0,t}$ correspond to the following matrices in
PU$(2, 1)$

$T_{(\tau,t)}$ $=$ $[_{0}^{1}0$
$-\sqrt{2}\overline{\tau}01$

$-|\tau|^{2}+it\sqrt{2}\tau]1$
’

$R_{\lambda,0}$ $=$ $\{\begin{array}{lll}1 0 00 \lambda 00 0 1\end{array}\}$ ,

$S_{\lambda,0,t}$ $=$ $\{\begin{array}{lll}1 0 it0 \lambda 00 0 1\end{array}\}$

Elements of PU$(2, 1)$ are classified as parabolic, loxodromic or elliptic just
as for Mobius transformations. An element is called parabolic if and only if
it has aunique fixed point which is in $\partial \mathrm{H}_{\mathbb{C}}^{2}$ .

(i) Aparabolic element is called pure parabolic if it is conjugate to a
Heisenberg translation.

(ii) Aparabolic element is called screw parabolic if it is conjugate to a
Heisenberg screw motion.

Suppose that $B\in \mathrm{P}\mathrm{U}(2,1)$ does not fix $\infty$ , which is equivalent to $g\neq 0$

when $B$ has the form (1). Then the isometric sphere (see [10]) of $B$ is the
sphere in the Cygan metric with centre $B^{-1}(\infty)$ and radius $r_{B}=1/\sqrt{|g|}$.
Likewise the isometric sphere of $B$ is the Cygan sphere of radius $1/\sqrt{|g|}$

with centre $B(\infty)$ .
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3The main results

In this section we summarise the main results of [5].

Theorem 1Suppose that $A$ , $B\in \mathrm{P}\mathrm{U}(2,1)$ have the form

$A=\{\begin{array}{lll}1 0 i\mathrm{t}0 \lambda 00 0 \mathrm{l}\end{array}\}$ , $B=\{\begin{array}{lll}a b cd e fg h j\end{array}\}$

where $\mathrm{t}\geq 0$ , A $\in \mathrm{U}(1)$ with $|\lambda-1|<1$ and $g\neq \mathrm{E}1$ For any real $k> \frac{2t|\lambda-1|}{1-|\lambda-1|^{2}}$

let $N(k)$ denote $\max\{|e|^{2}-1, |d|^{2}k, |h|^{2}k, |g|^{2}k^{2}\}$ . If

$(N(k)+1)(| \lambda-1|+\frac{t}{k})^{2}<1+\frac{t^{2}}{k^{2}}$ , (2)

then the group $\langle A, B\rangle$ is not discrete.

Remark. If we set $A=S_{\lambda,\xi,t}$ with axis the chain $(\xi,v)\subset \mathfrak{R}$ then we need
to define $N(k)$ to be

$\max\{|e+\overline{\xi}d\sqrt{2}+\xi h\sqrt{2}+2|\xi|^{2}g|^{2}-1$ , $|d+\xi g\sqrt{2}|^{2}k$ , $|h+\overline{\xi}g\sqrt{2}|^{2}k$ , $|g|^{2}k^{2}\}$ .

We now give two easy corollaries from our theorem. If $\lambda=1$ , then $A$ is a
vertical translation. In this case, the following corollary shows that Theorem
1reduces to Shimizu’s lemma for vertical Heisenberg translation.

Corollary 2(Theorem 3.2 of [6], Proposition 5.2 of [10]) Suppose $A$

and $B$ in PU$(2, 1)$ are as in Theorem 1with A $=1$ . If
$0<|g|t<1$ ,

then the group $\langle A, B\rangle$ is not discrete.

Proof: Choose $k$ sufficiently large so that $N(k)=|g|^{2}k^{2}$ . Since $|g|t<1$ ,
we have

$(N(k)+1) \frac{t^{2}}{k^{2}}<1+\frac{t^{2}}{k^{2}}$ .

This is the inequality (2) with $|\lambda-1|=0$ . So Theorem 1implies that the
group $\langle$ $A$ , $B)$ is not discrete. $\square$

If $t=0$, then $A$ is aboundary elliptic element. In this case, under the
condition $|e|>1$ , our theorem reduces to the generalisation of Jorgensen’s
inequality for boundary elliptic element of PU$(2, 1)$ given by the authors
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Corollary 3(Theorem 5.2(3) of [4]) Suppose A and B in PU(2, 1) are
as in Theorem 1with t $=0$ and $|e|>1$ . If

$0<|e||\lambda-1|<1$ ,

then the group $\langle A, B\rangle$ is not discrete.

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}$ Since $t=0$ and $|e|>1$ , we can choose asufficiently small $k$ so
that $N(k)=|e|^{2}-1$ . Now from $|e||\lambda-1|<1$ , we have

$(N(k)+1)|\lambda-1|^{2}<1$ .

This is the inequality (2) with $t=0$. So Theorem 1iniplies that the group
$\langle A, B\rangle$ is not discrete. $\square$

Finally we restate our main theorem as in an invariant way. Namely, we
give abound on the radii of the isometric spheres of $B$ and $B^{-1}$ in terms of
the Cygan distance between their centres and the axis of $A$ .

Given real numbers $x\in[0,1)$ , and $k>2x/(1-x^{2})$ consider the following
function $\Phi_{x}(k)$ defined by

$\Phi_{x}(k)=\frac{k(xk+1)}{\sqrt{k^{2}+1}-(xk+1)}$ .

The condition $k>2x/(1-x^{2})$ ensures the denominator is positive and so
$\Phi_{x}(k)$ is positive. For afixed value of $x$ , the function $\Phi_{x}(k)$ is convex on the
interval $k\in(2x/(1-x^{2}), \infty)$ . Let $k_{0}(x)$ be the value of $k$ in this interval
where $\Phi_{x}(k)$ attains its minimum value. Using elementary calculus, we see
that $k_{0}(x)$ is aroot of the polynomial

$(x^{4}-x^{2})k^{4}+4x^{3}k^{3}+(2x^{2}+x^{4})k^{2}+2(x+2x^{3})k+(1+2x^{2})$ .

Theorem 4Let $A$ be a screw parabolic element of PU $(2, 1)$ with fixed point
$qA\in\partial \mathrm{H}_{\mathbb{C}}^{2}$ , axis $L_{A}$ , holonomy $\lambda\in \mathrm{U}(1)$ and translation length $\sqrt{t}$ for some
choice of Cygan metric $\rho_{0}$ on $\overline{\mathrm{H}_{\mathbb{C}}^{2}}-\{qA\}$ . Let $B$ be any element of PU $(2, 1)$

not projectively fixing $q_{A}$ and let $r_{B}$ denote the radius (with respect to $\mathrm{p}\mathrm{o}$)

of the isometric sphere of B. Let

$R= \max\{\rho_{0}$ $(\mathrm{A}, B(\infty))$ , $\rho_{0}(L_{A}, B^{-1}(\infty))$ , $\sqrt{tk_{0}(|\lambda-1|)/2}\}$ .

Then
$r_{B^{2}}\leq t$ $\Phi_{|\lambda-1|}(2R^{2}/t)=\frac{2R^{2}(2|\lambda-1|R^{2}+t)}{\sqrt{4R^{4}+t^{2}}-(2|\lambda-1|R^{2}+t)}$ .
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