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ON THE CONFORMAL INVARIANT AND ITS

VANISHING OF A CODIM 3- QUATERNIONIC

CARNOT-CARATHEODORY STRUCTURE ON
(4n + 3)-DIMENSIONAL MANIFOLDS

((4N+3) RESHHELORRT 3 OETHAIL/ — - h53TFF
)—MEDOHBFER L TDHR)

YOSHINOBU KAMISHIMA (# 8% E I KZE)

INTRODUCTION

H. Weyl has introduced the notion of conformal structure on Rie-
mannian metrics on manifolds from the viewpoint of the Gauge theory.
He constructed so-called Weyl conformal curvature tensor, which is a
conformal invariant of Riemannian metrics and caputured the confor-
mal flatness on manifolds apart from the metrics for the first time.
When the Weyl curvature tensor vanishes, the Riemannian manifold is
said to admit a conformally flat structure. The purpose of this note
is to intoduce a geometric structure on a (4n + 3)-manifold (called
quaternionic Carnot-Carathéodory structure) and study a con-
formal invariance whose vanishing gives a uniformization.

The detail will appear elsewhere. First of all we must explain why
dimension (4n + 3) comes out from the viewpoint of conformal struc-
ture. When the Weyl conformal curvature tensor of an n-dimensional
Riemannian manifold M vanishes, M is said to be a conformally flat
manifold, in which M is locally developed into the standard sphere
S™. The model space with standard conformally flat structure is the
sphere S™ whose structure-preserving transformations consists of the
group of conformal tranformations Conf(S™). Let (M,w) be a (2n+1)-
dimensional contact manifold. By definition, the 1-form w satisfies
wAdw™ # 0 so that it determines a contact subbundle (2n-dimensional
oriented subbundle of TM) Null w = {X € TM|w(X) = 0}. If Null w
possesses a complex structure J, (Null w, J) is called a C R-structure on
M. (In addition, (w, J) is said to be a pseudo-Hermitian structure.)
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There is no canonical way to choose a contact form w which repre-
sents a C R-structure on M (that is, up to multiple of positive func-
tions). The Levi form will be required to be positive definite, and hence
w=A-w (A: M>R") if and only if both ' and w provide the same
C R-structure (keeping the complex struture J fixed). Then Chern and
Moser have defined the fourth order tensor S from (w, J) which is in-
variant under the CR-structure on M. From the viewpoint of Weyl
conformal structure of Riemannian metrics, the conformal invariance
of contact forms is stated as w = A-w’ if and only if S(w, J) = S(«/, J).
(Incidentally, Bochner has defined the (Bochner) curvature tensor on
Kéhler manifolds as an analogue of Weyl conformal curvatutre tensor.
The tensor description of Chern-Moser curvature tensor S coincides
with that of Bochner curvature tensor.)

When the Chern-Moser curvature tensor of (2n+ 1)-dimensional CR
manifold M vanishes, M is called spherical C R-manifold, and it is de-
veloped locally into the model geometry (Autcg(S2"*!), S27*1). Here
A;ltclR(SQ"'“) is the group of Cauchy-Riemann transformations of
Sen+l,

When the curvature form vanishes respectively, the geometry ap-
pears as Conformally flat) structure (resp. Spherical CR structure).
Thus the Klein’s classical geometry implies that each geometry is viewed
as the boundary geometry of real hyperbolic geometry and complex
hyperbolic geometry. In fact, the real (resp. complex) hyperbolic
space Hiy'' (resp. HZ'') has a compactification on which the isom-
etry group PO(n + 1,1) (resp. (PU(n + 1,1)) extends to a smooth
action = (Conf(S™), S™), (Autcr(S%"*1), S27*1). In this case, the
action on the boundary is real analytic, well known as conformal,
CR-transformation. (Note that the group Conf(S™) is isomorphic to
PO(n + 1,1) = Iso(H}) as a Lie group, while its action is viewed
as conformal action, similarly for Autggp(S?"*!).) At this stage, as
a compactification of rank 1-symmetric space of semisimple noncom-
pact type, there is quaternionic hyperbolic space with isometry group
(PSp(n + 1,1), Hg"). The action of the isometry group naturally ex-
tends to a smooth action on the boundary sphere S***3. (In fact, it
is characterized as a restriction of a quaternionic projectice transfor-
mation to the (4n + 3)-sphere.) As PSp(n + 1,1) acts transitively on
S4n+3 we write its action Autgoce(S*"t3), and so obtain a geometry
(Autge(S4nt3), §47+3). A manifold equipped locally with this geom-
etry (Autge(S*™+3), S4+3) is said to be a Spherical @ C-C manifold.
(It used to be called pseudo quaternionic flat manifold in [10].)

In view of these, we study a geometric structure on a (4n + 3)-manifold
M and define a conformal equivalence of the geometric structure and
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find a curvature tensor T which gives a conformal invariance for which
the vanishing of 7' makes M uniformizable with respect to the spherical
Q C-C geometry (Autgc(S4713), Sint3),

As a consequence, combined with the fact that the vanishing of Weyl
conformal curvature tensor, Chern-Moser curvature tensor makes a
conformal manifold (resp. C R-manifold) M a conformally flat manifold
(resp. a spherical C R-manifold), this characterize the boundary be-
havoir of isometry groups on the real, complex, quaternionic hyperbolic
geometry such as conformal, CR, quaternionic Carnot-Carathéodory
transformation, and hence establish the Conformal geometry (Para-
bolic geometry) on the boundary of rank 1-symmetric space of non-
compact semisimple type.
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1. PRELIMINARIES

Definition 1.1. A quaternionic Carnot-Carathéodory structure on a
(4n + 3)-manifold M is a subbundle B given by an ezact sequence:

1—B—TM -2+ L1

satisfying the following conditions.

1. There exists a open cover {Ua}aea of M such that if U,NUg # @,
then there is a smooth map Ao = Uag * Gap : U N Ug—H"* =
Rt x S3 (uag € Rt, 045 € S?). AP € SO(3) is a matriz given
by Ads,, (Ada(2) = dza).
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2. L is a 3-dimensional vector bundle whose fiber is isomorphic to
the Lie algebra so(3) = Im H = Ri + Rj + Rk, where the glu-

(a)
1
ing condition between L|U, and L|Ug is defined as: @ | =
5
o[
ua,@A(a ) fé )
(8)
£3

3. B supports a quaternionic structure {I®,J(®) K@®},e); there
exists a triple of almost complex structures {I (@ J@ K@} de-
- fined on each B|U, such that on
B IUa N Up:

LG J@
(1.1) g8 | =taed . | g |.
K (5)] K(a)
4. When the projection 0 is viewed as L-valued 1-form,

2n—times

e \m——
BAOAOANAIA---AdI #0 in R C H=T(M,Q"?3(L)).

Moreover, following the idea of Chern-Moser, Webster to pseudo-
Hermitian structure, we require the following: Locally 6 is described
as

(1.2) OlUs = i - €@ + Wl . £ + (. €.
We obtain an Im H-valued 1-form: w® = wia)i + wéa)j + wga)k.
(for brevity, omit a in w(®), wi®, 1))
Suppose that B supports a positive definite bilinera form and choose
the orthonormal basis {e;}i=1,.. 4n of B. Let 6*(e;) = é;; and choose
locally 1-forms {6'}i=1... 4n such as the frame {wi,ws,ws, 6", , 6"}
becomes a coframe field of M. such that

As usual, a triple of almost complex strutures {, J, K'} is represented
by the matrix: Ie.- = 145€5, Je,- = Jijej, Kei = K,'jej.
We require the differential of w satisfies the following equation:

(1.3) dwtwAws=s Jii+ Ji;g + K,-,-k)G‘ A# mod wq,ws,ws.
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In order to find a curvature, we assume that there are 1-forms <pj-, T,
(3,7 =1,---,4n;a = 1,2,3) such that:

(1.4) d6* = & A ¢} +Zw,,/\7':.

Using ¢%, the covariant derivative V : ['(B)—T'(B ® T* M) is defined
as follows.

(1.5) Ve,- = icp{ej.

j=1
Corresponding to the quaternionic Kahler structure, we require the
following:

(1.6) Vdw; =0, Vdws =0, Vdws =0 on B mod wy,ws,ws.

Moreover, to be completely integrable, the torsion forms 73 (a = 1, 2, 3)
will satisfy:

i =0mod 6%, w, (k=1,---,4n),
(1.7) 75 =0 mod 6%, wy (k=1,---,4n),
78 =0mod 6, w3 (k=1,---,4n).
Remark 1.2. Recall the definition of V :
V zdw (e;, €5) = Vz(dw (s, €;)) — dw1(V ze;, €5) — dw (e, Vze;j). Since
wi(es, e5) = Iij, we get
Vzdwi (e, €5) = (dLij — ¢{ Ioj — Lio3)(Z) (Z € TM).
Hence, (1.6) is equivalent to the below:
dl;; — {15 — Lis 5 |B = 0,
(18) 4T~ 97 Joj — Jiat§|B =0,
dKij - ‘P:"Koj Kw‘PJ IB =0.

2. G-STRUCTURE
Let G be the subgroup of GL(4n + 3, R) consisting of matrices;

vl vin
u-Alvy .- uvg"
1 4n
(2.1) V3 -+ Y3 )
0 u-U

where u - U = U'-(u-a) = U'-X € Sp(n) - H*, u?- A
(vi,--- ,vin) e Ri",

[
>0
>
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Recall a G-structure on M is a reduction of the structure group of
TM to G. Let G—=P-—M be the principal bundle of the G-structure
consisting of coframe fields

{Wl,&)z,&)s, 913 ot ,9411}.

If Aut(M) is the group of G-automorphisms, then the Lie algebra g
of G is '
H" x H* x H* x sp(n) + sp(1) + R, and H" is of infinite type, sp(n)+
sp(1)+R is of order 2. Thus, g has no element of Rank 1. Especially g is
elliptic. Fron the theory of G-structure, Aut(M) is a finite dimensional
Lie group. We call it the group of quaternionic Carnot-Carathéodory
transformations. If an element f belongs to Aut(M), using a coframe
field {w;,ws,ws, 8, - -, 64"},

(wr, we,w3) = w?(wy,ws, w3)A

(2.2) f-cei — uaka; + zwa'u: (some 'U: € R)
a

If we put the above form to be a ImH-valued 1-form w = w1t + wyj +
w;;k, '

ffru=Xl-w-A (=4 -w-a).

The problem in question is to find local invariants under a quaternionic
Carnot-Carathéodory transformation f.

Theorem 2.1. Let w be a Im H-valued 1-form representing a quater-
nionic Carnot-Carathéodory structure on a (4n+3)-manifold M. There
erists a fourth order curvature tensor T = (Tj;,) (n 2> 1) such that if
W' =X-w-\ for any function A : M—H?*, then it satisfies conformal
invariant: T(w) = T'(v').

Theorem 2.2. Let M be a (4n+ 3)-dimensional quaternionic Carnot-
Carathéodory manifold '

(n > 1). If the curvature tensor T vanishes everywhere on M, then M
is uniformizable over S**3 with respect to PSp(n + 1,1).

Recall that the complex contact manifold has the relation of the first
Chern classes concerning holomorphic subbundles. We have a similar
relation in this case. We introduce the notion of “Quaternionic” vector
bundle, and obtained the following.

Theorem 2.3. Let M be a (4n+ 3)-dimensional quaternionic Carnot-
Carathéodory manifold
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(n > 1). There is a relation of the first Pontrjagin classes between TM
and the subbundle L :

2p1(M) = (n + 2)p1(L).
Using this,
Corollary 2.4. The necessary and sufficient condition for M to admit

a global Im H(— sp(1))-valued 1-form w (W|Us = Aa - W@ - X,) is
2pm (M) = '

Remark 2.5.

(1) Denote by R(Sp(n)-Sp(1)) the space of all curvature tensors whose
holonomy group is Sp(n)-Sp(1) (n > 1). R(Sp(n)-Sp(1)) is decomposed
into

Ro(Sp(n) - Sp(1)) & Rur(Sp(n) - Sp(1)).
Here,

1. Rup(Sp(n)-Sp(1)) = R- Rup (Rup is the quaternionic curvature
tensor of the quaternionic projective space HP™).

2. Ro(Sp(n)-Sp(1)) = {R | R is a curvature tensor with zero Ricci tensor}

According to this decomposition, a curvature tensor is described as
R =Wy +c- Rup.

In this case, the component Wy is the Weyl curvature tensor. The
curvature tensor T of a (4n + 3)-dimensional quaternionic Carnot-
Carathéodory manifold (n > 1) has the same formula as that of Weyl
curvature tensor Wy. (c =1).

(2) The curvature tensor T of a T-dimensional quaternionic Carnot-
Carathéodory manifold
(n = 1) coincides with the Weyl curvature tensor W € Ro(SO(4)).

(8) There is the similar result to the case dim M = 3. Since T =0 (B
is empty) in this case, T replaces the Weyl-Schouten curvature tensor
S-W. If it vanishes, then M will be a 3-dimensional conformally flat
manifold.

3. CALCULATION AND EQUATION
We start with the folloing.

(3.1) dw+wAw= (I,-ji + J,'jj + K,-,-k)a‘ AP,
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This is equivalent to that
dwy + 2wp Aws = L;0* A&,
(3.2) dwy + 2ws Awy = J;;6° A ¢,
dws + 2w Awy = K,-,-Gi NG,

Differentiate the above equation dw; + 2ws A ws = I;;6* A 6’ and sub-
stitute (1.4), we have

(AL — 715 — Lio@S) NG A G +wi A (Tymi A6+ 16 AT) +
+ wo A (Ii;Ti ANO + I;;6° AT + 2K ;6 A 69) +
+ws A (Ii;7a A& + I,;8° AT —2J,;6° A7) =0,
which reduces to the following (simlarly for the rest fo others of (3.2)):
(dLi; — @15 — Ligp?) N6 NG + 2wy A Ii6* AT +
(3.3) + 2wy A (16 A T + K6t A 67) +
+2w3 A (I;;6° A T3 — J;;6° N 67) = 0.

4. THREE REEB FIELDS
Since it is easy to see that
dwe(X,Y) = 6,;6' - °(I,X,Y) (X,Y € B),

dw,|B x B—R is nondegenerate, and dw,|B is I,-Hermitian (a =
1,2,3, [ =1,I,=JI;=K):
Proposition 4.1.
(4.1)  dwo(ILX,IY) = 66" -0 (I,X,Y) = dwo(X,Y) (X,Y € B).

Using this,

Proposition 4.2. There exist nonzero vector fields {£1,&2,€3} every-
where on M such that

wa({b) = <sa,b,
dw(£,, X) =0V X € B.

Put E = {£,£,£3}. Then each element of E satisfies that [§3, 3] =
261, [€3,&1] = 262, [61,82] = 2&s.

Corollary 4.3. E is completely integrable. Each leaf of E is locally
isomorphic to the Lie group SO(3).

(4.2)
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5. LOCALLY QUATERNIONIC KAHLER STRUCTURE

Let £ be the local group of transformations generated by F =
{&,&2,&3}. If we note that € acts properly and freely on a sufficiently
small neighborhood U, then it induces a local principal fibration:

(5.1) E-U S UJE.
Define a Riemannian metric on U/E:
4n
(5.2) g=>) 66
i=1

And &} denotes the Levi-Civita connection with respect to §; for the
orthonormal basis é; = m.e; (1 = 1,--- ,4n), by definition Ve; = Q{é,-.
Choose a neighborhood V; C U/€ and let s; : V;—U be a section of
the principal bundle U — U/E. For % € V; and Xs,(2) € Bs,(z), define
automorphisms I;, J;, K; on V;
(1)2(7e(Xai(2))) = Tala2) Xay(2),

(5-3) (ji):?:("r-(xas(i))) = W*Jﬂi(i)xci(i)v

(K3)2(ma(Xsi2)) = TuKsy(2) Xai(2)
As 7, : B,,2)—T:(U/E) is isomorphic, I;, J;, K; are well-defined com-
plex structures on V. Pass‘ingh to‘all cover {V;}iea in U/E, if we do this
process, we get a family {I;, J;, K;}iea. Moreover,

Proposition 5.1. The family {i.‘, j.-,f(.-},-g is a quaternionic struc-
ture on U/E.

_Then, it is shown that V satisfies the quaternionic Kahler condition.
(I,' = I,J,‘ = J,K,‘ = K)

R I: 0 s*wy —S*ws {
(5.4) Vi J | =2| -s*ws 0 s*wy J .
K s*we —s*w) 0 k
From this,

Proposition 5.2. (U/E, §, {I;, Ji, K:}iea) is a quaternionic Kihler man-
ifold
(dim U/E > 4).

Corollary 5.3. The Ricci tensor satisfies: Rjp = 4(n + 2)8j,. In par-
ticular, (U/E, §) is a Einstein manifold. (n > 1). .
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Remark 5.4. If we define the fourth order tensor R: ke by the following
equation

(5.5) dw3 —wj A wi = ;keOk A 8¢ mod wy,ws,ws,

N =

then the curvature tensor R‘ke of U/E satisfies

i *Di
ke = T Rjkl'

6. EXISTENCE OF CONFORMAL CURVATURE T

We give a sketch of existence to our curvature tensor stated in The-
orem 2.1. Let dw +w Aw = (I;;¢ + Jyj + K,Jk)é?‘ A 07 be as before.
If f € Aut(M), then f"‘w = A-w- A Letting ' = f*w, choose w}
(a =1,2,3) such as Ujwk = vi. Substitute (2.2) into the above equa-
tion;

do' + o' AW’ = (Liji + Jyj + Kijk)(WPUUS6* A 6* + Y we A 2uwiULUF 6
a
+ Z wa A wy(2UEU wkwf)).
a<b

Then we can check that the matrix U satisfies the following:

IijU]f;Ug = a1k + ao1Jke + 031 Kie = I'ie.
(6.1) JiiUU} = aralke + agJie + a2 Kig = J'ka.
KijUiU} = a1alie + agsJie + assKxe = K'se.

Using this, there is the following general formula under the change of
the element of Aut(M):

(6.2)
' + W' AW = (I'yji+ J'ij + K'ik) (0?6 AT+ w, A 2uwif?
— e

+ ) " wa A wp(2wiug)).

a<b

We consider the equation of the connection form corresponding to (1.4).

(6.3) dét = 67 A ¢ '+ Zwa AT,



and define 1-forms 1} by the following equations:

Y ™
(6.4) v | =u?-A7H| 7
V3 5

Then, we can define the fourth order tensor up to the terms w;,ws, ws:
(6.5)

: i c i a i 1 ;
T N0 =do’s — ' AN ¢, — Zuz I'R6° NV, + 32“2 IRV NG
a a

In order to determine this tensor uniquely, we assume tracefree con-
dition of T = (T"}y,)-

(6.6) T'je = T3 =0.
Using this, a calculation shows that
(6.7)

"kt =Foxe — {(6e0% — 6ia63) + [LieLie — LinLig + 2510
+ JieJix — ijJa + 2],'ij¢ + KjtKik - Kiju + 2K,-_,-Kkg]}.

Hence, the fourth order curvature tensor T coincides under the change
w=Xw:X (T =(T}y) = (Tx)); T is an invariant tensor.
Moreover, the tracefree condition implies that T = (T;k,) belongs to
Ro(Sp(n) - Sp(1)) (n > 1).
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