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1. Motivation. The main object is the first homology of regular branched cover-
ings of a hyperbolic 3-orbifold. We shall stick to a single, but universal, example
of 3-orbifolds, which is called By 4,4\H® by Hilden, Lozano and Montesinos[HLM1].
The homology is given a structure of C[G]-module by the action of covering trans-
formation group G. The main result is the structure of the C[G]-module. The
investigation is motivated by the following problem in 3-dimensional topology:

Problem. Does every aspherical 3-manifold have a finite-sheeted cover of positive
first Betti number? :

This problem was raised by Thurston, which can be one of the crucial steps
towards his hyperbolization conjecture of irreducible atoroidal 3-manifolds through
his hyperbolization theorem for Haken 3-manifolds. The lemma below illustrate how
irreducible components of the C[G]-module is related to the first Betti numbers of
unbranched coverings of a given 3-manifold.

Lemma. Suppose that ' is an orientation-preserving cocompact Kleinian group
and Lo a normal subgroup of finite indez in '. Then we have

H,(T\H®,C) ~ H,(To\H’, )P/ o

where superscript I'/To denotes the fized point set by the action of T'/Ty.

The proof is a direct application of the basic homology theory , in particular the
transfer map. ,
Now let us recall the deﬁmtlon of universal groups.

Definition. Kleinian group I' is universal if, for any gwen closed 3—mamfold M,
there is subgroup U'as of finite index in T such that Tp\H3 is homeomorphic to M.

See [HLM2] for the universality of Kleinian group By 4 4.
We denote by Tr the subgroup of I' generated by all elements of finite order in
I'. The following assersion easily follows from above Lemma.
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Proposition. For given closed 3-manifold M, any subgroup T of universal group
By 4.4 associated to M in the definition and each normal subgroup ' of finite index
in By 44, we can find a finite-sheeted (unbranched) covering Mr, of M with

bl(MI'o) Z dim(H]_(I‘o\H3’C)TPMF0/PO)

where by (-) denotes the first Betti number.

Hence the information of the irreducible component of G-module H; (To\H?3, C)
gives us the lower bound of the betti number of 3-manifolds which is covered by
['o\H?, possibly with branches. In view of the proposition Thurston’s problem can
be devided into two parts, the first is the investigation of the irreducible component
of G-module dim(H;(T'o\H?,C)) for various I'p and the second is finding the nice
T in which the images of Tt,, is 'small’. We shall investigate the first part.

2. Results. B, 44 is normalized by mutually orthogonal hyperbolic reflections
1,7 and r3. T denotes orientation reversing element 7, or r17,73 of the normalizer.

Theorem A. Let Ty be the r-normal subgroup of By, with finite indez. If the
irreducible representation p of G := By a,4/To verifies

(1) Z a;xp(0ir) # 0

p appears as an irreducicble component of Hy (To\H?, C). Here, a;’s are explicitely
determined integers and p denotes the irreducible representation of semidirect prod-
uct G x (r) which restricts to p, X the character of the representation.

Since By g4 is known to be arithmetic lattice of SO(3,1) over number field
K = Q(v/5) (cf. [HLM1]) we can consider the congruence subgroups. For the case
that T, is a principle congruence subgroup associated prime ideals of K we can
compute the linear combination term on the left hand side of (1).

Theorem B. Let I, be a principle congruence subgroup of Ba,a,a associated to
prime ideal p in K. Set G = B4 4,4/Tp.

(i) If Nk o(p) = £1 mod 8 every nontrivial irreducible representaion of G appears
in Hy(Tp\H?,C).

(i) Let T be a congurence subgroup of By 4,4. If the image of T in G doesnot contain
noncentral normal subgroup the frist betti number of T\H3 is positive.

The method of the computation implies somewhat general type of result.

Theorem C. Let T be a marimal rirars-normal, but not mazimal normal sub-
group of finite indez in Byas. Then any nontrivial rirars-inveriant irreducible
representation of G = By 44/T is an irreducible component of H,(T\H3, C).

3. Universal group B; 44 and cell decomposition. The orbifold B4,4,4\]HI3
can be given by the pasting of hyperbolic polyhedron R according to the pattern in
Fig. 1. Polyhedron R is a hyperbolic regular dodecahedron with right edge angle.
We denote by 0x the elliptic element of order 4 which pastes the side X to side X'.
B4’4,4\IHI3 has the natural cell decomposition induced from faces of R.

For normal subgroup I' C By 4,4 We can equivriantly lift the cell decomposition
T'\H3. We denote by (F:)r the set of i-cells in the decomposition. Labeling the cells
according to Fig. 2 we can explicitely describe the action of G on (F:)r as follows.
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F1G. 1. Arrangement of Sides of Regular Dodecahedron R

Lemma 1. Let ' be a normal subgroup of B4,4 and G = By 44/T. (~ denotes
the isomorphism as G-set.)

0)  (Bo)r =G(Q)U{G(IPF.); z=a,b,..f},
G(TQ) ~G, G(TP.)~G/(¥x) (z=a,b,...f,X = A, B, .., F).
(1) Fr = {G(zz'); z =a,b,..f} U {GTy);y = ab, be, ca, de, ef, fd},
G(Tzz') ~ G/(0:) (x =a,b,...f), G(Ty)=~G (y = ab,bc, ca,de,ef, fd).
(2)  (B2)r={G(X); X=4,B,.,F}.GI'X)~G (X = 4, B,..,F)
(3)  (F)r=G(R)~G.

The lemma gives us the description of G-chain complex {C,, 8} associated to
cell decompostion (F,)r as follows.

Co =~ C[G]-vq ® P CIG/(6x)] - vz == Ch & CY
C1 = EPCIG/(6x)] - e= ® P CIG] - ¢, := C} & CY

C: =@PCIG]-sx, Cs=C[G] cr.

where the summation indexes varies according to the description in Lemma 1 and
Ux, €x, Sx, and c, are the oriented cells of the corresponding 0-,1-,2- and 3-cells. We
also decompose Cy and C; into two summands.
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FiG. 2. Edges and Vertexes

In addition, if I" is characterized by r {C., 3} has the action of Gx (r). Observing
the action of r in Fig. 1 we can explicitely describe action on the chain complex
{C., 8} as follows.

Lemma 2. Suppose ' is ri-normal. Then the action of ry on C, is described as
follows.

Ch > am- "abp € Cy,
C(',’ S (aA,aB, ..,ap) —
(M aabp, ™ ap, " arba, " aplp, " ag, M aclp) € Cy,
C! 3 (g, by -, af) = (=g, ap, e, — g, e, —ay) € C,
Cl 3 (Ctabs Abe; Olcay Ctde; Qef, CUfd) —
(" as0B, " bclB, " 0140400, " AdeOE, " 0 f0E, T acafpOF) € CY,
C; 3 (aa,ap,..,0F) —
("apba, " apbp, —"ac, "as0p,aple,—"ar) € C,,
C3d3amr -"a€ 03.

Moreover if p is a r1-invariant irreducible representation of G these actions restrict
to the homogeneous components of p.
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Lemma 3. Suppose I is rirors-normal. The actions of r1ror3 on siz term modules
Cy, C1,CY and Cy permute the components of pairs A < D,B « E and C — F.
The actions on C§ and Cs are given by

Codam "0 05104 € C), Czda— —""2g e Cs.

If p is a ryror3-invariant irreducible representation of G, these actions restrict to
the homogeneous components of p.

4. General principle. Let I' C B4 4,4 be a r-normal subgroup of finite index and
(C.,0.) the chain complex described in section 3. Then the complex is G x (r)-
module. The following two lemmas are direct consequences of elementary theory
of representation of finite group and Poincare duality. Let Irr(G) denote the set of
irreducible representation of G. For G-module M and p € Irr(G) we denote by M,

the homogenious component of p. N

Lemma 1. For any p € Irr(G x Sp) chain complex (C,,d,) restricts to G x Sp-
subcomplez (Cs,5,0xlc, ,) and Ho(T\H?,C); ~ H,(C. 5,0lc. )

Lemma 2. For any p € Irr(G), Hi(T\H3, C), ~ Ho(T\H3,C), as G-module.

For p € Irr(G) is r-invariant and M is a G x (r)-module, r stabilizes homogeneous

component- M, of G-module ResG ") M. Hence M, carries the action of G x (r)
and we denote by M, the assocmted character of G x ().

Proposmon 1. Suppose that T is r-normal and p € Irr(G) is nontrivial and r-
invariant. Then p is an irreducible component of Hi(T\H3, C) if the generalized
character

of G x (r) is not trivial.

Proof. Since T'\H? is a connected closed 3-manifold, the characters of homologies
HO(F\]I-I[3 C), and Hs(T'\H?, C), are trivial for p # 1¢. _Hence the alternated sum
&, is equal to the generalized character Ho(I'\H2, C), —H; (T'\H3, C) p by Lemma 1.
If the action of G x (r) induces the nontrivial character, either of Hy(I'\H?,C), or
H,(T'\H?,C), is at least nontrivial. The proposition follows from Lemma 2. Q.E.D.

5. Proof of Theorem A. In view of Proposition 1 H;(T'\H?,C) has p as irre-
ducible component if £, is nonzero. Thus Theorem A reduces to the computation
of £,. Let p € Irt"(G). For 6,g,h € G with "6 € (6) we set

©5(g,h),p: CIG/{0)], 3 e g "ah™ € C[G/(0)),, Ty (g, h), := Trace(wy(g, h),)-

We omit the upperscript 7 when it is obvious and the subscript 6 if § = 1 (identity
element).

Lemma 1. Let r be either r; or r1rars. Suppose I is r-normal and p € Irr" (G) is
nontrivial. Then, forr =r;

gp(grl) - — Tr1 (g’ 91—31)‘) _ Tr1 (g’ 1)p + T;i (g, egl)p
+T52(g,05") 0 + To2(9,1), + Tgi(g, 1),
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and for r = 17913,

Ey(grirars) = TT173(g, 05'0r0E), — TT172"3(g, 1),.

Proof. The Lemma follows immediately from the definition of & and the direct
computation by the formulas in Lemma 2 in section 3. Q.E.D.

For simplicity we consider the case r = r;r,r3, for which we only need the charac-
ter formula for Ty (*,*) with @ = 1. The case r = r; is treated similarly but requires
some more technical formula. First observe that the following is straightforward
from the Cliford’s theorem.

Lemma 2. Let G be a finite group. Suppose that r € Aut(G) is of order two and
p € Irr(G) is r-invariant. Then there exist exactly two irreducible representations
p and §,p of G x (r) which restricts to p on G. The character of these satisfy
X5(x) + xy,7 () =0 forzx € G x (r) \ G. '

It is immediately verified that the bi-action of G x G and the action of r on
C[G], induces the action of the semidirect product (G x G) » (r) given by the r-
action (g, h) — ("g,"h). We denote by o the representation on C[G],. Considering
(G x G) % (r) as a normal subgroup of (G % (r)) x (G x (r)) with index 2, we can

define 7 € Irr((G x G) % (r)) with R&S(GGXXGG)X(T) T=pXx p* by

r = RGO ),

Since C[G], is equivalent to p x p* € Irr(G x G), either ¢ = T or o = §7 in view of
Lemma 2. Thus T7(g, h) = £x5(gr)x3(hr). Therefor the computation of T7(g, h)
reduces to the determination of the sign.

Lemma 3. T7(g,h) = x5(g97)x5(hr).

Proof. By the observations above we only have to prove that o # . Recall that
C[G], is a simple component of C-algebra C[G]. Since the action of r induces a
C-algebra automorphism of C[G] together with the conjugation by elements of G,
the idempotent associated to r-invariant representation p is fixed by these actions.
Hence we have

(5.1) (ReS(}?XG)x(r) o, 1g)g #0

where H is the diagonal subgroup in (G x (r)) x (G x (r)), which is a subgroup of
(G x G) » (r). Since

1 1
7 = 5 {; xo@)? +§;|xﬁ(xr)|2} =3 {<p, o)+ @§|x5(xr>|2} ,

we have

(5.2) 1= ﬁ > Ixs(r)®.

z€G
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By definition of #§r and (5.2),

(Resty * ) e 10w =ﬁ { > xe@)F = Ix,s(wr)lz}

z€G zE€G

-; { (e.0)e ~ 157 2 lx,s(zr)IZ} =o.

z€G

Hence by (5.1) o # fr. Q.E.D.

As a consequence of Lemma 1 and Lemma 3, Theorem A follows for the case
r = riTer3. The explicite statement is as follows.

Theorem A. LetT' be a riryr3-normal subgroup of finite indez in Bssg andp a
nontrivial r1rar3-invariant irreducible representation of G. If

X5(01 0r0ET1Tors) + X5(r172r3) # 0

for an irreducible representation p of G x (rirers) which restricts to p on G, p is
an irreducible component of G-module H, (I'\H?3, C).

6. Remark on Theorem B and Theorem C. In view of Theorem A, Theorem
B is the computation of character of 5 in the case that I' is a congruence subgroup of
arithmetic lattice. Since the character of irreducible representation of typical groups
of Lie type is wellknown (cf. e.g. [Ca]) the problem reduces to the computation of
the character of p from that of p. To clarify the points of the computations we briefly
summarize the basic facts on arithemtic lattice and its congruence subgroups.
Let F be a field of characteristic# 2 and f a non-degenerate quadratic form on F4.
Set

Of(F) :={g9 € GL4(F); g- f = f}

where g acts f by g- f(z,y) = f(g~'z,g7y). For £ € F* with f(£) # 0 we denote
by r¢ € Og(F') the orthogonal reflection with respect to plane £+. r¢ is obviously
of determinant -1. Hence we lave a normal subgroup of index two

SO¢(F) :={g € Of(F); detg=1}.

Spinorial norm Spy is the unique homomorphism of O¢(F) to F*/(F*)? which takes
reflection r¢ to f(£) mod (F*)2. Let Qf(F) = SO¢(F) N Ker Spy.

a. Arithmetic lattices Let k£ be a number field, o the ring of integers in k and
f a non-degenerate quadratic form on k%. Set

O¢(0) := {g € Oy (k); all entries of g are integers}.

Suppose that v is a real infinite place of k and f induces quadratic form f, at v of
type (p,q). Then we have an associated embedding )\, of Of(k) into O(p,q : R).
In particular, if (p,q) = (3,1), Ker Spy and Qf(0) embed into KerSps1(R) =
Isom(H?) and ©(3,1: R) = Isomo(H?) respectively. The following is derived from
the classical theorem due to Siegel.
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Theorem (Siegel). Suppose k # Q is a totally real number field and f is a non-
degenerate anisotropic quadratic form on k%. If f is definite at all infinite places
except for vo and of type (8,1) at vo,

Ty, = Ao (Of(0)) N SO(3,1: R)

is a cocompact Kleinian group.

We say that T is an arithmetic lattice of O(3,1: R) if ' is commensurable with

Ty, in Theorem above. In [HLM1] Hilden, Lozano and Montesinos proved that
By 4 4 is arithmetic lattice over Q(v5)

b. congruence subgroups For ideal m of o we define congruence subgroup
Oy(m) by |
Of(m) := {g € Of(0); g =1 modm}.

Clearly Of(m) is an normal subgroup of Og¢(0). Set

T, =huo(05(0) N Q5 (k)); Tm := Ao (Of(m)) N 2y (R),
F:.n 1=Ayo (Og(m) N Qg(k)) == F:,o N .

Note that I, and Iy, are of finite index in T'y, and Iy, respectively since those
groups are finitely generated by its cocompactness and the spinorial norm maps
those groups to the abelian group any non-trivial element of which are of order
two. Suppose that p is prime. Reducing the entries modulo p we have injections

tp : Ty /Tp — SOy, (0/p) Ly : I, /Ty — Qj,(0/p)

where f, denotes the quadratic form reduced from f modulo p. By Kneser’s strong
approximation ¢, is surjective except for finite set Pp, , , of primes while ¢, may fail
to be sujective by the lack of simply connectedness of SOy. The following lemma
is easily proved and describes when it fails.

Lemma. Suppose p € PB,4.4-
(1) 1p(Baa,a) = Qf, (0/p) if and only if Nijo(p) = %1 mod8.
(2) 1p(Baa,a) = SOy, (0/p) if and only if Nijo(p) = £3 mod8.

This dichotomy causes the restriction mod8 in Theorem B (i). If Niso(p) =
+3 mod8 we can prove that most of r-invariant characters apears in the first
homology basing on Theorem A. Hence Theorem B (ii) follows from group theoretic
technic and Proposition in Section 1.

We also have technically important dichotomy, which describes the two different
types of group structures on {25, (o/p).

Lemma. (i) Let d be a non-square element of F, := o/p. Quadratic form f, belongs
to the (unique) cogridient class of isotropic quadratic forms or that of anisotropic
ones according to —a is a square in Fy or not.

(ii) If f is an isotropic quadratic form over F,, Q(F,) is isomorphic to SLy(Fgq) X
SLy(F,)/(£1, £1). If anisotropic, it is isomorphic to SLa(Fg2).

For the isotropic case the computation of the character of p is relatively easy
by the direct product structure. Under the assumption of Theorem C the direct
product structure is always the case (by the validity of Schreier’s conjecture). On
the other hand for the anisotropic case we have to develop a general theory to
compute the character of G x (r) from that of G.
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