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Model checking for semiparemetric linear
transformation model

FEBRZFEXREREERAHER  RF B (Satoshi Hattori)
Kitasato University Graduate School, Div. of Biostatistics

1 Introduction

In clinical trials, regression models are frequently used and play important roles. For example,
in cancer clinical trials which are desined to evaluate the survival benefit of anti-cancer drugs,
regression models for time-to-event data are used to evaluate the treatment effect adjusting the
effect of covariates and to estimate(predict) survival functions of various kind of patients. The
Cox proportional hazard model is frequenty and routinely used in the recent clinical trials with
time-to-event data as endpoints. Of course the Cox proportional hazard model is quite useful and
important because the Cox proportional hazard model is a semiparametric model, which seems to
be more robust than the parametric models, and can be fitted easily by many commercial software
packages. On the other hand, the Cox proportional hazard model may not fit well since the propor-
tional hazard assumption, the Cox proportional hazard model requires, isn’t neccesarily a weak one.
Recently the practical inference procedure of some kind of semiparametric models have been es-
tablished with the theoretical justifications. For example, Wei, Ying and Lin(1990), Tsiatis(1990),
Ying(1993) and other authers have developed the inference procedure for the semiparametric accel-
erated failure time model and Lin and Ying(1994) has established the simple inference procedure for
the semiparametric additive hazard model. The linear transformation model is another attractive
alternative semiparametric model. The linear transformation model is defined as

Sz(t) = g{h(t) + 278}, (1)

where Sz(t) is the survival function of the patient with the covariate Z, h(t) is the unknown non-
decreasing function and g is the known continuous and strictly increasing function. Here we assume
that Z is bounded and, without loss of generality, | Z | < 1 is assumed. When g~(t) = log(—log(t)),
(1) reduces to

log(—log(Sz(t))) = h(t) + Z7B.
This is the Cox proportional hazard model. And when g~1(t) = —logit(t), (1) reduces to

—logit(Sz(t)) = h(t) + Z75.
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This is the proportional odds model which is the important alternative to the Cox proportinal
hazard model (Bennett (1982)). So changing the link function, g, the linear transformation model
provides a large class of semiparametric models containing the Cox proportional hazard model and
the proportional odds regression model as special cases. Recently Cheng, Wei and Ying(1995),
Cheng, Wei, Ying(1997) and Fine, Wei and Ying(1998) proposed the inference procedure for the
linear transformation model with the univariate, possibly right-censored data. And the extensions
to more complicated data were done (Cai, Wei and Wilcox(2000), Cheng and Wang(2001), Lin,
Wei and Ying(2001)). For the univariate data, Cheng, Wei and Ying(1997) proposed an graphical
model checking procedure based on p-p plot. Though their model checking procedure is very useful
to check and select the model, it is desirable to establish the formal model checking procedure
since the graphical procedure may be subjective. For the Cox proportional hazard model, Lin,
Wei and Ying(1993) proposed an quite useful model checking procedure based on the cumulative
martingale-based residuals. Their method provides the formal omnibus test and , in addition, the
graphical model checking technique which is very useful to investigate what kind of misspecification
occure. In this article, we develop the model checking technique for the linear transformation model
with the univariate, possible right-censored data based on the cumlative sum of martingale-type
residuals.

2 The inference procedure for the linear transformation model

In this section, we summarize the inference procedure for the linear transformation model pro-
posed by Cheng, Wei and Ying(1995, 1997). The linear transformation model is defined equivalently
to (1) as

h(T)=-ZTB +¢,

where T is the failure time, € is the random variable whose distribution function F = 1 — g
is completely known. The specification of the distribution of ¢ corresponds to that of the link
function g. The distribution of ¢ is the standard extreme value distribution and the standart logistic
distribution for the Cox proportional hazard model and the proportional odds model respectively.
To estimate the unknown parameter 8 and h, the survival function G of the censoring time C is
assumed not to depend on the covariate Z. To estimate the regression coefficient 3, Cheng, Wei
and Ying(1995) proposed the unbiased estimating equation,

A (X > X5)

U6) = Y- Y- w702 {5

i=1j=1

- £(Z5p)}, | 2)

where A; = I(T; > C;), &(s) = [22 {1—F(t+s)}dF(t), w(.) is a weight function, Z;; = Z; - Z; and
G is the Kaplan-Meier estimator for G. Cheng, Wei and Ying(1995) showed that B, which is the
solution of the equation U(8) = 0, converges to the true value Sy almost surely and the distribution
of n3 (B — fBo) converges asymptotically to normal distribution with mean zero whose asymptotic
variance-covariance matrix can be consistently estimated by the sandwich-type variance estimator.
In addition, Cheng, Wei and Ying(1997) proposed the inference procedure for the survival function
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S.(t). To this end, they proposed the unbiased estimating equation for h(t),

V@) = {——“’2’5 2

=1

-9(27B)}, telo,] 3)

where 7 is a constant satisfying P(X > 7) > 0 and f3 is the estimator derived by (2), and proved
that h(t), the solution of V (h(t)) = 0, converges to ho(t) uniformly in [0, 7] almost surely.

2.1 Model cheching method based on the cumulative sum of martingale resid-
uals

At first, we define the martingale-type residual for the linear transformation model in the sim-
ilar matter for the Cox proportional hazard model. For the Cox proportional hazard model, the
martingale residual is defined as

H(t) = Net) — [ ¥ilweH Bahcu)

where N;(t) = I(X; < t,A; = 1), Yi(t) = I(X; > t), B is the maximum partial likelihood estimator
and A(t) is the Breslow estimator of the baseline hazard function (Barlow and Prentice 1988,
Thernea, Grambsch and Fleming 1990). Similarly we define the martingale residual for the linear
transformation model, using the relation Az, (t) = —log(Sz,(t)) and (1) as

Mle) = No) + Yi(u)dlog(g{h(t+) + ZTBY).

Using this martingale residual, we define the goodness-of-fit statistics similar to that proposed
by Lin, Wei and Ying(1993) for the Cox proportional hazard model. Define the multi-parameter
stochastic process,

H(t, Z) = iI(Z,' < Z)Mg(t).

i=1

If the model is correctly specified, by the Taylor series expansion, n"iH (t,2) is asymptotically
equivalent to

n"3A(t,z) = nty / 1(Z, < 2)dM;(w)
=170

+ nl ,z:;/ot I(Z; < 2)Yi(u)

dfatho(w) + B3 21}
n {h(u) — ho(w) + (B - 6o)7 2]

X

where g(z) = d—“’i(zﬁ/g(a:).
From Cheng, Wei and Ying(1997), n%{fz(t) — ho(t) + (B — 0)T 2 is asymptotically equivalent to
1

Wz, ) = a(t)

[{6(t) + a(®)Z}"D
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{n 2 Zzw ﬂO szezj(:@O)

i=1j=1
 g(u) L2 AME(u )}

P> o m(u)

i=1
-1 n
nz Z ri(t)

e > 7(t)

2 —

2. G) Jo 1r(u) aMg (W),

(4)

where varioius kind of quantities in (4) are as follows,

a(t)

b(t)

D—-l

7(t)

q(t)

eij(Bo)

T; (t)

M;(t)

lim a(t)

n—o0

lim — E F(Ro(t) + ZT ),

n—o0

Jim_ b(t)

lim — Z F(Ro(t) + ZFB)Z;,

n—o0

lim D!

n—o00
Jim §Z w(Z
lim #(t)

n—o0

TB0)E (25 Po0)2:; 25,

Hm —

B8 ZI(X > 1),

Jim q(t)

lim —'Z Z Z w(

n-»co N pac et

5 I1(X: > X;)

J—C:'Z(t)—]_ — &(Zo),

I(X;>t)
G(t)

I <,80=0) - [ 10X > wdhc(w),
0

5 i[(Xi > Xj)

é2(t) I(Xj Zt),

- SZi(t)a

f is the density function of F, the distribution function of ¢ and Ag is the cumulative hazard

function of the common censoring time. Note that Mg(t) is the martingale corresponding to the

counting process for the censoring time C. Then

n_%H(t, z) =~

n~3 g/ot I(Z; < z)dMi(u)

+ a7y [ 1z < v
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x  d[g{ho(u) + 27 Bo}W,(t)]. (5)

In appendix, the first and second term of the r.h.s of (5) is proved to be asmptotically equivalent to
the zero-mean Gaussian process. To evaluate the goodness-of-fit objectively, the null distribution of
the goodness-of-fit multi-parameter stochastic process is needed. Although, under the correct model
specification, the goodness-of-fit stochastic process is asymptotically equivalent to the zero-mean
Gaussian process, it is difficult to know the covariance structure of the Gaussian process analytically.
So we use the simulation techniques to approximate the null Gaussian process following to the idea
originally proposed by Lin, Wei and Ying(1993).

To approximate the null process, we define another stochastic process,

n"1A(t,z) = n"1Y I(Z < 2)Mi(t)L;
i=1

-,

+n %ii ." _[ I(Z; < 2)Yi(u)Zije5(B)
=1 i=1 j=1
| xd[g{h(u+)+ZTﬂ} a(at ){b(u+)+a(u+)Z,}TD]
xL;
4(w) ;rye
+ on” g;/ 1(z,<z)Y(u)/ dM( )
xd[§{h(u+) + ZTﬂ} {b(u+) + a(u+)z,}TD]
xL;
+ 033 [0 < v
=1 i=1
xd[g{h(u+) + 2B sy )r,(u+)]
xL;

+ n-t ZE/ 1(Z; < 2)Yi(u)

=1 i=1

<alithi + Tz [ ot

X [:1 (6)

dM (z)|

where L;,i = 1,2,..n are the sequence of the standard normal random variable independent of
the data, {(X;,A;, Z;)}. In appendix, it is shown that conditional on the data, n~1H (2,t) is the
zero-mean Gaussian process and converges to the limiting process of niH (2,t) asymptotically.
Note that conditional on the data, £;,i = 1,2,..n are the only random components in H(z, t) .
In practice, arbitary numbers of realizations of the null process H(z, t) can be easily simulated by
generating {L£;,7 = 1,2, ..n}s in computer. Comparing the observed cumlative martingale residuals
to the simulated null process, we can evaluate the goodness-of-fit.
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2.2 An omnibus test

Similar to Lin, Wei and Ying(1993), an omnibus goodness-of-fit test is defined as

Homn = sup |H(t,z)|
2€[-1,1]P,0<t<r

— swp YN < AN
z€[-1,1}P,0<t<T ;=1
Since the null distribution of H(t, 2) is zero-mean Gaussian process, an remarkably large value of
Homn suggests model misspecification. As the distribution of n -iH (t,z) can be approximated by
—iH (t, z), Homn can be approximated by Homn = sup,; |H (t, z)| where the supremum is taken
over z € [-1,1]7,0 < ¢t < 7. So the p-value, P{Homn 2> homn} Where homn is a realization of Homn,
can be approximated by P{Homn > homn}. The realizations of Hymn can be easily generated by

simulation.

2.3 Checking the misspecification of functional form of covariates

An omnibus goodness-of-fit test may be a powerful guide to judge whether the fitted model is
appropriate or not. When the fitted model, however, seem to be not appropreate, it is desirable
to know what kind of model mlsspemﬁcatlon was made. Similar to Lin, Wei and Ymg(1993), we
define one-parameter stochastic process as

H®(r,2) = ZI(Z,-(k) < 20 Mi()

i=1

where z € [—1,1] and Zi(k) is the k-th element of Z;. This stochastic process is a special case of
H(t, z). So the sample path of H (¥)(r, z) under null hypothesis(i.e. the fitted model is correct) can
be easily obtained though simulation and be displayed graphically because the sample path is one-
dimensional function. Plotting the realization of H (k)(7, z) with some simulated realizations(say 20
realizations) of null distribution, it may be evaluated graphicall how strange the obtained realization
is. Furthermore p-value based on sup|H®)(r, z)| can be evaluated in the same way as the omnibus
test.

2.4 Checking the misspecification of link function

To test the link misspecification, we can use the special case of H(t, z) setting z=1.
n ~
H(t,1) = M(t).
i=1

Similar to H (k )(z),we can evaluate the goodness-of-fit of the fitted model graphically by ploting the
obtained reahzatlon and the some(say 20) simulated realizations of the null process and subjectively
by evaluating the p-value using the simulation technique.
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3 Appendix
3.1 Weak convergence of n~% H(t, z)

To show the weak convergence of n~iH (t,2), it is sufficient to prove the weak convergence of
the 1st and 2nd terms of n=3 H (t,z) converge to the zero-mean Gaussian process, where

ndAtz) ~ ntY / 1(Z) < 2)dMy(w)
=170

+ n“g /0 I(Z; < 2)Yi(u)
d[3{ho(w) + ZF Bo} Wz, (1)), (7

X

since n"7 H (t,2) and n3H (¢, 2) are asymptotically equivalent.

Weak convergence of the 1st term of (7)

From the multivariate central limit theorem, the arbitary finite dimensional projection converge
to the Gaussian distribution. So to show the weak convergence to the zero-mean Gaussian process
of n~32 Sr s 1(Z; < 2)dM;(u), it is sufficient to show its tightness in D([-1,1]P x [0,7]). Using
the same argument as appendix 1 of Spiekerman and Lin(1996), the covariates can be restricted to
the continuous ones without loss of generality. And for simplicity, the dimension of the covariates
is assumed unity. To show the tightness, it is sufficient to show the moment inequalities,

E[’l/)2(zl, 292, tl, t)’l/)z(zl, 29, t, t2)] S K(t - t1)(t2 e t)P’I‘z{Z € [21, 22)} (8)
E[?(z1, 23 t1, t2)92(2, 225 t1,82)] < K(t2 — t1)?
X Pr{Z € [21,2)}Pr{Z € [z,22)} 9)

for V 21 < 2 < 23,t; < t < ty, where K is some constant and
_l - [t
1[)(21,z2;t1,t2) =n" 2 Z/t dM,-(u)I(Z,- € [21,22)).
i=1v"4

It is sufficient to the moment inequarities (8) and (9) under the assumption that Pr{Z € [z, z)} > 1
and Pr{Z € [z,23)} > L (Bickel and Wichura(1971), Lin, Wei and Ying(1993)).

ls.h of (8)
= E[¢2(z1,z2;t1,t)E[¢2(z1,22;t,t2)|Z,~,i =1,2...n, ¢2(zl,z2;t1,t)]]
= E[p(z21,22it1,1) X

LS B[ [ ¥itwdiog(atho(w) + ZFA}I(Zi € [21,2)
i=1 ¢

Zi, % (21, 22511, t)]]

— Bt 01 Y [ Yiwdog(ofhotw) + ZFBoM(Z € [1,2))]
i=17t
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The 2nd equality is obtained by the independent increament property of the martingale and the
standard moment caluculation of the counting process martingale. Furthermore

<

IA

IA

<

KE[1/;2(z1,z2;t1,t)% S 1(Z: € 21, 2)) (2 — 1)
=1

KE[—-ZI (Z; € [21,2))— Z / Y;(u)dlog(g{ho(u) + Z] Bo}(Z; € [21,2)}(t2 — t)

1.—1

K(to — t)(t — tl){MPrz(Z € [21,2)) + —Prz(Z € [21,2))}

K(ty —t)(t - tl){P(L——-—)Pr2(Z € [21,2) + Pri(Z € [a1,2))}
2K (ty — t)(t — t;)Pr3(Z € [21,2))

So the moment inequility (8) is obtained. Next we show the 2nd moment inequility (9).

l.s.h of

Il

IA

<

(9)
E[E[¢2(zla z;t1, t2)’¢)2(z, z1;t1,t2)|Zi,1 = 1,2, n]]

L B[ AP [ MW I € (1,2),2; € 2, 20)
i#j 1 b

K%n(n —1)(ts — t1)*Pr{Z; € [21,2), Z; € [z, 22)}
K(ty — t1)2Pr{Z; € [21,2)}Pr{Z; € [2,22)}

So the moment inequility (9) is also obtained.

Weak convergence of the 2nd term of (7)

Using the integration by part,

the 2nd term of (7)

= 1y rz <o) [ vwathow) + 2781w (10
i=1
+ %zn: 1z:<2) [ " Yiw) W, (w)dg{ho(w) + 275} (11)

Here Wz, (t) is re-expressed as,

where

Wz, (t) =

ol [(b(t) +a(t)Z:)T D(Wi + Wa) + Wi(2) + Wa(t)|

Wi, = n %ZZw ,30 Zz]ez](ﬁO)
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Wa(t) = n 3 ni(t)
i=1
-1 i 1r(t)

") 56 h 7

——dM;(u)

[
™M

1

Cheng, Wei and Ying(1997) proved that Wi, Wa, W3(t) and Wy(t) are asymptotically equivalent
to the zero-mean Gaussian process(appendix B of Cheng, Wei and Ying(1997)).
To show the weak convergence of (10) to the zero-mean Gaussian process,we prepare a lemma.

Lemma 3.1
Let {fn(t)} be a sequences of bounded variation functions on [0, 7] and {gn(z,t)} be a sequence of
bounded variateion with respect to t in [0, 7} for each z in [-1,1] such that

1. supg<i<r | fn(t) — foo(t)] = 0, where foo(t) is continuous on (0, 7],
2. SUPg<i<r,—1<z<1 |9n(2, 1) — goo(2,t)| — O ,where goo(2,t) is bounded on [-1,1] x [0,7] with
bounded variation with respect to t for each z.

Then

swp | [ Fa(dgn(2,0) = [ foo(@)dgun(z, )] 0. (12)

0<t<7,—1<2<1

Proof
(12) is a simple extension of lemma A.3 of Bilias, Gu and Ying (1997). (Q.E.D)

Here we show the weak convergence of (10). Using the integration by part,

(u)

(10) = —EI(Z <[ Yw)glha(u) + 27 62 DOWs + W) S

+ —ZI(Zi <) [ Yitwgtho(w) + 25}

b7 (u) D(W; + Wa) + __(Wg(u) + W4(U))]
a( ) a(u)

- EI(Z < 2) [ Yiwthotw) + ZEBYZT DWW + W»dﬁ—i

x d

b7 (u)

+ / [ ZI(Z < )){ha(u) + 2Bl 5L DWs + Wa) + )(Wg(u)+W4(u))]
/t bT(u)D W
= ) aqw) PWi+Wa)+ o )( 3(u) + Wa(u))
x A2 317 < wthotw) + ZF)] (13
i=1

Note that the 1st term of (13) is zero. Let Wi, Wha, Wi(t) and Wy(t) be the limiting zero-mean
Gaussian process of W;, Wy, W3(t) and Wy(t) respectively whose weak convergences were proved
in the appendix B of Cheng, Wei and Ying (1997). Note that there exist nondecreasing functions,
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§*(u) and §~ (u) such that §{ho(u)+27 B} = §+(u)—§ (u). Since both —Y;(u)§* (u) and I(Z; < 2)
are monotone functions on R, their psedo dimensions are unity. From lemma 5.3 and theorem 4.8
of Pollard(1990), I(Z; < z)Yi(u)§*(u) is manageable (Pollard 1990, p. 38). Similarly, I(Z; <
2)Y;(u)§~(u) is also manageable. Then I(Z; < 2)Yi(u)§{ho(u) + ZT B8} is also manageable(the
lemma A2 of Bilias, Gu and Ying(1997)). So by the uniform law of large numbers(Pollard(1990),
pAl), 13" I(Z; < 2)Yi(u)g{ho(u) + Z] B} converges uniformly to some nonrandom function
almost surely. Since this fact and the continuity on [0, 7] of Ws(t) and Wi(t), which is proved in
the later part of this appendix, ensure the conditions of the lemma 3.1, the 3rd term of (13) is
asmptotically equivalent to the zero-mean Gaussian process I3 [2;(%11)()4}1 +Ws) + ;(%F(Wg,(u) +
Wi(u))ldlim L S, I(Z; < 2)Yi(u)§{ho(Xi) + ZFB} . The 2iid term of (13) converges to a zero-

mean Gaussian process since 2 %, I(Z; < 2)Yi(u)§{ho(u) + Z{ 8} converges uniformly to some
nonrandom function almost surely.

Next we show the weak convergence of (11).

) = I31zss) [ Yi(w) 75 l0) + a(w)ZeY ho)3 Tho(w) + ZF B}
i=1 .
x D(W1+ W) (14)
b DS [N () + W) |
x  ho(w)g {ho(u) + ZT B}du (15)

Using the similar argument to that for the 1st term of (10), by the uniform law of large num-
ber(Pollard(1990), p. 41), 2 Y%, I(Z; < 2) [ Yi(u) 7oy {b(u) + a(w) Z;} hy(w)g {ho(u) + ZT B}du
converges uniformly to some non-random function almost surely. And D(W; + W2) converge
to Gaussian random variable. So (14) is tight and converges weakly to some Gauusian pro-
cess. Furthermore, it can be shown by the similar argument to that for the 1st term (10) that
LSy naI(Z: < z)}’}(u)alahé,(u)g'{ho(u) + ZT'B} converges uniformaly to some non-random func-
tion almost surely by the uniform law of large number. Because of the weak convergence of
Wa(u) + Wa(u) to Wa(t) + Wy(t) and the almost sure representation theorem(Pollard(1990), p.
45), W3(u) + Wy(u) can converges to Wz(u) + Wy(u) uniformly and almost surely in some proba-
bility space. So

sup I /‘ fn(z, u)(Wa(u) + Wy(u))du — /t foo(2, w)(Ws(u) + W4(u))du|
0 0

0<t<T,—1<2<1

< s |falew)(Wa(w) + Wa(w)) = faolz, ) Wa(w) + Wa(u))|,

0<t<7,—1<2<1

where fo(z,u) = 130, I(Z; < z)}’i(u)-a—(lahz,(u)g'{ho(u) + ZTB} and foo = lim fn(u). Again

n
applying the almost sure presentation theorem, this means that (13) converges weakly to the

Gaussian process [ foo(z,u)(Ws(u) + Wy(u))du in the original probability space.
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Continuity of W;(t) and W,(t)

It is sufficient to show E[W;s(t) — Ws(s)|* < K|t — s|? by the Kolmogorov-Centsov theorem.By
simple algebra,

EWs(t) - Wa()l* = E[1 3 (ri(®) )]
=1

= ZEln(t) ~ (o)l

'n,2—n

Elry(t) = r1(s)|*Elra(t) — ra(s)I? (16)

Because of the uniform boundedness of r(t), the 1st term of (16) is dominated by 5 where
K is some constant. From the simple algebra, one can show E|r(t) — r1(s)|? < K3 |t — s]. So
E\Ws3(t) —Ws(s)|* < & Ki+@a- L)K|t — 5|2 is obtained.Using Fatou’s lemma, the aimed inequality,
EWs(t) — Ws(s)|* < K|t — s|?, is obtained.

Similar to Wi(t), it is sufficient to prove E|W;(t) — W5(4)|* < K|t — s|? to show the continuity
of Wy(t).

B -l = Bl 3 (5 [ semier - 56 ) sgan)|

= E[:'l iz";(g((?)) |/ w(u)nd( )I
NNl

s 1
/.; mdM.-(u)m /o WdM,-(u)lz] (17)

The 1st term and 2nd terms are bounded by % and (1— 1)Kt — s|? respectively. From the Fatou’s
lemma, E|Wj(t) — Wy(s)|* < K|t — s|? is obtained.

X

3.2 Weak convergence of n~2H(t,z) conditional on the data

Here we show that conditional on the data {X;, A;, Z;}, niH (t,2) converges weakly to the
unconditional limiting Gaussian process of n~iH (t, z) when the fitted model is correctly specified.
It is straightforward to show the covariance function of n~iH (¢, 2) converges almost surely to that
of the limiting Gaussian process of n3H (t,z). So the finite dimensional conditional distribution
of the n™ 2 H (t,2) converges to that of he limiting Gaussian process of n~iH (t,2). To show the
weak convergence, it is sufficient to show the tightness of the each term of (6). To this end, it is
sufficient to show the moment inequalities(Bickel and Wichura(1971)). Define

111,(1)(21,z2 tt1,tg) = {M,(t2) — My(t1))} (21 < Z; < z3)

¥Weainn) = LY [ %wesd)

i=1j=1
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xd|gt{h(ut) + 27 5}
xI(z1 < Z; < 23)

\I/S‘i)l(zl,Zz it1,t) = 2n7 22/ I(Z, <Z))’z(’u)/ q(u)nd( )

om ){b(u+) + a(u+)Z} D]

xd|g* {h(u+) + 2 B}
XI(Zl <Z < 22)

‘I’Ef’)l(Zl,Zz:tl,tz) = n 22/ I(Z[ < Z)Y;(u)

&(u+) {b(u+) + &(u+)Zz}Tb]

xd[g+{h(u+) + Z,Tﬂ}a(u—+

)f'i(u+)]

xI(z1 £2Z; < 22)

\Ilgi)l(zl,zz it1,t) = n72 Z/ I(Z; < 2)Yi(u)

xd|§* {h(v) + ZI' B}

&(u+) (u+)

xI(z1 £ Z; < 29)
(18)
where §+ {h(u+)+ 2T B} and G~ {h(u+)+ ZT 3} are nondecreasing functions such that § = §*—§~.

gk )1(21, 29 : t1,to) are defined in the similar matter. By the boundedness of M;(t) and g{h(u+) +
ZT,B} on [0, 7],

(Mi(t2) — Mi()2(M; () — M;(t1))?

X I(21 <Z; < ZQ)I(zl <Z;< 22)

+ L11|t2 — t”t — t1|I(21 <Z; < 22)1(21 < Zj < 22). ‘
| (19)

{\Ifgl) (21, 2 : tl,t)}2{\1’§'1)(zl’ 22 t,tz)}2

IA

where Ly is some constant. Noting that conditional on the data, {£;} is the only random elements
of each terms of (6), for V z; < 2 < 22,1 <t < {1y,

Ein—% z \Ill(l)(zl,ZQ : tl,t)L‘,l‘2 n=% Z \P§1)(z1, 29t t,tz)[:l\2

- n2 ZZ\I’( (21,2211, t)z‘I’( Na1, 22 : £, 1) E[L2LY]
i=1j=1

Z \I/ (21,22 tl,t)\I/ (21,22 t1 t)
11<12,13<14
X )(21,22 t tz)‘I/ (Z1,22 t, tQ)E[Ellﬁzzﬁhﬁn]
3
— ZZ (Mi(tz) — Mi(£))2(M;(t) — Mj(t1))? I(z1 < Zi <2)(z1 < Zj < 29)

=1 j=1

4
n2

IA
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+ 3Lnlts —t||t—t1|—ZI(z1 < Z; < z)- ZI(zl < Z; < ), (20)
] 1

where the last inequality holds because of (19) and E[L;, £;,L;,L;;] = 0 if iy < 42,5, < jo. Since
the 1st term vanishes as n tends to co by the independent incremant property of martingale, the
moment inequality was obtained (theorem 3 and p.1666 of Bickel and Wichura (1971)). Similarly

E|n 2 (zl,z t1,t2)£1| |n 2E‘I’+l 2,22!t,t2)[4l2

< X i z (Mi(t2) — Mi(t2)) (M (t2) — M) (21 < 2 < )I(z < Z; < )

+ 3Lyt -t —ZI(zl < Z; <z) ZI(z<Z < z), (21)

t—l s—l

can be obtained. Since the 1st term converges to
E|( /: dMy(w)) T(21 < 21 < 2]}
= {1 < 2 < 2)8[( [ amta)’| )]
<~{E[1ta < 21 <) [ YiCwidioglo{ho) + 27D}

Then the 1st term of (21) converges to smoe measure whose marginal is continuous and thereby
tightness is obtained (Bickel and Wichura 1971 theorem3 and p.1666).

Since Yi(u), Zi;, &;(B), a&—+7{3(u+) + a(u+)Z}T D, §(u), #(u), ME(u) and —T—) are bounded, for
k=2,34,5,

28022 ta,t0)| < KifgH{hita+) + 27BY ~ 5+ {h(r+) + 27 B)
X I(z1 <z < 22)
< Kilh(t2) = (1)l (21 < 21 < 2), (22)

where K. and K} are some constants. Noting that conditional on the data, {£;} is the only random
elements of each terms of 6, for V z; < z < z,¢; < t < ¢,

2 1 — 2
Eln 2 (k)l(zl,zg . tl,t)£[| n_'f Z‘I’S:)l(zl, 22 :t) t2)£’|

IA

2 Z Z ‘I’(k)-(zl, 2, t)z‘I’ (21, 22:t, t2)2E[£2C2

=1 j=1
14 k
p? Z ‘I’S- )11 (zl’ 2 1, t)\I’Sh)iz (zl’ z:h, t) (23)
11 <i2,i3<i4q

X ‘I’S— 13 (zly 29 t; t2)‘1’g‘c:)i4 (Z], 22 t’ t2)E[£i1 £i2£j1 £'12]

IA

Lualtt) ~ b)) ~ b0 "2 Y- 1o < Z< ), (24)
=1
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where Ly is some constant and the last inequality holds because of (22) and E[L;, L, L}, Lj,] =0
if il ;ﬁ ’ig and jl % jg. Similarly,

l -2 Z \I,+l 21,%: t1,t2)£l|2‘n-% Zn:\Pff,)l(z,ZQ : i, t2)£1’2
1 ;

. R 21n ln
51@Mmymmﬂ;Zngzgaﬁzy@gzgny (25)

From (24) and (25), the tightness of the 2nd-5th term of (6) is obtained (theorem3 and p.1666 of
Bickel and Wichura(1971)). The moment inequalities for g (21,22 : t1,t2) are obtained in the
same matter.
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