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1 Introduction

The second order derivative of the free energy with respect to aenvironmental parameter $g$

diverges at the critical point, when an ordinary second-0rder phase transition occurs. The

correlation length of the system has asingularity at the critical point $g_{\mathrm{c}}$

$\xi\sim|g-g_{c}|^{-\nu}$ . (1)

In the renormalization group (RG) method, the critical point is given as afixed point of the
$\mathrm{R}\mathrm{G}$ . The maximal eigenvalue $b_{1}$ in the linearized RG flow near the fixed point gives the inverse

of the critical exponent
$b_{1}=1/\nu$.

Here, we do not have to solve any recursion relation or differential equation explicitly to obtain
critical exponents, one has to only diagonarize the scaling matrix at the fixed point of $\mathrm{R}\mathrm{G}$ . On
the other hand, in an infinite-0rder phase transition, the free energy has an essential singularity,
and any order derivative of the free energy does not diverge. The correlation length shows
strong divergence at the critical point with

$\xi\sim\exp A|g-g_{c}|^{-\tilde{\nu}}$ .

In this case, athermodynamic quantity scaled with apositive power of the correlation length

does not diverge at any order derivative, such as afree energy, while that with anegative power
diverges. The Kosterlitz-Thouless (KT) transition is the well-known example as an infinite-0rder
phase transitions. This transition appears in $c=1$ conformal field theories with amarginal
perturbation. In this case, the critical exponent is $\tilde{\nu}=1$ , or 1/2 universally. In this case,

the scaling matrix at the critical point vanishes, and then the renormalization group equation

becomes nonlinear differential equation. Commonly the critical exponent $\tilde{\nu}$ is obtained by

integrating the differential equation of the renormalization group explicitly. In general situation,

however, the renormalization group equation cannot be integrated explicitly. In this talk, I

present amethod of RG for $\mathrm{R}\mathrm{G}$ , which enables us to extract the universal critical exponent
$\tilde{\nu}$ from the nonlinear differential equation in an algebraic way [1]. It will be shown that the
inverse of the critical exponent $1/\tilde{\nu}$ is given by the maximal eigenvalue of the scaling matrix in

the linearized RG for $\mathrm{R}\mathrm{G}$ . In section 2, Idescribe the method of RG for RG briefly. In section 3,

Igive several non-trivial examples of quantum spin systems which differs ffom the universality

class of the KT transition.
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2Renormalization group for renormalization group
Here, Istudy asystem with coupling constants g $=$ (gl,g2,$\cdots,g_{n})$ . The running coupling
parameter $\mathrm{x}(t,$g) obeys the following RG differential equation

$\frac{d\mathrm{x}}{dt}=\mathrm{V}(\mathrm{x})$ (2)

with an initial condition $\mathrm{x}(0,\mathrm{g})=\mathrm{g}$ . The real parameter $t$ is logarithm of ascale parameter
in the RG transformation. Here Icall $t$ time. The vector field $\mathrm{V}(\mathrm{x})$ is sometimes called beta
function. Let the origin be afixed point of this $\mathrm{R}\mathrm{G}\mathrm{V}(0)=0$ . The correlation length 4in the
system is considered as the scale determined by the time when the solution $\mathrm{x}$ spends near the
fixed point. If the beta function is expanded in $x$:at the fixed point,

$V_{\dot{1}}( \mathrm{x})=\sum_{j}A_{\dot{1}}^{j}x_{j}+\sum_{jk}C_{\dot{1}}^{jk}x_{j}x_{k}+\cdots$

the maximal eigenvalue of the scaling matrix $A_{\dot{1}}^{j}$ gives the inverse of the critical exponent
$1/\nu$ . This well-known fact implies $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\cdot \mathrm{o}\mathrm{n}\mathrm{e}$ does not have to integrate the differential equation
explicitly in order to obtain the leading behavior in critical phenomena. Here, Iconsider the
case that the first derivative of the beta function vanishes at the fixed point. $\mathrm{T}\underline{\mathrm{h}\mathrm{i}}\mathrm{s}$ situation
yields infinite-0rder phase transition. For example in the KT transition which is famous as an
infinite-0rder transition, the RG equation of the KT transition is

$\frac{dx_{1}}{dt}$ $=$ $-x_{2}^{2}$

$\frac{dx_{2}}{dt}$ $=$ $-x_{1}x_{2}$ , (3)

which can be integrated explicitly. The spending time of the running coupling near the&ed
point is evaluated and the characteristic length of the system $\xi$ is obtained as afunction of the
initial data

$\xi\sim\exp A|\mathrm{g}-\mathrm{g}_{\mathrm{c}}.|^{-1/2}$.
Since the RG equation cannot be solved explicitly in general, Iapply a RG method to the RG
nonlinear differential equation. Here, we consider the RG differential equation

$\frac{dx}{d}i=\sum_{jk}C_{\dot{1}}^{jk}x_{j}x_{k}$ .

If the function $\mathrm{x}(t, \mathrm{g})$ is asolution of this equation, $e^{\tau}\mathrm{x}(e^{\tau}t,\mathrm{g})$ becomes asolution of this
equation. On the basis of this scaling relation, Idefine arenormalization group transformation
for the initial parameter. First, fix asurface $\mathrm{S}$ in the coupling constant space and consider the
problem with an initial parameter on this surface. Let us define atransformation $R_{\tau}$ : $\mathrm{S}arrow \mathrm{S}$

for an arbitrary real parameter $\tau$

$R_{\tau}(\mathrm{g})=e^{\tau}\mathrm{x}(s(\tau),\mathrm{g})$ ,
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where $s(\tau)$ is determined for agiven $\tau$ in such away that the point $e^{\tau}\mathrm{x}(s(\tau),$g) is on the surface
S. Here, Icall $R_{\tau}$ RG transformation for RG. Ishow the following properties of RG for RG.

1. Aone parameter semi group property of RG for RG
$R_{\tau_{2}}R_{\tau_{1}}=R_{\tau_{1}+\tau_{2}}$ .

2. Astraight flow line in the original RG corresponds to afixed point of this RG for $\mathrm{R}\mathrm{G}$ .

3. The maximal eigenvalue of the scaling matrix in the RG for RG gives the inverse of the
critical exponent $1/\tilde{\nu}$ .

Therefore, one can obtains the critical exponent $\tilde{\nu}$ without solving the differential equation
explicitly.

3Examples

In two parameter systems, by solving the RG equation explicitly, one can check the method of
RG for $\mathrm{R}\mathrm{G}$ , such as acritical exponent $\tilde{\nu}=1/2$ in the KT transition. Here, Ipresent three other
nontrivial examples of one dimensional quantum spin systems, aspin 1bilinear-biquadratic
model [3], aspin-0rbital model [4] and azigzag chain model [5], which shows infinite-0rder
transitions different from the KT universality class. The phase diagram of each model has a
rich structure. Aspin 1bilinear-biquadratic model is well-known as asystem with the Haldane
gap. ABethe ansatz solvable point is a critical point, where the system is described in $\mathrm{S}\mathrm{U}(3)$

Wess-ZuminO-Witten (WZW) model with $c=2$ . This system shows an infinite-0rder transition
from the Haldane gap phase to agapless phase at this critical point. The critical exponent
$\tilde{\nu}=3/5$ is obtained both in integrating the RG equation and the RG for RG method. In a one
dimensional spin-0rbital model, one non-trivial critical point is aBethe ansatz solvable point

where the system is described in the $\mathrm{S}\mathrm{U}(4)$ WZW model with $c=3$ . There are an extended
gapless phase and dimer gap phase, where the transition between two phases is infinite-0rder.
The critical exponent $\tilde{\nu}=2/3$ or 1are obtained in both ways. In the zigzag chain model, an
interesting new phenomenon is discovered recently. In the Hamiltonian of the spin 1/2 zigzag
chain model

$H= \sum_{i}(J_{1}\vec{S}_{i}\cdot\vec{S}_{\dot{l}+1}+J_{2}\vec{S}_{\dot{l}}\cdot\vec{S}_{\dot{\iota}+2})$
, (4)

there are three critical points $J_{1}=$ $4\mathrm{J}2$ , $J_{1}=4.149\cdots J_{1}$ , and $J_{1}=0$ . The transition at
$J_{1}=-4J_{2}$ corresponds to the ferromagnetic transition that is first order. The next one at
$J_{1}=4.149\cdots J_{2}$ is the transition from antiferromagnetic gapless phase to the dimer gapped
phase which is the KT type transition with $\tilde{\nu}=1$ . The transition at $J_{1}=0$ is anon-KT tyPe

infinite-0rder transition with $\tilde{\nu}=2/3$ obtained by RG for RG method. Around this point, the
system is described in $(c=1\mathrm{C}\mathrm{F}\mathrm{T})^{2}$ with five marginal perturbations. The RG equation of this
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system in the one-loop approximation is

$l \frac{dx_{1}}{dl}=x_{1}^{2}-x_{3}x_{4}-x_{4}^{2}$ ,

$l \frac{dx_{2}}{dl}=x_{2}^{2}+x_{3}x_{4}+x_{3}^{2}$ ,

$l \frac{dx_{3}}{dl}=-\frac{1}{2}x_{1}x_{3}+\frac{3}{2}x_{2}x_{3}+x_{2}x_{4}$ ,

$l \frac{dx_{4}}{dl}=x_{1}x_{3}+\frac{3}{2}x_{1}x_{4}-\frac{1}{2}x_{2}x_{4}$ ,

$l \frac{dx_{5}}{dl}=\frac{1}{2}x_{3}x_{4}$ , (5)

where the initial values of this equation are given in certain functions of $J_{1}$ and $J_{2}$ . The RG
equation indicates the instability of the critical point $J_{1}=0$ for the perturbation $J_{1}\neq 0$ . Indeed
in the antiferromagnetic region $J_{1}>0$ , the system is dimerized where the translational sym-
metry of this model is broken. In afield theory description, the corresponding chiral symmetry
breaking occurs. The numerical calculation shows the finite correlation length, dimerization
order parameter and the energy gap [2]. The gap scaling formula eq.(l) with $\tilde{\nu}=2/3$ fits the
data surprisingly $\mathrm{w}\mathrm{e}\mathrm{L}$ even for relatively large $J_{1}$ . In the ferromagnetic region $J_{1}<0$ , however,
the gap has never been observed in numerical calculation. This fact is puzzling because the
ferromagnetic perturbation seems to yield the same instability as in the antiferromagnetic one.
Now, Iunderstand this puzzle as follows [5]. This RG has afixed lne

$x_{1}=x_{2}=0$, $x_{3}+x_{4}=0$. (6)
and the eigenvalues of the scaling matrix on this fixed line all vanish. Studying the flow near
this fixed line, all perturbations is found to be marginaly relevant. The flow becomes quite
slow near this fixed line, however, finally the flow runs away from the fixed line. Since the
running coupling $\mathrm{x}(t)$ spends long time near the fixed line, the characteristic length scale of
the system becomes always an astronomical length scale. Therefore, the correlation length is
finite but quite long in an extended region. At the sme time the energy gap is finite, but very
tiny without fine-tuning of the coupling $J_{1}$ . The scaling formula eq.(l) of the correlation length
holds only for small $|J_{1}|$ . This spin model is arare example of astrong scale reduction without
fine-tuning of the coupling constant.
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