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Renormalization Group Flow of Two-Dimensional O(N) Spin Model

- K.R. Ito*
Department of Mathematics and Physics
Setsunan University, Neyagawa 572-8508
Japan

We develope a new block spin transformation and apply it to the 2D O(N) spin model.
The transformation does not yield complicated non-local terms and then the transformation
recursion formula seems to be controlable for any initial inverse tepmarature 8 > 0. The
main part of the block spin transformation of the model with large N converges to a massive
state, no matter how low the initial temperature 1/3 is, and is close to the flow of the

hierarchical model advocated by Dyson and Wilson several decades ago.

I. INTRODUCTION
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Though quark confinement in four-dimensional (4D) non-abelian lattice gauge theories and

spontaneous mass generations in two-dimensional (2D) non-abelian sigma models are widely be-

lieved [17, 18], any rigorous proof of them is still not available except for some hierarchical models

[6, 8, 10]. One difficulty in solving these problems is that field variables form some compact

manifolds and then block spin transformations break the structures of these manifolds.

Some of these difficulties can be bypassed by introducing an auxiliary field [1]. Using this trick,

we recently proved [14, 15] that the critical inverse temperature 8(N) in 2D O(N) spin model

satisfies the bound B(N) > constN log N. Extending the methods used in [14], we can appply a

new block spin transformation [5, 19] to the model, which yields, no matter how large f is, only

small controllable non-local terms.

Though we leave the rigorous control of these terms for the near future [13], we discuss the

main part of the non-linear recursion formulas in this Letter, and show [12] that

Main Theorem. Within the approzimate block spin transformations,

(1) there ezists no phase transition in the 2D O(N) spin model for all B if N is large enough.

(2) The renormalization group flow of the model is close to that of the hierarchical model proposed

by Dyson and Wilson several decades ago [8, 6, 11, 19].
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(8) Corrections to the correlation length by the conventional renormalization group method are

small.
To begin with, we scale the inverse temperature 3 by N [16] to obtain the Gibbs expectation
values of the v dimensional O(NN) spin model at the inverse temperature Ng:

__1 —H\(9) 2 _ .
<P>= 5 / P(p)e~Hr® IJ&(¢? NB)de: (1)

where A = [—(L/2)M,(L/2)M)¥ C ZV is the large square with center at the origin, where L is
a positive interger ( with L around 3 or 4 ) and M is an a.rbi_tré.rily large integer. Moreover
d(z) = (¢(z)W, -, ¢(x)™)) € RN is the vector valued spin at z € A, Zj is the partition function
defined so that < 1 >= 1, and Hj is the Hamiltonian given by
Hy=-—3 Z $(z)é(y)- (2)
_ lz—yl 1
We first substitute the identity 8(¢? — NB) = [exp[—ia(¢? — NB)]da/2n into eq.(1) with the
condition [1] that Ima; < —v. We set

2

—2—), Rea; = '—1—¢i : (3)

vN

Ima; = -(v+
where m > 0. Thus we have

Zy = M / / H ivVNpy; 49i0Y5 d¢1d¢1

X exp["— <¢,(m*-A+ 7—]\7¢)¢ >]
= dAl / / F) [152 d’p’ (4)

2iGo . _ .
F(y) = det(1+ —=9) ”’2exz>[z~/1762¢j]- (5)
vN -
where c’s are constants, A;; = —2vd;j + 0);—j),1 is the lattice laplacian and Go = (m2 - A)~l In

the dimension v < 2, we can choose m > 0 so that GO(O) = S for any 8 > 0, where

dpi
Go(.’l:) - ./ 2 +2E(1 —COsz) H p (6)

In fact m2 ~ 32e~4"P for v = 2 as B — o0, which is consistent with the renormalizaiton group

(RG) analysis, see e.g. [2]. Thus for v = 2, we can rewrite

F($) = det(1+ 220) ™ expl-Tr(Gov)’ @

for all 3, where det 3(1 + A) = det[(1 + A)e-A+A2/2]_
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If N is sufficiently large for given 3, dets(1 + 2iGo¥y/VN) ~ 1 is a small perturbation to
the Gaussian measure exp[—Tr(Go1)?] [1di and exponential cluster decay follows [14]. It is also
argued in [14] that the correlation functions decay exponetially fast if 0 < F(¢). However if 3 is
large, then Go(z,y) ~ B — (27)~'log(l + |z — y|) for |z — y| << m~! and the previous argurrient
fails.

But the previous argument may survive if the main contribution to the integral comes from
[¥| < B~%, a > 0 so that the expansion of the determinat can be justified. How can we check this ?
We decompose the determinant into the product of determinants each of which is expandable and
easy to analyze. The block spin transformation (BST) is most convenient for this purpose and each
determinant comes from the integration over the fluctuation field &n of ¢. Since the fluctuation
fields have short correlations, the resultant determinants are expandable.

We organize the paper as follows: in Section 2, we introduce the block spin transformation with
the auxiliary field ¢ and calculate the first step transformation. In section 3, we extract the main
part of the transformation and solve it. The effective intéractions V, and conclusions are given in

Section 4.

II. BLOCK SPIN TRANSFORMATION WITH THE AUXILIARY FIELD

To realize our scenario, we decompose A C Z? into bldcks Or, of size L x L, centered at
Lz € LZ?, and repeat the following steps (¢o = ¢, o = ¥):
(1) integrate by ¢,—1 keeping their block averages at ¢n,
(2) integrate by ¥n_1 keeping their block sums at .
~ To start with, we note that G(0) = 3 and set

1

W0(¢) 1/)) = 5 < ¢) G’(_)-:l(llS >—-1< J07'¢' >, (8)
1 1
Jo(z) = Vi :¢%(z) t gy = VNB — *\7—1‘V—¢2($); (9)

where : A : g, is the Wick product of A with respect to the Gaussian probability measure duo (@) of
mean zero and covariance Gg!, and < f,g >= ¥, f(z)g(z) (if f(z), 9(z) € RM, the inner product
in RV is also taken.) ;

We represent ¢(z) = ¢o(z) and ¥ (z) = o(z) in terms of block spins ¢1(z) = (Ceo)(z) and
P1(z) = (C'vo)(z), and fluctuations £y(¢) of ¢o and 1o(¢) of Yo, where z € Ay, Ap = Z2NL~"A
and ¢ € A — LA;. The operator C takes the arithmatic averages of ¢(z) over the blocks and the

operator C’ takes sums of 1(z) over the blocks, and the both subsequently scale the coordinates
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(Co)(x) = L2 ¢(Lz + ), (LO)
¢eo
(C'¥)(z) = L*(C¥)(z) = Y_¥(Lz+() (11)
¢eo

where z € A; and O is the box of size L x L center at the origin. These transformation rules mean
that we assume that the boson fields ¢, (as well as ¢2) are relevant, but the auxiliary fields )y,

(as well as ¢2(z)9n(z)) are marginal. The latter reflects the fact that the 4 field interacts almost
antiferromagnetically, see (7).

The covariance matrix Gp(z,y) of ¢p = Cép—1 (n=1,2,---) is given by

CGn1C*(z,y) =L Y Gn_i(Lz+ G, Ly+ ().
(1,(260

We introduce the transformation matrices A, and the operator Q by

An(x) y) = Gn—IC+G;1(x’ y)a (12)

&(z) ifz ¢ LZ2
(Q€)(=z) = . (13)
- Yyen(z) é(y) ifz e LZ?

Then the substitution
$n(2) = (An+1¢n+1)(z) + (Qén) () (14)
yields the decomposition
< bn, Gr'dn >=< Gn41,Grirbni1 > + < £, QTG Q6 >
where (Q&,)(z) are the zero-average fluctuations made from £(C) (z € An,¢ € Ap — LApy41). Since
(@Q*f)(=) = (=) — f(=o) (15)

with zo € LA, being the nearest point to z, Q* : RA — RA\LA1 acts as a differentiation.

Let us see what happens in the fluctuation integral:

e~ Wildr1) — /Hd.,/",(x) {/ e~ Wo(A161+Qto,A11+Q¥) Hdﬁo(x)} (16)

where A; is determined later. We see that
{--} of (16) = det =% (1 + Ko)
1 _ . 1
X exp[—-z- < ¢1,Gi'¢1>+iVNY (8- N(%)i)%]
x

xexpl-2 < Q*(p1- ), 5@ (01 ¥) >] a7)
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except for the trivial coefficient, where ¢;(z) = (A1¢1)(z), * € A and

To = [QY(-A+m?)Q]™, (18)

Ko = —%—FOQ‘%Q, (19)
2

P =TI7l+ TN-Q+¢Q. (20)

No matter how small m? is, I'g, the propagator of the fluctuations has the mass of order (m? +
L~2)1/2 [5], and then the determinant has locality even if m = 0. P~! ~ Iy also exhibits unifiorm

exponential decay, uniformly in ¢ [14]. Note that

det =% (1+ Ko) = exp[~iVN < disgTo, ¥ > — < 9, T >]n(¥),
n(y) = dets_%(l + Ko),

where Ty = QToQ* and we set (Ao B)(z,y) = A(z,y)B(z,y) and A°2 = Ao A for matrices A and

B (Hadamard product). Thus our integrand is written

exp [~ < o, By > +i < J1, % >| n(¥) | (21)
except for e~3<$1:61 '¢1> where
Byt = T+ 2[@pQ%) o (o1 1), @2
1
Ji(z) = VNB - VNTy(z,z) - 7—]'\;(%)3

(23)

SR
and : p(z)p(y) :¢, = p(z)p(y) — N(A1G1AT)(z, y) denotes the Wick product with respect to dug, ,
and we have used QToQ* = Gy — GoC* GT CGy.

This expansion must be carefully treated. We define the small field of ¥(z) by

I—\/%FoQWQI = o(1). (24)

Ty is strictly positive and bounded, so this means |Qt4Q| < N?, where § < % To integrate over v
in this way, we assume that Q*Q are small, that is, [|[ToQ*¥Q|| < O(N?), where 0 < § < 1/2. We
take NNV large (independet of 3.) If there are blocks O; where v takes large values which prohibit the
expansion of the determinant, we extract the large field regions and We estimate directly. The small

field region is a collection of blocks where the expansion of the determinant converges absolutely
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We obtain the main term Hy! of I?(;l by replacing ¢1(x)¢(y) by NGi(z,v), G1 = A1G147:

Hy' = Hy'+6Hy?, ' (25)
Hy! = T9% +2T50 G = G2 - G2, (26)
_ 2
Hy' = &[Too(: ¢1-p1:6y)]
2. 1 '
+5 Q5 - Lo)@Q*) o (1 ¢1)l, (27)

Note that Hy! is strictly positive and Hy' > O(8) on the zero-average field {Q¥} = QRA\LAL,
Moreover, Hy§Hy! = O(1/N) on K, defined below. Thus we treat HodH;' by perturbation.
Thus, we should set

Ay = Hy(C')YH{, Hy = C'Ho(C")*, (28)
so that

<P, Hy'> = <, H{' >+ < 4, QT Hy Q¥ >,
<Jo,¥> = <J, A >+ <QJ,P>.

The operator A; is almost diagonal for large 8. In fact ffo_ 1 ~ 28QTyQt is a differential
operator restricted to the blocks Or,, £ € A; and thus zero on the set of blockwise constant

functions and is large on the set of (blockwise) average-zero functions. Thus one finds [12] that

Aie9) = Taberny + oA ) (29)
641(z,5) = Olexpl-Ie/L—4l), (z€A, yeA),
LS @@Lz + ¢, Ly + €2+ 0(1)

T4
L ¢,£€0
~ 6z’y, x,y € Al (30)

H'(z,y) =

where for z € A, [z/L] € A, is the lattice point nearest from z/L.
The small-smooth field K, is the set of ¢, and ¥, which dominates the integrals by &, and V-
K1(X) is a collection of {1 (z), (A1%1)(z); £ € X C A} such that

1) ller(@)] - (NGi(z, x)) /2| < B2, (31)
@) (Bupr(z)] < (N)V2He, (32)
(3)  |8u(Arth)(z)| < B~H2N® (33)

for all z € X, where Oy is the lattice differential operator on the lattice space ™A [5],0 < & < 1/2

and 0 < c are small positive constants. The first condition means that ¢; stays around at the
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bottom of the potential, and the second means that there exist no strong domain walls in K;(X).
The sets Kn(X), n = 2,3 - are defined in the same way. The “large” and/or “irregular” field
configurations which do not obey the above, have small probabilities to exist.

Since |QTJ(z)| = O(N¥) for ¢1 € K1, we can integrate by 9 to obtain

det ~2(Q Q) expl-Fi),
Fi= 1 <QUALQVEFQTIQN >

Since 7o = QToQ™ is a strictly positive operator of short range on the set {Qz/;}, sois Tpo Gy ~
BTy > O(B). Then H;! and Q"’ﬂo‘ 1Q > O(B) are positive operators of short range, and the
contribution of 1 comes from |¢(z)| < const.ﬂfl/ 2, Since Qﬂfl(}' 1@ is bounded below by const.S3,
F1 < O(N*/B) on Ky per unit volume. Therefore the integral over 9 yields small corrections of

¢1. and : ¢? :g, only. Thus we have exp[—W(¢1,91)] as follows:

1 - _
exp[—3 < ¢1,G] Y1 > — < 1, H{ 11 >

+i < Jy, Ayhy > —Fp+ SWi) (34)

where §W; is the remainder. Comparing this with Wy, (8), we see that the approximate flow is

represented by

1 1
Jo = —\/—ﬁ:d)g(x):co - 1= —\/—]7 : ga%(x) ‘G

Ho—l =0 — Hl—-l - (CIFIOCH')—I

or simply by the flow of Bx: 81 = 8 — To(z, z).

What we found here is that the large factor $; in Hy is wiped out by the ¥ integral with
negligible reminiscent, and the coefficient of the block spin 1; does not contain $; and is order
O(1). This also means that the fluctuation fields & € RN are almost orthogonal to the block spins
¢1 € RN.

In the next section, we show that this is the case for all n. Thus, we can obtain the recursion

formulas in a closed form under physically reasonable approximations.

III. APPROXIMATE RENORMALIZATION GROUP FLOW

We introduce

Apn = Ay - Ap = Go(CH"G;! (35)
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and set on(z) = (Andn)(z), T € A so that the transformation rule (14) is written pn(z) =

©n+1(z) + zn(z), where the covariances of ¢, and z, = A, Q¢ are

Gn = AnGnAI’ (36)
T, = AnQTnQ A7 (37)

The iteration is easy if we neglect H,7!, the higher order terms coming from the determinants

and

fﬂ = i < Q+A.:—1Jm (Q+I?;—11Q)_1Q+A~I—1Jn >

which comes from the dzﬁ,,_l integral, where

1

Jn(z) = i =fp?.(x)' ‘Gn> | (38)
H, = B + A [Tao1 0 (Tamt + 26n) An-t, (39)
H, = C'H,_;(C"*, (40)
A, = Hoo(CYPHSY, (41)
An = Ay Ay (42)

In fact the property (15) of @* and the fact that G,(0) ~ B, ~ § imply that F, are marginal and
of order O(N?/f3,) per unit volume. Then the effects of the fluctuations z, coming from F, are
small. (Some of them may be absorbed by renormalizations.)

Neglecting all marginal terms of order less than O(N%), we have the approximate RG flow:

Walbns ) = 5 < b Ga'n > + < v Hy o >
—1 < Jp, Antn >, (43)
Jn($n) = Jn-1(4ndn) — VNT,,
- VRE-ST- L), (44)
0

with Hy! = 0. Since C"A, = (C")"A, = 1, and since Ay (z,y) and An(z,y) decay exponentially
fast, the approximate diagonality of A, and A, follows:

- 1
-An(z’ y) ~ 6[-1%],3;7 An(x’ y) ~ —I-;Q_n—a[fﬁ'],y (45)

where z € A, y € A, and [t/L"] € A, is the lattice point nearest from z/L". In fact the first
follows from the definition (35), see [5], and the second follows as a generalization of (29) which
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holds for all A, £=1,---,n whenever 8, >> L? [12]. (This notation for Ay (z,y) is different from
that in [5] where z stands for /L™ € L™™A.)
Since QI',Q* = G, — GnC*'G’;}_lC'Gn, we see that J,, is given by

vN (Gn(:& z) - 3'2}75.9:—)) = —\/I—J—V— : 05(2) : Gn- (46)

Note that Go(z) ~ 8 — (2m)"llog(l + |z|) for |z| << m~! and Go(z) ~ c1exp[—com|z|] for
|z| > m~! (c; = const > 0 ). Then

1. Gu(z,y) ~ B— (21) tlog L*(1 + |z — y|), if L™|z — y| < m™~?,

9. Gn(z,y) ~ L~2m=25,,, if L'm > 1.

and we have 8, = Gn(z,z) ~ 8 — (n/27)log L for mL™ << 1 and By ~ m~2L~2" for L™m > 1.

IV. EFFECTIVE POTENTIAL AND CONCLUSION

To see the flow of the effective interactions, we substitute (45) into G, and 7,,. Then the second

factor of H!, in (39) is
A (T2 + 2G5 0 Tp-1]An—1 ~ al + 26,QTn1Q7, (47)

where a = O(1) > 0. The effect of H,;, is small since 2 is irrelevant. In fact see (30). Then we

again have

Hr:l ~ 6:1:,1/’ T,y € An (48)

< Jn, Antn > ~ —71—ﬁ < %G Yn>. (49)

Thus, the 1, integral yields the double-well potential approximately of the form
1
Vo~ 5(85 = NBn)* (50)

This is very close to the flow of the hierarchical model advocated by Dyson and Wilson (with large
N) [3, 6, 11, 19, 20], rather than to that by Gallavotti [4, 7]. We note that this fact comes from
the approximate diagonality of A, or equivalently from the fact that the fluctuation fields &, are
almost orthogonal to the blockspins ¢,41. In ref. [10], this is claimed to be the origin of the mass
generation in the model.

Since Vi, ~ Brn(|én] = VNBR)?, ||én| — vVNBn| must be less than B7'/? and the constraint (31)

follows. One corollary of our results is that the main contribution of the v integral comes from
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1| < const.3~1/2 since |1,| < const.f7 /2 and ¥(z) ~ 3= L~2"¢n([z/L")). Thus, we expect that

1 is small.

the determinant is effectively expandable and correction to the correlation length § = m™
It will be possible to make these arguments rigorous by taking the effects of the large fields and

the non-local terms into considerations. This will be reported elsewhere [13].
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