Coefficient Estimates for Certain Classes of Analytic Functions

Shigeyoshi Owa and Junichi Nishiwaki

Abstract

For some real $\alpha(\alpha > 1)$, two subclasses $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$ of analytic fuctions f(z) with f(0) = 0 and f'(0) = 1 in U are introduced. The object of the present paper is to discuss the coefficient estimates for functions f(z) belonging to the classes $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$.

1 Introduction

Let \mathcal{A} denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Let $\mathcal{M}(\alpha)$ be the subclass of \mathcal{A} consisting of functions f(z) which satisfy

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < \alpha \qquad (z \in \mathbb{U})$$

for some $\alpha(\alpha > 1)$. And let $\mathcal{N}(\alpha)$ be the subclass of \mathcal{A} consisting of functions f(z) which satisfy

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} < \alpha \qquad (z \in \mathbb{U})$$

for some $\alpha(\alpha > 1)$. Then, we see that $f(z) \in \mathcal{N}(\alpha)$ if and only if $zf'(z) \in \mathcal{M}(\alpha)$.

Remark 1.1. For $1 < \alpha \le \frac{4}{3}$, the classes $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$ were introduced by Uralegaddi, Ganigi and Sarangi [2].

We easily see that

Example 1.1. (i) $f(z) = z(1-z)^{2(\alpha-1)} \in \mathcal{M}(\alpha)$.

(ii)
$$g(z) = \frac{1}{2\alpha - 1} \{1 - (1 - z)^{2\alpha - 1}\} \in \mathcal{N}(\alpha).$$

2 Coefficient estimates for functions

We try to derive sufficient conditions for f(z) which are given by using coefficient inequalities.

Theorem 2.1. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} \{(n-k) + |n+k-2\alpha|\} |a_n| \leq 2(\alpha-1)$$

for some $k (0 \le k \le 1)$ and some $\alpha (\alpha > 1)$, then $f(z) \in \mathcal{M}(\alpha)$.

Proof. Let us suppose that

$$\sum_{n=2}^{\infty} \left\{ (n-k) + |n+k-2\alpha| \right\} |a_n| \leq 2(\alpha-1)$$
 (1)

for $f(z) \in \mathcal{A}$.

It sufficies to show that

$$\left|\frac{\frac{zf'(z)}{f(z)}-k}{\frac{zf'(z)}{f(z)}-(2\alpha-k)}\right|<1 \qquad (z\in\mathbb{U}).$$

We note that

$$\left| \frac{\frac{zf'(z)}{f(z)} - k}{\frac{zf'(z)}{f(z)} - (2\alpha - k)} \right| = \left| \frac{1 - k + \sum_{n=2}^{\infty} (n - k)a_n z^{n-1}}{1 + k - 2\alpha + \sum_{n=2}^{\infty} (n + k - 2\alpha)a_n z^{n-1}} \right|$$

$$\leq \frac{1 - k + \sum_{n=2}^{\infty} (n - k)|a_n||z|^{n-1}}{2\alpha - 1 - k - \sum_{n=2}^{\infty} |n + k - 2\alpha||a_n||}$$

$$< \frac{1 - k + \sum_{n=2}^{\infty} (n - k)|a_n|}{2\alpha - 1 - k - \sum_{n=2}^{\infty} |n + k - 2\alpha||a_n||}.$$

The last expression is bounded above by 1 if

$$1 - k + \sum_{n=2}^{\infty} (n-k)|a_n| \leq 2\alpha - 1 - k - \sum_{n=2}^{\infty} |n+k-2\alpha| |a_n|$$

which is equivalent to our condition

$$\sum_{n=2}^{\infty} \{(n-k) + |n+k-2\alpha|\} |a_n| \leq 2(\alpha-1)$$

of the theorem. This completes the proof of the theorem.

If we take k=1 and some α $\left(1<\alpha\leq \frac{3}{2}\right)$ in Theorem 2.1, then we have

Corollary 2.1. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} (n - \alpha)|a_n| \leq \alpha - 1$$

for some α $\left(1 < \alpha \leq \frac{3}{2}\right)$, then $f(z) \in \mathcal{M}(\alpha)$.

Example 2.1. The function f(z) given by

$$f(z) = z + \sum_{n=2}^{\infty} \frac{4(\alpha - 1)}{n(n+1)(n-k+|n+k-2\alpha|)} z^n$$

belongs to the class $\mathcal{M}(\alpha)$.

For the class $\mathcal{N}(\alpha)$, we have

Theorem 2.2. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n(n-k+1+|n+k-2\alpha|)|a_n| \leq 2(\alpha-1)$$
 (2)

for some $k (0 \le k \le 1)$ and some $\alpha (\alpha > 1)$, then f(z) belongs to the class $\mathcal{N}(\alpha)$.

Corollary 2.2. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n(n-\alpha)|a_n| \leq \alpha - 1$$

for some α $\left(1 < \alpha \leq \frac{3}{2}\right)$, then $f(z) \in \mathcal{N}(\alpha)$.

Example 2.2. The function

$$f(z) = z + \sum_{n=2}^{\infty} \frac{4(\alpha - 1)}{n^2(n+1)(n-k+|n+k-2\alpha|)} z^n$$

belongs to the class $\mathcal{N}(\alpha)$.

Further, denoting by $S^*(\alpha)$ and $K(\alpha)$ the subclasses of A consisting of all starlike functions of order α , and of all convex functions of order α , respectively, we derive

Theorem 2.3. If $f(z) \in A$ satisfies the coefficient inequality (1) for some α $\left(1 < \alpha \le \frac{k+2}{2} \le then \ f(z) \in S^*\left(\frac{4-3\alpha}{3-2\alpha}\right)$. If $f(z) \in A$ satisfies the coefficient inequality (2) for some α $\left(1 < \alpha \le \frac{k-2}{2} \le \frac{3}{2}\right)$ then $f(z) \in \mathcal{K}\left(\frac{4-3\alpha}{3-2\alpha}\right)$.

Proof. For some α $\left(1 < \alpha \le \frac{k+2}{2} \le \frac{3}{2}\right)$, we see that the coefficient inequality (1) implies that

$$\sum_{n=2}^{\infty} (n-\alpha)|a_n| \leq \alpha - 1.$$

It is well-known that if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} \frac{n-\beta}{1-\beta} |a_n| \le 1$$

for some β ($0 \le \beta < 1$), then $f(z) \in \mathcal{S}^*(\beta)$ by Silverman [1]. Therefore, we have to find the smallest positive β such that

$$\sum_{n=2}^{\infty} \frac{n-\beta}{1-\beta} |a_n| \leq \sum_{n=2}^{\infty} \frac{n-\alpha}{\alpha-1} |a_n| \leq 1.$$

This gives that

$$\beta \le \frac{(2-\alpha)n-\alpha}{n-2\alpha+1} \tag{3}$$

for all $n = 2, 3, 4, \cdots$. Noting that the right hand side of the inequality (3) is increasing for n, we conclude that

$$\beta \leq \frac{4-3\alpha}{3-2\alpha},$$

which proves that $f(z) \in \mathcal{S}^*\left(\frac{4-3\alpha}{3-2\alpha}\right)$. Similarly, we can show that if $f(z) \in \mathcal{A}$ satisfies (2), then $f(z) \in \mathcal{K}\left(\frac{4-3\alpha}{3-2\alpha}\right)$.

Our result for the coefficient estimates of functions $f(z) \in \mathcal{M}(\alpha)$ is contained in

Theorem 2.4. If $f(z) \in \mathcal{M}(\alpha)$, then

$$|a_n| \le \frac{\prod_{j=2}^n (j+2\alpha-4)}{(n-1)!}$$
 $(n \ge 2).$ (4)

Proof. Let us define the function p(z) by

$$p(z) = \frac{\alpha - \frac{zf'(z)}{f(z)}}{\alpha - 1}$$

for $f(z) \in \mathcal{M}(\alpha)$. Then p(z) is aslytic in \mathbb{U} , p(0) = 1 and Re(p(z)) > 0 ($z \in \mathbb{U}$). Therefore, if we write

$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n,$$

then $|p_n| \leq 2 (n \geq 1)$. Since

$$\alpha f(z) - z f'(z) = (\alpha - 1)p(z)f(z),$$

we obtain that

$$(1-n)a_n = (\alpha-1)(p_{n-1}+a_2p_{n-2}+a_3p_{n-3}+\cdots+a_{n-1}p_1).$$

If n=2, then $-a_2=(\alpha-1)p_1$ implies that

$$|a_2| = (\alpha - 1)|p_1| \le 2\alpha - 2.$$

Thus the coefficient estimate (4) holds true for n = 2. Next, suppose that the coefficient estimate

$$|a_k| \le \frac{\prod_{j=2}^k (j+2\alpha-4)}{(k-1)!}$$

is true for all $k = 2, 3, 4, \dots, n$. Then we have that

$$-na_{n+1} = (\alpha - 1)(p_n + a_2p_{n-1} + a_3p_{n-2} + \cdots + a_np_1),$$

so that

$$n|a_{n+1}| \leq (2\alpha - 2)(1 + |a_2| + |a_3| + \dots + |a_n|)$$

$$\leq (2\alpha - 2)\left(1 + (2\alpha - 2) + \frac{(2\alpha - 2)(2\alpha - 1)}{2!} + \dots + \frac{\prod_{j=2}^{n}(j+2\alpha - 4)}{(n-1)!}\right)$$

$$= (2\alpha - 2)\left(\frac{(2\alpha - 1)2\alpha(2\alpha + 1)\cdots(2\alpha + n - 4)}{(n-2)!} + \frac{(2\alpha - 2)(2\alpha - 1)2\alpha\cdots(2\alpha + n - 4)}{(n-1)!}\right)$$

$$= \frac{\prod_{j=2}^{n+1}(j+2\alpha - 4)}{(n-1)!}.$$

Thus, the coefficient estimate (4) holds true for the case of k = n + 1. Applying the mathematical induction for the coefficient estimate (4), we complete the proof of the theorem.

For the functions f(z) belonging to the class $\mathcal{N}(\alpha)$, we also have

Theorem 2.5. If $f(z) \in \mathcal{N}(\alpha)$, then

$$|a_n| \leq \frac{\prod_{j=2}^n (j+2\alpha-4)}{n!} \qquad (n \geq 2).$$

Remark 2.1. We can not show that Theorem 2.4 and Theorem 2.5 are sharp. If we prove that Theorem 2.4 is sharp, then the sharpness of Theorem 2.5 follows.

References

- [1] H.Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109 116.
- [2] B.A.Uralegaddi, M.D.Ganigi and S.M.Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25(1994), 225 230.

Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan