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Coefficient Estimates for Certain Classes
of Analytic Functions

Shigeyoshi Owa and Junichi Nishiwaki

Abstract

For some real a(a > 1), two subclasses M(a) and N(a) of analytic fuctions f(z) with
f(0) =0 and f'(0) = 1 in U are introduced. The object of the present paper is to discuss
the coefficient estimates for functions f(z) belonging to the classes M(a) and N(a).

1 Introduction

Let A denote the class of functions f(z) of the form

f(z) = z+ianz”

n=2

which are analytic in the open unit disk U = {z € C : |z| < 1}. Let M(a) be the subclass
of A consisting of functions f(z) which satisfy

Re{%%z}<a (z € U)

for some a(a > 1). And let N'(a) be the subclass of A consisting of functions f(z) which
satisfy :

Re{1+f%iz))}<a (z€U)

for some a(a > 1). Then, we see that f(2) € NM(a) if and only if zf'(z) € M(a).

Remark 1.1. Forl1 < a < g-, the classes M(a) and N (a) were introduced by Uralegaddsi,
Ganigi and Sarangi [2]. ’

We easily see that

Example 1.1. (i) f(2) = 2z(1 = 2)2-) € M(a).

(i) 9(z) = 5omg {1~ (1= 2} € N(a).
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2 Coefficient estimates for functions

We try to derive sufficient conditions for f(z) which are given by using coefficient
inequalities. ,

Theorem 2.1. If f(z) € A satisfies

> {(n—k)+In+k—2al}|e] £ 2(a-1)

n=2

for some k(0 £ k £ 1) and some a(a > 1), then f(z) € M(a).

Proof. Let us suppose that

Y {(n-F)+In+k-2al}|an] £ 2(e~1) (1)

n=2

for f(2) € A.
It sufficies to show that

z2f'(z) _
f(2) k

5%?- - (2a-k)

<1 (2 €U).

We note that

f(s)
o) - | e

—u-)-'fzz; - (2a - k) 14+k-2a+ Y 2,(n+k-2a)a,2"1

1 -k + 3 p(n— ka2
= 20-1-k-3Y 2, |n+k—2a||a||z|"?

e 1kt T2 (=Bl
20—1—k—=Y2,|n+k—2a||a,|

The last expression is bounded above by 1 if
1 -k + i(n—k)la,.l < 2a- 1-—k—§:|n+k-2a||a,.|
n=2 n=2
which is equivalent to our condition
 {(n— k) + In+ & — 2af}an| £ 2a—1)
n=2

of the theorem. This completes the proof of the theorem.
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If we take £ =1 and some « (1 <af g) in Theorem 2.1, then we have

Corollary 2.1. If f(z) € A satisfies

oo

S (n - as] £ -1

n=2

for some a (1 <aft -g—), then f(z) € M(a).

Example 2.1. The function f(2) given by

_ g 4((!—1) n
fz) = z + ;n(n+1)(n—k+|n+k—2al)z

belongs to the class M(a).
For the class N'(a), we have

Theorem 2.2. If f(z) € A satisfies

in(n—k+1+|n+k—2a|)|an[ < 2(a-1) (2)

n=2

for some k(0 £ k £ 1) and some a (a > 1), then f(z) belongs to the class N ().

Corollary 2.2. If f(z) € A satisfies

[ o]

> n(n — o)jan| S a~1

n=2

for some a (1 <af g—), then f(z) € N(a).

Example 2.2. The function

_ et 4(&—1) n
16 =2+ ) o -k s k= 2a)

n=2
belongs to the class N («).

Further, denoting by S$*(a) and K(a) the subclasses of A consisting of all starlike
functions of order «, and of all convex functions of order a, respectively, we derive
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k+2

Theorem 2.3.  If f(2) € A satisfies the coefficient inequality (1) for some a (1 <af

A

2
then f(z) € &* (; : ZZ). If f(z) € A satisfies the coefficient inequality (2) for some
k-2 _3 4-3a
< —=< -

a (1 <ag——% 2) then f(z) G’C(3—2a)'

k+2 3 . .
Proof. For some a (1< a < 5 < 3 )» e see that the coefficient inequality (1)
implies that

Y (n-a)len| £ a-1.

n=2
It is well-known that if f(2) € A satisfies

<
; 1-—- ﬁlaﬂl = 1

for some 3 (0 £ B < 1), then f(z) € $*(8) by Silverman [1]. Therefore, we have to find
the smallest positive 8 such that

= n-p \n—a
< <
l_ﬁlanl = Za_lla"l s L

n=2 n=2
This gives that ( )

2—-a)n—a

L -

b2 n—20+1 (3)

for all n = 2,3,4,---. .Noting that the right hand side of the inequality (3) is increasing
for n, we conclude that i3
- 3a

< ,
= 3-2a

B
. 4 - 3a . . . .
which proves that f(z) € S* 3 9a )" Similarly, we can show that if f(2) € A satisfies

(2), then f(z) € K (4 - 3").

3—-2a
O
Our result for the coefficient estimates of functions f(z) € M(a) is contained in
Theorem 2.4. If f(z) € M(a), then
n?,(G+2a-4
o] 202D (n22) (@

(n=1)!
Proof. Let us define the function p(z) by

p(2) =
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for f(z) € M(a). Then p(2) is aslytic in U, p(0) = 1 and Re(p(z)) > 0(z € U). Therefore,

if we write

p(z) =1+ anzna

n=1

then |p,| £ 2(n 2 1). Since
of(2) = #f'(2) = (@ = Dp()f(2),
we obtain that
(1=n)an = (@ =1)(Pa-1 +a2Pn—2 + a3Pn-3 + -+ + Gn1P1).
If n =2, then —a; = (o — 1)p; implies that
laz| = (@ —1)|ps| € 20 - 2.

Thus the coefficient estimate (4) holds true for n = 2. Next, suppose that the coefficient

estimate .

4 (k-1)!
is true for all k = 2,3,4, --- ,n. Then we have that

lai| £

—nany1 = (= 1)(pn + a2Pn—1 + a3Pn—2 + -+ + anp1),

so that
nlans1] € (20— 2)(1 + |ag| + |as] + - -+ +|an])

e =
= (2a-1)20(2a+1)---(2a+n-4) (2o-2)Qa—1)2a---(2¢+n—4)
= (2a-2) ( (m—2)! + D) )
I (j+2a-4)
(n—1)!

Thus, the coefficient estimate (4) holds true for the case of ¥ = n + 1. Applying the
mathematical induction for the coefficient estimate (4), we complete the proof of the
theorem.

a

For the functions f(z) belonging to the class N'(«a), we also have

Theorem 2.5. If f(z) € N(a), then

I?_,(j + 20 — 4)

Ia’ﬂl é n|

Remark 2.1. We can not show that Theorem 2.4 and Theorem 2.5 are sharp. If we
prove that Theorem 2.4 is sharp, then the sharpness of Theorem 2.5 follows.
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