ON A SUBCLASS OF ALPHA-CONVEX FUNCTIONS

NORIHIRO TAKAHASHI [髙橋典宏] (群馬大学)

ABSTRACT. Mocanu [4] introduced and studied the class of α -convex functions which is a subclass of analytic functions in the open unit disc. The properties of this class have been obtained. In this paper, we consider the order of strongly starlikeness for a subclass of α -convex functions.

1. Introduction.

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. A function $f(z) \in \mathcal{A}$ is said to be starlike of order α in \mathbb{U} if and only if it satisfies the condition

$$\operatorname{Re}\frac{zf'(z)}{f(z)} > \alpha \quad z \in \mathbb{U} \tag{1}$$

where $0 \le \alpha < 1$. We denote by $\mathcal{S}^*(\alpha)$ the subclass of \mathcal{A} consisting of all starlike functions of order α in \mathbb{U} . A function $f(z) \in \mathcal{A}$ is said to be strongly starlike of order α in \mathbb{U} if and only if it satisfies the condition

$$\left|\arg \frac{zf'(z)}{f(z)}\right| < \frac{\pi}{2}\alpha \quad z \in \mathbb{U}$$
 (2)

where $0 < \alpha \le 1$. We denote by $\mathcal{SS}^*(\alpha)$ the subclass of \mathcal{A} consisting of all strongly starlike functions of order α in \mathbb{U} . A function $f(z) \in \mathcal{A}$ is said to be starlike in \mathbb{U} when $\alpha = 0$ for (1) and $\alpha = 1$ for (2). We denote by \mathcal{S}^* the subclass of \mathcal{A} consisting of all starlike functions in \mathbb{U} . A function $f(z) \in \mathcal{A}$ is said to be convex in \mathbb{U} if and only if it satisfies the condition

$$1 + \operatorname{Re} \frac{zf''(z)}{f'(z)} > 0 \quad z \in \mathbb{U}. \tag{3}$$

We denote by C the subclass of A consisting of all convex functions in U. These conditions (1), (2) and (3) are also sufficient conditions for univalence of $f(z) \in A$. (See, e.g., [1].)

2000 Mathematics Subject Classification: Primary 30C45.

Mocanu [4] defined a subclass of \mathcal{A} as the following. A function $f(z) \in \mathcal{A}$ is said to be α -convex in \mathbb{U} if and only if it satisfies the condition $f(z)f'(z)/z \neq 0$ and

$$\operatorname{Re}\left\{ (1-\alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) \right\} > 0 \quad z \in \mathbb{U}$$
 (4)

where α is a real number. If the condition (4) is satisfied, then the condition $f(z)f'(z)/z \neq 0$ is always true, so this condition is not needed. We denote by $\mathcal{M}(\alpha)$ the subclass of \mathcal{A} consisting of all α -convex functions in \mathbb{U} .

Miller, Mocanu and Reade [2] obtained the following result.

Theorem A. If $f(z) \in \mathcal{M}(\alpha)$, then $f(z) \in \mathcal{S}^*$. Moreover, if $\alpha \geq 1$, then $f(z) \in \mathcal{C}$.

Furthermore, they [3] obtained the following result.

Theorem B. If $f(z) \in \mathcal{M}(\alpha)$, $\alpha \geq 0$, then $f(z) \in \mathcal{S}^*(\beta(\alpha))$, where

$$\beta(\alpha) = \begin{cases} 0, & 0 \le \alpha < 1, \\ \frac{\Gamma\left(\frac{1}{2} + \frac{1}{\alpha}\right)}{\sqrt{\pi} \Gamma\left(1 + \frac{1}{\alpha}\right)}, & 1 \le \alpha, \end{cases}$$

and this result is sharp.

Mocanu [5] obtained the following result.

Theorem C. If $f(z) \in A$ satisfies the condition,

$$\left| \arg \left\{ (1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right\} \right| < \frac{\pi}{2} \gamma \quad z \in \mathbb{U},$$

where

$$\tan\frac{\pi}{2}\gamma = \tan\frac{\pi}{2}\beta + \frac{\alpha\beta}{(1-\beta)\cos\frac{\pi}{2}\beta} \left(\frac{1-\beta}{1+\beta}\right)^{\frac{1+\beta}{2}}$$

and $0 < \beta < 1$, then $f(z) \in SS^*(\beta)$.

In this paper, we investigate conditions on α , β and γ for which

$$\left|(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) - \gamma\right| < \gamma \quad z \in \mathbb{U}$$

implies $f(z) \in \mathcal{SS}^*(\beta)$ holds.

ON A SUBCLASS OF ALPHA-CONVEX FUNCTIONS

We make use of the following lemma due to Nunokawa [6].

Lemma. Let p(z) be analytic, $p(z) \neq 0$ in \mathbb{U} and p(0) = 1. Suppose that there exists a point $z_0 \in E$ such that

$$|\arg p(z)| < \frac{\pi \alpha}{2}$$
 for $|z| < |z_0|$

and

$$|\arg p(z_0)| = \frac{\pi\alpha}{2}$$

where $\alpha > 0$. Then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = ik\alpha$$

where

$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right) \ge 1$$
 when $\arg p(z_0) = \frac{\pi \alpha}{2}$

and

$$k \le -\frac{1}{2}\left(a + \frac{1}{a}\right) \le -1$$
 when $\arg p(z_0) = -\frac{\pi\alpha}{2}$

where

$$p(z_0)^{1/\alpha} = \pm ia$$
 and $a > 0$.

2. MAIN RESULT.

Theorem. If $f(z) \in A$ satisfies the condition,

$$\left| (1 - \alpha) \frac{z f'(z)}{f(z)} + \alpha \left(1 + \frac{z f''(z)}{f'(z)} \right) - \gamma \right| < \gamma \quad z \in \mathbb{U}, \tag{5}$$

where

$$\gamma = \frac{\alpha\beta(1+\sin\frac{\pi}{2}\beta)}{\cos\frac{\pi}{\alpha}\beta},$$

 $\alpha > 0$ and $0 < \beta < 1$, then $f(z) \in SS^*(\beta)$.

Proof. Let us put

$$p(z) = \frac{zf'(z)}{f(z)}. (6)$$

From the condition (5), we have $f(z) \in \mathcal{S}^*$, so $p(z) \neq 0$ in \mathbb{U} . By logarithmic differentiation of (6), we have

$$1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} = \frac{zp'(z)}{p(z)}$$

or

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) = p(z) + \alpha\frac{zp'(z)}{p(z)}.$$

If there exist a point $z_0 \in \mathbb{U}$ such that

$$|\arg p(z)| < \frac{\pi}{2}\beta$$
 for $|z| < |z_0|$

and

$$|\arg p(z_0)| = \frac{\pi}{2}\beta,$$

then from Lemma, we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = i\beta k$$

where

$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right) \ge 1$$
 when $\arg p(z_0) = \frac{\pi \beta}{2}$

and

$$k \le -\frac{1}{2}\left(a + \frac{1}{a}\right) \le -1$$
 when $\arg p(z_0) = -\frac{\pi\beta}{2}$

where

$$p(z_0)^{1/\beta} = \pm ia$$
 and $a > 0$.

At first, let us suppose $p(z_0)^{1/\beta} = ia$, then we have

$$p(z_0) + \alpha \frac{z_0 p'(z_0)}{p(z_0)} = a^{\beta} e^{i\frac{\pi}{2}\beta} + i\alpha\beta k$$

where

$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right) \ge 1$$

From this, we have

$$\operatorname{Re}\left(p(z_0) + \alpha \frac{z_0 p'(z_0)}{p(z_0)}\right)^{-1} = \frac{a^{\beta} \cos \frac{\pi}{2} \beta}{a^{2\beta} \cos^2 \frac{\pi}{2} \beta + (a^{\beta} \sin \frac{\pi}{2} \beta + \alpha \beta k)^2}$$

$$\leq \frac{a^{\beta} \cos \frac{\pi}{2} \beta}{a^{2\beta} \cos^2 \frac{\pi}{2} \beta + (a^{\beta} \sin \frac{\pi}{2} \beta + \alpha \beta)^2}$$

$$= \frac{a^{\beta} \cos \frac{\pi}{2} \beta}{a^{2\beta} + 2a^{\beta} \alpha \beta \sin \frac{\pi}{2} \beta + \alpha^2 \beta^2}.$$

Let us put

$$g(t) = \frac{t \cos \frac{\pi}{2} \beta}{t^2 + 2t\alpha\beta \sin \frac{\pi}{2}\beta + \alpha^2\beta^2}$$

where t > 0. Then by easy calculation, we have

$$g'(t) = \frac{(\alpha^2 \beta^2 - t^2) \cos \frac{\pi}{2} \beta}{(t^2 + 2t\alpha\beta \sin \frac{\pi}{2} \beta + \alpha^2 \beta^2)^2}$$

ON A SUBCLASS OF ALPHA-CONVEX FUNCTIONS

and we see that g(t) takes the maximum value at $t = \alpha \beta$. From this, we have

$$\operatorname{Re}\left(p(z_0) + \alpha \frac{z_0 p'(z_0)}{p(z_0)}\right)^{-1} \le \frac{\alpha \beta \cos \frac{\pi}{2} \beta}{\alpha^2 \beta^2 + 2\alpha^2 \beta^2 \sin \frac{\pi}{2} \beta + \alpha^2 \beta^2}$$
$$= \frac{\cos \frac{\pi}{2} \beta}{2\alpha \beta (1 + \sin \frac{\pi}{2} \beta)}. \tag{7}$$

Since $|w-h| < h \Leftrightarrow \text{Re}(1/w) > 1/2h$, this contradicts the assumption of this theorem. For the case $p(z_0)^{1/\beta} = -ia$, applying the same method as the above, we have the condition (7). Therefore we complete the proof.

REFERENCES

- [1] A. W. Goodman, "Univalent Functions," Vol. I, Mariner Publishing Company, Tampa, Florida, 1983.
- [2] S. S. Miller, P. T. Mocanu and M. O. Reade, All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc., 37 (2) (1973), 553-554.
- [3] S. S. Miller, P. T. Mocanu and M. O. Reade, The order of starlikeness of alpha-convex functions, Mathematica (Cluj) 20 (43) (1978), 25-30.
- [4] P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (34) (1969), 127-133.
- [5] P. T. Mocanu, Alpha-convex integral operator and strongly starlike functions, Studia Univ. Babes-Bolyai Mathematica, 34, 2, (1989), 18-24.
- [6] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan. Acad., 69, Ser. A (1993), 234-237.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GUNMA, ARAMAKI MAEBASHI GUNMA 371-8510,