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1. INTRODUCTION

Throughout this article, we let D be the open unit disk and $\partial \mathrm{D}$ its

boundary. Let dm denote the normalized Lebesgue measure on $\partial \mathrm{D}$ . We

denote the classical Hardy space by $H^{p}$ for $0<p\leq\infty$ . Let $S(\mathrm{D})$ be the set

of all analytic self-maps of D. Every $\varphi\in S(\mathrm{D})$ induces through composition

alinear composition operator $C_{\varphi}$ . Thus $C_{\varphi}$ is defined by

$C_{\varphi}f=f$ o $\varphi$

for analytic function f on D. By the Littlewood’s subordination theorem,

$C_{\varphi}$ is abounded operator on $H^{2}$ .

Many authors have investigated some properties of composition oper-

ators and tried to characterize such properties of the operators $C_{\varphi}$ using

functional analytic properties of its symbol $\varphi$ . Here we will give arepor
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on the problem when the difference of two composition operators would be

compact on $H^{2}$ . For ageneral information on composition operators, see

[4],[15] and [17: Chaper 10].

2. THE DEVELOPMENT

The work originates from the following result of E. Berkson([l]).

[E. Berkson(1981)] Let $\varphi\in S(\mathrm{D})$ such that $m(E(\varphi))>0$ , where $E(\varphi)=$

$\{|\varphi|=1\}$ . If $||C_{\varphi}-C_{\psi}||^{2}<m(E(\varphi))/2$ for $\psi$ $\in S(\mathrm{D})$ , then $\varphi=\psi$ .

This result makes atopological statement about the space $C(H^{2})$ of com-

position operators on $H^{2}$ , endowed with the operator norm metric. Indeed

this says that the identity operator is isolated in $C(H^{2})$ .

A. Siskakis (1986) asked if every non-compact composition operator had

to be isolated in the space $C(H^{2})$ . Then it was begun to explore the ground

that lies between the compactness and the isolation in $C(H^{2})$ , and the ques-

tion above had anegative answer later ([16]).

$\mathrm{B}.\mathrm{D}$ . MacCluer ([9]) gave asufficient condition on $\varphi$ for the component

containing the composition operator $C_{\varphi}$ to be the singleton $\{C_{\varphi}\}$ .

An analytic map $\varphi\in S(\mathrm{D})$ is said to have an angular derivative at a

point $\zeta\in\partial \mathrm{D}$ if there exists $w\in\partial \mathrm{D}$ so that the non-tangential limit

$\lim\underline{\varphi(z)-w}$

$zarrow\zeta$ $z-\zeta$

107



[B.D. MacCluer (1989)] If $\varphi$ has afinite angular derivative on aset of

positive measure, then $C_{\varphi}$ is isolated in $C(H^{2})$ .

J.H. Shapiro and C. Sundberg ([16]) explored these territory and gave a

number of conjectures:

1. Characterize the components of $C(H^{2})$ .

2. Which composition operators are isolated in $C(H^{2})^{q}$

3. Which composition differences are compact on $H^{2q}$

They supposed that two composition operators may belong to the same

component of $C(H^{2})$ if and only if they differ by acompact. They offered

some sort of joint Nevanlinna counting functions figuring into the problem.

They gave the following result to the isolation problem.

[J.H. Shapiro and C. Sundberg (1990)] If $\varphi\in S(\mathrm{D})$ satisfies

$\int\log(1-|\varphi|)dm>-\infty$

then $C_{\varphi}$ is not isolated in $C(H^{2})$ .

It is well known that the condition above characterizes the non- extreme

point of the unit ball of $H^{\infty}([5])$ . So by Berkson’s result and this we can

reduce that if $\varphi$ is an exposed point of the unit ball of $H^{\infty}$ , then $C_{\varphi}$ is
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isolated in $C(H^{2})$ and that if $C_{\varphi}$ is isolated in $C(H^{2})$ , $\varphi$ is an extreme point

of the unit ball of $H^{\infty}$ .

Moreover this hinges afollowing sufficient condition for the difference to

be compact.

[J.H. Shapiro and C. Sundberg (1990)] If, for $\varphi$ , $\psi$ $\in S(\mathrm{D})$ ,

$\int\frac{|\varphi-\psi|}{(\min\{1-|\varphi|,1-|\psi|\})^{3}}dm<\infty$ ,

then $C_{\varphi}-C_{\psi}$ is compact on $H^{2}$ .

H. Hunziker, H. Jarchow and V. Mascioni([7]) defined the following met-

$\mathrm{r}\mathrm{i}\mathrm{c}$ in $C(H^{2})$ and called the topology induced by this the Hilbert-Schmidt

topology: for $\varphi$ , $\psi\in S(\mathrm{D})$ ,

$d( \varphi, \psi)=(\frac{1}{2\pi}\int_{0}^{2\pi}|\frac{\varphi-\psi}{1-\overline{\varphi}\psi}|^{2}\frac{1-|\varphi|^{2}|\psi|^{2}}{(1-|\varphi|^{2})(1-|\psi|^{2})}d\theta)^{1/2}$

And they gave the result.

[H. Hunziker, H. Jarchow and V. Mascioni(1990)] For $\varphi\in S(\mathrm{D})$ , the

following are equivalent:

(i) $\varphi$ is an extreme point of the unit ball of $H^{\infty}$ ;

(ii) $\varphi$ is isolated in $(S(\mathrm{D}), d)$ ;

(iii) $C_{\varphi}$ is isolated in $S(\mathrm{D})$ .
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3. NEW RESULTS

Recently some authors have attacked these problems using new tools.

In this section we summarize them.

In 1997, J.A. Cima and A.L. Matheson ([3]) characterized the essen-

tial norm || $||_{e}$ of composition operators using the notion of Aleksandrov

measures.

For $\varphi\in S(\mathrm{D})$ and A $\in \mathrm{D}$ , there exists apositive measure $\mu_{\lambda}$ on $\partial \mathrm{D}$ such

that

${\rm Re} \frac{\lambda+\varphi(z)}{\lambda-\varphi(z)}=\frac{1-|\varphi(z)|^{2}}{|\lambda-\varphi(z)|^{2}}$

$= \int P(\zeta, z)d\mu_{\lambda}(\zeta)$ ,

where P(., z) is the Poisson kernel for z,

$P( \zeta, z)=\frac{1-|z|^{2}}{|\zeta-z|^{2}}$ .

Then $\mu_{\lambda}$ is called the Aleksandrov measure with the function $\varphi$ . Denote

the absolutely continuous part and the sigular part of $\mu_{\lambda}$ by $\mu_{\lambda}^{a,c}$ and $\mu_{\lambda}^{s}$

respectively.

[J.A. Cima and A.L. Matheson(1997)

$||C_{\varphi}||_{e}^{2}= \sup${ $||\mu_{\lambda}^{s}||$ : A $\in\partial \mathrm{D}$ }.
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This result has the immediate corollary: $C_{\varphi}$ is compact on $H^{2}$ if and only

if for all $\lambda\in\partial \mathrm{D}\mu_{\lambda}$ is absolutely continous with respect to the Lebesgue

measure $dm$ .

Then $\mathrm{J}.\mathrm{E}$ . Shapiro ([12]) considered the compact difference using this

notion.

[J.E. ShapirO(1998)] If $C_{\varphi}-C_{\psi}$ is compact on $H^{2}$ for $\varphi$ , $\psi\in S(\mathrm{D})$ , $\mu_{\lambda}^{s}=\nu_{\lambda}^{s}$

for all A $\in\partial \mathrm{D}$ .

He conjectured whether its converse would be true.

But it does not seem to be easy to calculate Aleksandrov measure with

respect to any self-map of D.

[Example 1] Let $\varphi(z)=sz+(1-s)z$ for $0<s<1$ . Let $\mu_{\lambda}$ be the

Aleksandrov measure with the function $\varphi$ .

Then we have

$||\mu_{\lambda}^{s}||=||\mu_{\lambda}||-||\mu_{\lambda}^{a,c}||$

$= \frac{1-|\varphi(0)|^{2}}{|\lambda-\varphi(0)|^{2}}-\int\frac{1-|\varphi(\zeta)|^{2}}{|\lambda-\varphi(\zeta)|^{2}}dm(\zeta)$ .

Putting $\lambda=1$ , we have the first term of the right side is $(2-s)/s$ and

the second term is $(1-s)/s$ . So $||\mu_{1}^{s}||=1/s>0$ . Consequently $C_{\varphi}$ is not

compact on $H^{2}$ .
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These measures have played an interesting role in the study of the de

Branges-Rovnyak space. J.E. Shapiro has provided the study of relative

angular derivatives ([13], [14]).

T.E Goeber, Jr. ([6]) connected this problem with the compactness of

composition operators between different Hardy spaces.

Let $0<q<p<\infty$ . Then $C_{\varphi}$ is always bounded ffom $H^{p}$ to $H^{q}$

for $\varphi\in S(\mathrm{D})$ . He characterized the essential norm of differences of two

composition operators ffom $H^{p}$ to $H^{q}$ .

[T.E Goeber, Jr.(2001)] For $0<q<p<\infty$ , $||C_{\varphi}-C_{\psi}||_{e}=0$ if and only

if $C_{\varphi}$ and $C_{\psi}$ are compact from $H^{p}$ to $H^{q}$ .

And he offered the folowing conjecture :Let $0<q<p<\infty$ . Is it

true that $C_{\varphi}$ , $C_{\psi}$ are in the same component of the space of composition

operators ffom $H^{p}$ to $H^{q}$ if and only if $C_{\varphi}$ , $C_{\psi}$ are compact ffom $H^{p}$ to $H^{q?}$

Indeed this result inspires us to consider one question:

[Question] What is the space X of analytic functions on D satisfying that

$C_{\varphi}-C_{\psi}$ : X $arrow H^{2}$ is compact if and only if $C_{\varphi}-C_{\psi}$ : $H^{2}arrow H^{2}$ is compact?

When B.D. MacCluer, S. Ohno and R. Zhao ([11]) reduce the problem

of compact difference to the $H^{\infty}$ case, they obtain the result: $C_{\varphi}-C_{\psi}$ :
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$H^{\infty}arrow H^{\infty}$ is compact if and only if $C_{\varphi}-C_{\psi}$ : $5arrow H^{\infty}$ is compact, where

$B$ is the Bloch space.

So we can suppose the Bloch space as acandidate of the answer to the

problem above. But we can find out the interesting result due to E.G. Kwon

([8]):

[E.G. Kwon (1996)] For $\varphi\in S(\mathrm{D})$ , $C_{\varphi}$ : B $arrow H^{2}$ is compact if and only

if $\varphi$ is not an extreme point of the unit ball of $H^{\infty}$ , that is,

$\int\log(1-|\varphi|)dm>-\infty$ .

We here see again the condition of the non-extreme point of the unit ball

of $H^{\infty}$ , which appears in the problem of the hypercyclicity of composition

operators ([2]). This condition seems to be interesting and mysterious.

We have the following equivalence.

[Proposition] For $\varphi$ , $\psi\in S(\mathrm{D})$ , the following are equivalent:

(i) $C_{\varphi}-C_{\psi}$ : $B$ $arrow H^{2}$ is bounded;

(ii) $C_{\varphi}-C_{\psi}$ : $B$ $arrow H^{2}$ is compact;

(iii) $C_{\varphi}-C_{\psi}$ : $B_{o}arrow H^{2}$ is bounded;

$(\mathrm{i})$ $C_{\varphi}-C_{\psi}$ : $B_{o}arrow H^{2}$ is compact,

where $B_{o}$ is the little Bloch space.
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About the compact difference, we can find out two examples in [4]: Ex-

ample 9.1 at p.336 says that for $\varphi(z)=(z+1)/2$ and $\psi(z)=\varphi(z)+t(z-1)^{3}$ ,

$C_{\varphi}-C_{\psi}$ is compact on $H^{2}$ On the other hand, Exercises 9.3.3 at p.344

gives that for $\varphi(z)=(z+1)/2$ and $\psi(z)=\varphi(z)+t(z-1)^{2}$ , $C_{\varphi}-C_{\psi}$ is

not compact on $H^{2}$ What exists between these two examples? We have

calculated but not completed.

Recently it is reported by B.D. MacCluer ([10]) that J. Moorhouse an-

swers this as follows.

[Example 2] Let $\varphi(z)=sz+1-s$ and $\psi(z)=\varphi(z)+t(z-1)^{b}$ for fixed

real numbers s and t such that $0<s<1$ and $\psi(\mathrm{D})\subset \mathrm{D}$. Notice that |t| is

so small. For apositive number 6,

(i) In the case $0<b\leq 2$ , $C_{\varphi}-C_{\psi}$ is not Hilbert-Schmidt on $H^{2}$

(ii) In the case $2<b<5/2$ , $C_{\varphi}-C_{\psi}$ is compact on $H^{2}$

(iii) In the case $5/2<b$ , $C_{\varphi}-C_{\psi}$ is Hilbert-Schmidt on $H^{2}$

In the case of the Bergman space $L_{a}^{2}=L_{a}^{2}$ (D, dA) where dA is the

normalized Area measure on D, we have the following incomplete result.

[Example 3] Under the same assumption as Example 2,

(i) If $0<b\leq 2$ , $C_{\varphi}-C_{\psi}$ is not compact on $L_{a}^{2}$ .

(ii) If $3<b$ , $C_{\varphi}-C_{\psi}$ is compact on $L_{a}^{2}$ .
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We will add the outline of the proof: (i) At first suppose $0<b<2$ . For

any A $\in \mathrm{D}$ , let $k_{\lambda}(z)=(1-|\lambda|^{2})/(1-\overline{\lambda}z)^{2}$ . And then $k_{\lambda}\in L_{a}^{2}$ , $||k_{\lambda}||=1$

and $k_{\lambda}$ converges to 0weakly in $L_{a}^{2}$ as $|\lambda|arrow 1$ . Then

$(*)||(C_{\varphi}-C_{\psi})^{*}k_{\lambda}||^{2}$

$=( \frac{1-|\lambda|^{2}}{1-|\varphi(\lambda)|^{2}})^{2}+(\frac{1-|\lambda|^{2}}{1-|\psi(\lambda)|^{2}})^{2}-2{\rm Re}(\frac{1-|\lambda|^{2}}{1-\overline{\varphi(\lambda)}\psi(\lambda)})^{2}$

$\geq(\frac{1-|\lambda|^{2}}{1-|\varphi(\lambda)|^{2}})^{2}-2|\frac{1-|\lambda|^{2}}{1-\overline{\varphi(\lambda)}\psi(\lambda)}|^{2}$

We also consider for asequence $\{\lambda_{n}\}\mathrm{o}\mathrm{f}$ points approaching 1along the circle

$|1-\lambda_{n}|^{2}=1-|\lambda_{n}|^{2}$ . Then we have

$||(C_{\varphi}-C_{\psi})^{*}k_{\lambda_{n}}||^{2} \geq\frac{1}{(2-s)^{2}s^{2}}-\frac{2(1-|\lambda_{n}|^{2})^{2-b}}{|(2-s)s(1-|\lambda_{n}|^{2})^{1-b/2}-|t\varphi(\lambda_{n})||^{2}}$.

Consequently

$\lim\{||(C_{\varphi}-C_{\psi})^{*}k_{\lambda_{n}}||_{2}^{2} : |\lambda_{n}|arrow 1, |1-\lambda_{n}|^{2}=1-|\lambda_{n}|^{2}\}\geq\frac{1}{(2-s)^{2}s^{2}}$ ,

that is, $C_{\varphi}-C_{\psi}$ is not compact on $L_{a}^{2}$ .

Secondly suppose $b=2$ . For asequence of points approaching 1along

the circle $|1-\lambda|^{2}=1-|\lambda|^{2}$ , we can calculate the right side of the equation

(’) and show that $C_{\varphi}-C_{\psi}$ is not compact on $L_{a}^{2}$ .
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(ii) For afunction f $\in L_{a}^{2}$ , we have

$(C_{\varphi}-C_{\psi})f(z)$

$= \int f(w)\mathrm{t}\frac{1}{(1-\varphi(z)\overline{w})^{2}}-\frac{1}{(1-\psi(z)\overline{w})^{2}}\}$ dA(w)

$= \int f(w)(\frac{1}{1-\varphi(z)\overline{w}}-\frac{1}{1-\psi(z)\overline{w}})$

$\cross(\frac{1}{1-\varphi(z)\overline{w}}+\frac{1}{1-\psi(z)\overline{w}})$ dA(w)

So

$|(C_{\varphi}-C_{\psi})f(z)|^{2}$

$\leq\int|f(w)|^{2}|\frac{1}{1-\varphi(z)\overline{w}}-\frac{1}{1-\psi(z)\overline{w}}|^{2}$ dA(w)

$\cross\int|\frac{1}{1-\varphi(z)\overline{w}}+\frac{1}{1-\psi(z)\overline{w}}|^{2}$ dA(w)

$\leq\int|f(w)|^{2}|\frac{\varphi(z)-\psi(z)}{(1-\varphi(z)\overline{w})(1-\psi(z)\overline{w})}|^{2}$ dA(w)

$\mathrm{x}2\{\int|\frac{1}{1-\varphi(z)\overline{w}}|^{2}dA(w)+\int|\frac{1}{1-\psi(z)\overline{w}}|^{2}dA(w)\}$

$\leq C\int|f(w)|^{2}dA(w)|t||z-1|^{2(b-4)}dA(w)$

$\cross(\log\frac{1}{1-|\varphi(z)|^{2}}+\log\frac{1}{1-|\varphi(z)|^{2}})$

where C is aconstant.

Using the facts that $\log 1/(1-|z|^{2})\in L^{p}$ for $0<p$ and $1/(z-1)\in L_{a}^{p}$

for $0<p<2$ , we can show $C_{\varphi}-C_{\psi}$ is compact on $L_{a}^{2}$ for $3<b$.
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