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Carleson inequalities in weighted
harmonic Bergman spaces,0 < p <1

BB K - BEEE (Faculty of Education, Gifu Univ.)
IHEHEIE (Masahiro Yamada)

ABSTRACT. We give a necessary and sufficient condition for positive measures y and v
on the upper half-space of R" to satisfy the inequality

/|D°‘u|"du < C/lD;"u|pdu

for all u in a subclass of a harmonic Bergman space when 0 < p < 1, dv = wdV, and w
satisfies a certain condition.

1. Introduction

Let H be the upper half-space of the n-dimensional Euclidean space R® (n > 2), that is,
H = {z = (z,y) € R*; y > 0}, where we have written a point z € R" as z = (z,y) with
T =(z1,"* ,%n-1) E R*1andy € R. For 0 < p < oo, let ¥ = b*(H, dV’) be the class of all
harmonic functions « on H such that

Huly=( [ 1opav) ¥ o

where dV denotes the Lebesgue volume measure on H. The class b” is called the harmonic
Bergman space. Properties of functions in the harmonic Bergman space on the upper half-space
were studied by Ramey and Yi [13] when 1 < p < oo, and by the author [15] when 0 < p < 1.

Let 11 and v be o-finite positive Borel measures on H. We consider conditions on y and v for

which there exists a constant C' > 0 such that / luldu < C / | Dyu|dv for all u in a subclass

of b', where D, denotes the differetiation operator with respect to y.(Our consideration is more
general.) Such inequalities on the unit disk in the complex plane were studied by Stegenga,
and multipliers of the Dirichlet space were characterized [14]. When dv = (1 — |¢|)"dA and
T 2> 1, Stegenga proved that finite positive Borel measures x and v on the unit disk satisfy the

inequality / |f?du < C / | f/|*dv for all holomorphic functions f, f(0) = 0 if and only if

there is a constant K such that 4(Sy) < K|I|" for any interval I in the unit circle, where dA
denotes the Lebesgue area measure, |I| denotes the normalized arc length of I, and S; is the
corresponding Carleson square over I. It was also proved that when 0 < r < 1 such measures
are those satisfying u(USy;) < KCap(UI;) for all finite disjoint collections of intervals {;},
where Cap is an appropriate Bessel capacity (if 7 < 0 any finite Borel measure satisfies this
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inequality ). It is known that these characterizations can be generalized to the case of p > 1
(see also [14] ). When 0 < p < 1,dv = (1 — |¢]|)"dA, and —1 < r < p — 1, Ahern and

Jevti¢ [1] proved that there is a constant C' > 0 such that / |fPdu < C / | f'|Pdv if and only

if u(Sy) < K|I|*7?P*". Using this result, Ahern and Jevti¢ characterized inner multipliers of the
Besov spase in case 0 < p < 1. Such investigations for several variables are in [4]. In these
investigations, when p > 1 necessary and sufficient conditions were not obtained completely.
It was also shown that, in general, the above condition is not necessary. When 0 < p <1
and dv = y"dV, such a inequality on the upper half-space was studied by author [15]. On the
unit disk of the complex plane, for more general measures x and v, the properties of mesures

satisfying a inequality / |flPdp < C / | fIPdv were studied in [8], [9], and [12], and partial

results were obtained.

If @« = (a1, - ,0y) is a multi-index of nonnegative integers with order ¢, then D* denotes
the partial differentiation operator 8°/0z$! - - - Oz~ Oy**. We now state our main result in
this paper.

THEOREM 1. Let 0 < p < 1 and ¢, m be nonnegative integers. Suppose that p is a o-
finite positive Borel measure on H, dv = wdV and w satisfies the (A,)s-condition for some
1 < q < 00. Then, the following (1) ~ (3) are equivalent.

(1) There is a constant C > 0 such that

/ |D*ulPdu < C'/ | Dy ulPdv
H H

for all u € b and multi-indices o of order ¢,
(2) There is a constant C' > 0 such that

/ DulPdyu < C / |Drupdy
H H

forall u € bP.
(3) There are constants K > 0 and 0 < & < 1 such that p(S(w)) < Kt~™Py(D,(w)) for
allw = (s,t) € H.

In §2, we give some lemmas for investigations of Theorem 1. In §3, the necessity of the
condition is shown. In §4, we define the notion of the (A4,)s-conditon on the upper half-space,
and study some properties of the (A,)s-conditon. The (A,)s-conditon on the unit disk of the
complex plane is defined in [12]. In the definition of the (A,)s-conditon on the unit disk, the
normarized reproducing kernel in the Bergman space is used. However, on the upper half-space
of R™, we can not use arguments in the complex plane. Therefore, we will extend the notion of
the (A4,)s-conditon using anothor function. In §5, the sufficiency of the condition is contained.

Throughout this paper, C will denote a positive constant whose value is not necessary the
same at each occurrence; it may vary even within a line.

2, Preliminary lemmas

Recall that a point z € H will be written as z = (z,y) withz € R* ! and y > 0. We use
the absolute value symbol | - | to denote the Euclidean norm in R™ or R*~1. For z = (z, y), let



24

z = (z, —y). The pseudohyperbolic metric p in H is defined by p(z,w) = |w — 2|/|@ — z|. It

is clear that p is invariant under horizontal translations. Let D.(w) = {z € H ; p(z,w) < €}

when w = (s,t) € H and 0 < € < 1. D,(w) is a Euclidean ball whose center and radius are
1+¢? 2 . .

(s, I——H;t) and % respectively. It follows that there is a constant C = C. > 0 such that

C~1t" < V(D,(w)) < Ct" for all w € H. The following lemma is stated in [15].

LEMMA 1. Let 0 < € < 1. Then, the following are true.

(D If z,w,{ arein H and p(z,w) < ¢, then C~1|{ - z| < |{ —w| < C| — 2| with a positive
constant C' depending only on ¢.

) Ifz = (z,y),w = (s,t) are in H and p(z,w) < ¢, then C~'y < t < Cy with a positive
constant C depending only on ¢.

(3) If0 < £ < 1/2 then there exist a positive integer N and a sequence {(;} in H satisfying
the following conditions : (a) H = UD,((;), (b) any point in H belongs to at most N of the sets

Dqe (CJ)

For a function  on H and § > 0, let 7;u denote the function on H defined by T5u(z,y) =
u(z,y+4),andlet T? = {r5u; u € ¥,6 > 0}. If o = (v, - - , @) is a multi-index of nonneg-
ative integers with order £, then D* denotes the partial differentiation operator 3°/9z" - - - dzon3 9y~
The following lemma is stated in [15].

LEMMA 2. Let 0 < p < 1. Then, the following are true.

(1) For any u € VP, there is a constant C > 0 such that |D%u(s,t)| < C/t"/?*el for all
(s,t) € H.

(2) For any u € P, there is a constant C > 0 such that |(D*75u)(s,t)| < C/(t + §)™/rtlel
forall (s,t) € H.

Let w = (s,t) € H. The Poisson kernel P, is the function on R*~! given by P, (z) =
P(s — z,t) = yat/(|s — z|* + £2)*/2 (v, is the positive constant 7y, = 2/(nV (B,)), where B,
denotes the unit ball in R" ). The harmonic extension of this function to H is P(s — z,t + y).
If z = (z,y) € H, then we may write P,(z). We note that P,,(2) = y,(t + v)/|@w — z|*,
|D3Py(2)| < C/lw — z|***I=!, and D2P,(z) = (—1)@+-+e=-1DaPp (3). The following
lemma is useful and stated in [13, Lemma 3.1]

LEMMA 3. Let 0 < c < 1. Then, there is a constant C > 0 depending on c and n such that

/ Y __dv(z) =Ct
H

lw — 2|
forallw = (s,t) € H.

Let m be a nonnegative integer and let ¢,, = (—2)™/m!. The following Lemma 4 is given
in [15].

LEMMA 4. Let0 < p < 1. Ifu € T?, then

w(w) = —2em 1k /H y™*(Dmw) (2) D Py (2)dV (2)
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forallm,k > 0andw € H.
We show that Lemma 4 is also valid for u € b when the integer £ is sufficiently large.

LEMMA 5. Let 0 < p < 1 and k be a nonnegative integer such that k > n/p. If u € bP,
then

u(w) = —2Cm4k /H Y™ (Dyu)(2) D Py (2)dV (2)

forallm > 0andw € H.

3. (u, v)—Carleson inequality

We give a sufficient condition for measures p and v which satisfy the (1, v)-Carleson in-
equality with derivatives.

PROPOSITION 2. Let 0 < p < 1,1 < q < oo, and k > n/p. Suppose that £, m be
nonnegative integers. Assume that p is a o-finite positive Borel measure on H and dv = wdV
such that w € L},.(H,dV). If there are constants K > 0 and 0 < € < 1 such that

-1 9-1 yp(nt+m+k)-nq
/H (/l;e(w) wq_ldv) lw — z[p(r+t+k) du(2) < K,

forall w = (s,t) € H, then there is a constant C > 0 such that

/ |Dau|”du§C/ | Dy ulPdy
H H

for all u € bP and multi-indices o of order ¢.

We will also give a necessary condition for the (p,v)—Carleson inequality. We need the
following lemma, and Lemma 6 is stated in [15].

LEMMA 6. Let k be a nonnegative integer. Then, there exist constants 0 < ¢ < 1 and
C > 0 such that D5 P,(z)| > C/t"*=! forallw = (s,t) € H and z € S(s, ot).

PROPOSITION 3. Let 0 < p < 1. Suppose that £, m be nonnegative integers. Assume that p
and v are o-finite positive Borel measures on H. If there is a constant C' > 0 such that

/ |D5u|”d,u < C’/ | Dy ulPdv
H H

for all u € WP, then there are constants 0 < 0 < 1 and K = K, > 0 such that

1
+n+k—1
u(S(s,0t)) < Kyt )-/H |w — z|P(m+k+n—1)dV

forallw = (s,t) € H.

4. (A,)s-condition
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Let 1 < p < 00, and w be a non-negative L}, function on H. We say that the function w

satisfies the (A4,)s-conditon if there exists a constant y > 0 such that for every w = (s,t) € H,

t" mn 1 p-1
y oV e e) <

The (Ap)s-conditon on the unit disk A of the complex plane is defined in [12]. In the
definition of the (Ap)s-conditon on the unit disk, the normarized reproducing kernel in the
Bergman space is used. The B,-condition is defined in [3] for characterizing the boundedness
of a projection from L?(w) onto L%(w). And the C,-condition is defined in [10]. For z,w €

— |wl? -
A, let ky(z) = H;I)—E and ¢, (z) = 1w_ ﬂ;‘zz' The functions k,(z) and ¢,,(z) are called

the normalized reproducing kernel of the Bergman space on A and the M6bius mapping of
A, respectively. Let S, = {z € A;1—|w| < |z| <1,|argz —argw| <1— |w|} and A, =
Aye = {2z € A;|¢,(w)| < €}. The (A,)s, Bp, and Cp-conditions on the unit disk A are the
following.

The (Ap)s-conditon: there exists a constant y > 0 such that for every w € A,

[ w@rodac ([ |kw(z)|2w;T‘ldA(z))p'l <.

The B,-conditon: there exists a constant y > 0 such that for every w € A,

ﬁ /S wdA(Z) (ﬁ-)- /S ] cwf——‘xolA(z))p_1 <.

The Cp-conditon: there exists a constant v > 0 such that for every w € A,

1 1 =1 Pt
A(B) Ja. wdA(z) (m N wrT dA(z)) <.

In general, it is easy to see that

1 1
_— wdA(2) K C—— | wdA(z SC"/ ky(2)PwdA(2).
ABg) Ja. (2) A s, (2) | ku(2)wdA(z)
On the upper half-space H, it is also easy to see that there is a constant C > 0 suth that
1
! wdV(z) <C wdA(z). However, we do not know that the sec-

V(De(w)) Jp.(w) V(S(w)) Js(w)

ond inequality is satisfied or not. For z = (z,y),w = (s,t) € H, let
4 n(y+t)?-—|w-z?

nV(B) | — z|nt2

Ry(2) =

and n

(2t)2 n(y+t)?2—|w— 2
n—1 |w — z|n+2

The functions R, (z) and r,,(z) are called the reproducing kernel and the normalized reproduc-
ing kernel of the harmonic Bergman space, respectively.

rw(z) =

THEOREM 2. Let w be a non-negative Lj,, function on H. Then, the following (1) and (2)
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(1) There are constans 0 < o < 1 and C > 0 such that for every w = (s,t) € H,

1 2, z
T /S v <0 /H Iru(2) PwdV (2).

(2) There is a constan C > 0 such that for every w € H,

1
e /S R / Y ()

By Theorem 2, we obtain the following result.

THEOREM 3. Let 1 < p < oo and w be a non-negative L;,, function on H. Then, the
following (1) and (2) are hold.

(1) If w satisfies the (Ap)a-conditon on H, then there is a constant C > 0 such that for every
w € H,

C- / |7 (2) PwdV (2) </ = de(z) < C’/ 7w (2)PwdV (2).

(2) If w satisfies the (Ap)s-conditon on H, then w satisfies the By-conditon on H, and hence
w satisfies the Cy-conditon on H.

5. Proof of Theorem 1

In this senction, we give a proof of Theorem 1.

PROOF OF THEOREM 1. (1) = (2) is trivial. We show that (2) = (3). We suppose that
(2) is hold. Then, Proposition 3 implies that there are constants 0 < 0 < land K = K, > 0
such that p(S(s,0t)) < Kpltntk=1) [ /15 — 2PtmHk+n=Ddy for all w = (s,t) € H.
Since [ — z| > t, We have u(S(s,ot)) < KtPl-m+n [ t"/|w — z|*"dv. Moreover, since
w satisfies the (A,)s-conditon, we obtain 1(S(s,at)) < KtP=™y(D,(s,ot)). Since s and t
are arbitrary, we can replace t by t/o. This implies that u(S(w)) < CtP¢~™y(D,(w)). We
will show (3) = (1). Let ¢ = p(¢ — m) and suppose that 1(S(C)) < Knv(D.(()) for all
¢ = (&, 1) € H. Since w satisfies the (A,)s-conditon, the sufficient condition in Proposition 2
is equivalent to the condition [ tP("m+k) /|y — 2P+ dy(2) < Ku(D,(w)). Therefore, it
is enough to prove that [, 1/|w — 2"du(z) < Ct~"v(D.(w)) for all w = (s,t) € H, where
v = p(n + £ + k) and k is sufficiently large. Let w € H. Clearly, if z ¢ S(s,277t), then
|lw — 2| > 2971 (j > 1). Therefore, the hypothesis implies that

1
—du(z) < t_"’/ dp+t77 / dp
/H o=z ) S(s) Z 2"’ D Jse 2zt

< ET(S(6,D) + 7Y S, 20)

Jj=1
< Ktu(D,(s,t)) + Kt Zl 576D (27t)°v(Dx (s, 27t))
_7:

= e (V( D.(s,)) +272 2(710)11/(1) (5,2 t)))

j=1
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Since w satisfies the (A,)o—condition, v = wdV satisfies the doubling condition. Therefore,
there is a constant X > 0 such that v(D,(s, 2t)) < 2*v(D,(s,t)). Hence, we have

oo

/H Iw_l zl,,du(z) < Kt (V(De('UI))+27Z 2(710),2”"(1)4’”)))

j=1

= Kt (1 + 27 E m) V(De('U)))
J=1

If we choose an integer k such that v —c — A = p(n + m + k) — X > 0, then we obtain
Ju 1/[@ — 2["dp(z) < Ct= (D, (w)).
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