ooooooDoon 12780 20020 158-171

158
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Abstract. In this paper, we study a new class of nuclear algebras of entire functionals of
exponential growth and several variables. ‘Then using the convolution calculus we develop
the theory of operators defined on this algebras. In particular we define the exponential of
some operators which permits to solve some quantum stochastic differential equations.

1 Introduction

In the last years new classes of spaces of generalized and test functions were introduced
by many authors, see e.g., [2], [6], [7], [16]. Let A be a complex Fréchet nuclear space
with topology given by an increasing family of Hilbertian norms {| - |,, n € N}. It is
well known that A may be represented as N' = NyeNN,, where the Hilbert space A, is
the completion of V' with respect to | - |,. By the general duality theory N’ is given by
N' = UpeNN_p, where N_,, = M. is the topological dual of MV,. Let § : R, — R, be a
continuous convex strictly increasing function such that

lim 8(z) =o00, 6(0)=0. (1)

=00 T

Such functions are called Young functions. For a Young function § we define
0*(z) = sup(tz — 6(t)) (2)
>0

This is called the polar function associated to 6. It is known that 6* is again a Young
function and (6*)* = 6. For every p € Z and m > 0, we denote by Ezp(N,,0, m) the
space of entire functions f on the complex Hilbert space A, such that

£ llgpm == sUp |f(2)|e"?™}lP) < 400 3)
’ ZEN,

We fix a Young function 6. Then
{Fo,mN-p) := Ezp(N_p,0,m); p € Nym > 0}
becomes a projective system of Banach spaces and we put

Fo(N") = projlim Ezp(N_y, 6, m) (4)
p—oo;mi0
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which is called the space of entire functions on A’ with an #-exponential growth of minimal
type. On the other hand {Ezp(N,, 6, m);p € N,m > 0} becomes an inductive system of
Banach spaces and we put

Go(N) = indlim Ezp(N,,0,m). (5)

p—00;m—00

This is called the space of entire functions on A/ with #-exponential growth of arbitrary
type. Then Fyp(N’) equipped with the projective limit topology is our test function
space. The corresponding topological dual, equipped with the inductive limit topology,
is denoted by F;(N') which is the generalized function space, see [7] for more details. In
particular, if N' = Sc(R) (the complexification of the Schwartz test function space S(R))
and 0(z) = 2, then Fy(N") is nothing than the analytic version of the Kubo-Takenaka
test functions space and the corresponding topological dual is the Hida distribution space,
see e.g.,[9]. The test function space of Kondratiev-Streit type (S)g, 8 € [0, 1) are obtained
choosing 6(z) = TTH | see (13], [14], [18], [20].

More recently, a two-variable version of the above spaces was introduced, see [10]. In
fact for arbitrary k € N, we can replace the nuclear space N by a Cartesian product N; X
... X N, and 0 by (61, ... ,0;) where 6; are Young functions and A; is a complex nuclear
Fréchet space, 1 < 1 < k. Then it is possible to extend all the results obtained in [7] in the
mulivariable case. In particular, the Laplace transform £ is a topological isomorphism
between the generalized function space Fj(N] x ... x N}) and Gp (N7 X ... X N), where
Go+ (N1 X ... X Ny) is the space of entire functions on N; X ... X Ny which verify some
exponential growth condition similar to (3) with respect to 8* = (65,... ,0;), where 6}
is the polar function corresponding to 6;. Another important result in [4] and [5] is the
characterization theorem for convergent sequences of distributions in Fy(N] x ... x N}).
Using this result, we can directly define for any given continuous stochastic process X (t) €
Fg(N] x ... x N}) the integral

/ "X (s)ds = £ / " £X (s)ds. (6)
0 0

Very useful in applications is the convolution product on Fj(N"), see [3], [5] and [8] for
details. In fact, we define the convolution of two distributions ®, ¥ € F;(N") by

O+ =LY LD LT), (7)

which is well defined because Gg- (N) is an algebra under pointwise multiplication. We can
define for any generalized function ® € F3(N") the convolution exponential of ® denoted
by exp* ® as a generalized function on F(*e,.). (NM"). Note that for a generalized function
® € (S); the Wick exponential of ® denoted by exp® ® does not belong to (S)j, but it
belongs to a bigger space of distributions (S)~! called Kondratiev distribution space, see
[12). ‘

In this paper, we do not restrict ourselves to the theory of gaussian (white noise) and
non-gaussian analysis studied for example in [1], [9], [12], [13] and [14] but we develop a
general infinite dimensional analysis. First, we give a decomposition of convolution op-
erators from Fp(N’) into itself, into a sum of holomorphic derivation operators. Second,
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we establish a topological isomorphism between the space L(Fy(N"), Fo(N")) of operators
and the space Fy(N")®Gs- (N) of holomorphic functions. Next, we develop a new convolu-
tion calculus over L(Fy(N"), Fo(N")) and we give a sense to the expression e := Zn>0 =
for some class of operators T'. Finally, as an application of this theory we solve some linear
quantum stochastic differential equations.

2 Preliminaries

For any n € N we denote by N®" the n-th symmetric tensor product of N equipped
with the m-topology and by N" the n-th symmetric Hilbertian tensor product of Nj.
We will preserve the notation |.|, and |.|_, for the norms on M®" and NS} respectively.
We denote by (.,.) the C-bilinear form on N'xN connected to the inner product (.|.) of
H =N, i.e.,

(2,€) = (2|¢) , z€H, £€N.
By definition f € Fy(N') and g € Gy(N) admit the Taylor expansions:

f(2) = i(z@", f),  Z€N', faeN©,
o (8)
9€) = (n,€®"), EEN, gn€ N,

n=0

where we used the common symbol (-, -) for the canonical bilinear form on (NV°") x A"
for all n. In order to characterize Fy(N") and Gy(N) in terms of the Taylor expansions,
we introduce weighted Fock spaces Fy,,(N,) and Gy ,m(N_,). First we define a sequence

{0,,} by
6, = inf &) exp 0(1‘)

inf —— n=0,1,2,---

Suppose a pair p € N, m > 0 is given. Then, for 7 = (fn)aZo With f, € N> we put
o0
I Wpm = D am=™ Il
n=0
and for & = (&,)%2, with &, € N,

1B = z:(n'ﬂn)2 "|®al2,.

n=0

Accordingly, we put

Fom(Np) = {7 = (fa); fo € N2, I fl3pm < o0},

©)
Gom(N-p) = { ¥ = (@0); T € NG, I B} -pm < o0} -
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Finally, we define

Fy(N) = projlim Fy ,(Np),
p—oo;mi0 (10)
Ge(N') = ind hm Gom(N-p).

p—roo;m—

It is easily verified that Fp(N') becomes a nuclear Fréchet space. By definition, Fy(N) and
Go(N") are dual each other, namely, the strong dual of Fy(N) is identified with G¢(N")
through the canonical bilinear form:

,7)= in!(cbn,m. (11)

n=0

The Taylor series map T (at zero) associates to any entire function the sequence of
coefficients. For example, if the Taylor expansion of f € Fy(N’) is given as in (8), the

Taylor series map is defined by 7f = 7) = (f»). In particular, for every z € N', the
Dirac mass §, defined by :

(02, ) 1= p(2), (12)
belongs to F;(N'). Moreover, 4, coincide with the distribution associated to the formal

series 6, = (":;!")nzo.

Theorem 1 ([7]) The Taylor series map T gives two topological isomorphisms: Fe(N")
— Fy(N) and Gg+ (N) = Go(NV').

3 Application to White Noise Analysis

For some functions 6, the spaces F3(N') and Go(N) play an important role in the
theory of Gaussian and non Gaussian analysis (Poisson, Lévy,...). In fact let

XCcHcX (13)

be a real Fréchet nuclear triplet. Let v be the standard Gaussian measure on (X', B)
where B is the o-Borelian algebra on X', determined via the Bochner-Minlos theorem by
the characteristic function:

| 1 |
c©) = [ expita,dr(z) = exp (- 5 lel) (14)
Xl
and ||¢|I3 = (£,&)n is the Hilbertian norm in the space H. By complexification of the
triplet (13) we obtain
NczcN, _
where N = X +iX and Z = H +iH. Suppose that limz_, Jv} < 00. Then Fy(N') can

by densely topologically embedded in the Hilbert space L? (X !,7) and we can construct
the following Gelfand Triplet

FoWN') € LX) € Fg(N). (15)
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3.1 S-Transform

Let 8 be a Young function. Denote by F;(N") the strong dual of the test functions
space Fo(N'). From condition (1) we deduce that for every £ € N, the exponential
function e¢ defined by

ec(2) = €4, zeN, (16)

belongs to the space Fy(N'). The Laplace transform L of a distribution ¢ € Fj(N') is
defined by ‘

L($)(E) = $(&) = (Brec), EEN. (17)

By composition of the Taylor series map with the Laplace transform, we deduce that
¢ € F43(N") if and only if there exists a unique formal series ¢ = (¢n)n>0 € Go (N) such
that

$(E) =D _(6°, 6n).

n>0

Then, the action of the distribution ¢ on a test function ¢(z) = )", .,(2®", ) is given
by -

(6,00 = o ntldnon). (18)

n>0

In the White Noise Analysis we use the S-transform

S(¢)(€) = L(£) exp ( - %62), EEN, ¢eFN). (19)
Let now be given k nuclear gaussian spaces
(X; € H; C Xj,7)

and 6 = (0,,0,,...,6;) be a multivariable Young function, i.e., 6;,0,,...,0; are k given
Young functions and denote by

X=][ x; and N= ] A;,

1<j<k 1<j<k

where N; = X; +iX; and Z; = H; +iH;. Setting v® = y® y® - - ® 7y the k-fold tensor
product of the standard gaussian measure. . The next result gives a characterization of
new Gelfand triplet.

Theorem 2 ff we suppose that for every 1 < j <k,

limgj-(x—)<oo

z—00 I2 !
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then Fo(N") can be densely topologically embedded in the space L?(X',v®F), and we can
construct the following Gelfand triplet,

Fo(N') € LA(X',v®*) C Fg(N).

Moreover the chaotic transform (S-Transform) realizes a topological isomorphism of nu-
clear triplets :

FoN') € LX(X',v®*) C Fg(N)
d s 1S
.7:9(./\/') - FOCk(Zk) C G~ (N)

where Is is the Wiener-Ito-Segal isometry and Fock(Z¥) is the bosonic Fock space on Z*
and

0" = (61,02, ..., 0k)* = (67,65, ..., 6}).

3.2 Relation of this theorem with previous results

1. fk = 1 we obtain the results of [7). In particular if 6(z) = Z,a > 1 then

0*(z) = &~ with 2 + 1 =1, and we obtain in this case the usual space of entire
functions of exponentlal type, see e.g., [18], [19] and [20]. For every f € Fp(N ) we
have: ,

Vm,p>0: ||fl3m, = Z(@)¥*m™|falZ < oo.

(2 =1+ f, in the notations of [12].) If @ = 2 and X is the Schwartz space S(R)
the space F3(S(R)) is the Hida distributions space [9).

2. The Potthoff-Streit characterization theorem, see [21], is a particular case of the
general topological isomorphism: Fj(N') — Gp-(N) where k = 1,0(t) = t* and
X = S(R).

3. In the particular case where k = 1 and N is an arbitrarily Banach complex space
B and 6(t) = t*, a > 1, the spaces Fop(N"), Fo(N),Gp(N), Go(N") are introduced
first by the author in [17], and the analog of Theorems 1 is given in this case.

4. In [6] Cochran-Kuo-Sengupta introduce the “CKS” space of distributions [v]}, where
a = (ap)neN is a positive sequence and

n

Galt) = Y aln)

n>0

is an analytic function. If we put 6*(t) = Log (G.(t?)) then [v]% = Fy(N). The
hypothesis of the analycity of the function G,(t) in [6] is not necessary in our case,
moreover we here obtain explicitly the space test functions and also a characteriza-
tion theorem for this space.
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4 Convolution Calculus

In the next we develop a new convolution calculus over generalized functionals space
F5(N'). Unlike the Wick Calculus studied by many authors, see [9], [14], [15], [13] and
[20], the convolution calculus is developed independently of the Gaussian Analysis. In
fact for ¢ € F3(N") and ¢ € Fy(N") the convolution of ¢ and ¢ is defined by

(B*9)(2) == (b 7200}, z€N, (20)

where 7_, is the translation operator, i.e., 7_,¢(z) = ¢(2 + z), z € N and for every
z € N, the linear operator 7_, is continuous from Fy(N’) into itself. A direct calculation
shows that ¢ x p € Fy(N") . Let ¢y,¢2 € F5(N'), we define the convolution product of
¢1 and ¢, denoted by ¢, * ¢, by

(@1 * d2, 0)) := [¢1 * (62 * ©)](0), pE fo(N')-
Moreover, V ¢, ¢2 € F5(N") we have

61 % 62 = $162. (21)

4.1 Convolution operators

In infinite dimensional complex analysis, a convolution operator on the test space
" Fo(N") denoted for simplicity by Fy is a continuous linear operator from Fy into itself
which commutes with translation operators. It was proved in [3] and [8] that T is a
convolution operator on Fy if and only if there exists ¢r € Fg such that

To=¢r*xp, YVpeF, (22)

Moreover, if the distribution ¢7 is given by ¢r = (Pm)m>0 € Go and p(2) = 3_,.50(z®", ©n)
€ Fp then -

brro@) = 3 3 B o (6 ). 29

where (@m, Pm+n)m denotes the right contraction of ¢y, and 4y of order m, see [14]. In
particular, we have

T(ec)(2) = br * ec(z) = $(€)eg(2).

Let 6 be a Young function, y € N’ and ¢(2) = 3,5(2®",9s) € Fp. We define the
holomorphic derivative of ¢ at the point z € A" in a direction y by

D!lw(z) = Z(n + 1)(z®n, (y’ ¢n+1)1>'

n>0

Lemma 3 The operator D, is continuous from Fy into itself. Moreover, for every ¢ €
Fo, p € N and m > 0 we have

= -3
IDy@llopm < Vmbilyl-p, | Bllop,ve,5

where p, = min{p € N,y € N_,} and p, V p = max(p,, p).
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PROOF. By definition of the norm ||.||sm defined on the space Fy of formal series,
we have

1
2
? - -n
“Dy‘P“&p,m = (§ :("+1)20n2m (v, ‘Pn+1)1|z)

n>0

1
2
< |yl-p, (z :("H' 1)29;2m—n|90n+1i3v,;,)

n>0

< VA lopy | S 0220(55) " a2 (n+ Donsr )
< Yl-py n+1\7p Pr+1lpvp, 22n+29

n>0

< Vlol sup [zt 1lhovon 5
Finally, the desired inequality follows immediately using the fact that 27=%6,6) < 6,4k <
2+k6,8, ¥ 1,k € N\ {0}. m
For each m € N the m-linear operator D : N’ x -+ x N' — L(Fy, Fg) defined by

(Y1, -y Ym) > Dy, ... Dy,,

is symmetric and continuous, hence it can be continuously extended to NOm je., D:
¢m € N'©™ s Dy € L(Fg,Fp). The action of the operator Dy, on a test function

p(2) = Xp>0(#®", ¥n) is given by
Don(@)(&) = 3 P (g, i) 24

n>0

Then, in view of (22), (23) and (24), we give an expansion of convolution operators in
terms of holomorphic derivation operators.

Proposition 4 Let T € L(Fy, Fg). Then T is a convolution operator if and only if there
ezists ¢ = (¢m)m>0 € Gg such that
T =Y D,

m>0

Let Ty = 3, 50 Ds.. be a convolution operator and n € N. Then equality (22) shows
that - |

Tg = T¢ O... OT¢ = T¢m. ' (25)
S :

n

In particular,

T3(ee)(2) = Tom(ed) () = (8(0) eele), z€N', £EN.
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4.2 Symbols of operators

We denote by L(Fy, Fy) the space of continuous linear operators from Fj into itself,
equipped with the topology of bounded convergence. In this section we define the symbol
map on the space L(Fy, Fp). Then we give an expansion of such operators in terms of
multiplication and derivation operators. :

Definition 5 Let T € L(Fy, Fy), the symbol o(T) of the operator T is a C-valued function
defined by

o(T)(z,€) := e AT (e)(2), zeN', E€EN.

Similar definitions of symbols have been introduced in various contexts, see [10], [11],
[14], [15], and [19]. In the general theory [22], if we take two nuclear Fréchet spaces X
and D then the canonical correspondence T «+— K7 given by

(Tu,v) = (KT,u®v), ueX, veD,

yields a topological isomorphism between the spaces £(X, D) and X’®D. In particular if
we take X = D = Fy which is a nuclear Fréchet space, then we get

L(Fs, Fo) = F38F,. (26)

So, the symbol o(T) of an operator T can be regarded as the Laplace transform of the
kernel KT

o(T)(z,€) =K"(e®4,), z€N', E€N. (27)

Moreover, with the help of equalities (12), (26), (27) and Theorem 1, we obtain the
following theorem.

Theorem 6 The symbol map yields a topological isomorphism between L(Fy,Fy) and
fg@‘};. More precisely, we have the following isomorphisms
L(FoFo) = FoBG; 25 FuBG,,

T — o(T)(z,€) = Z (K, 22 @ 8™ K = (Ki,m)1,m>0-

i,m>0

Example 7 1) The symbol of a convolution operator Ty = Zmzo Dy, is given by
o(Ty)(z,€) = ™9 ) " Dy (e)(2) = D (#m, €™) = $(6)-
m>0 m>0

Hence, the operator T, can be expressed in an obvious way by

Tsy=Y Dy, :=) (¢m D®™) =0(Ty)(z,D), z€N'.

m>0 m2>0
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2) If we denote by M; the multiplication operator by the test function f, its symbol
is given by

o(My)(2,€) = e (feg)(2) = e *9) f(2)ee(2) = f(2).

By the same argument the multiplication operator is also expressed by My = o(Mj)(z, D).
We note that the symbol of a convolution (resp. multiplication) operator o(T')(2,£)
depends only on £ (resp. z).

Let ? € Fy®G, and assume that T? = f ® $ = (fi ® ¢m)im>0- Then the operator T
associated to ? satisfies

T = M/T,, (28)

where f(z) = 3_;54(z®, fi) and Ty is the convolution operator associated to the distribu-
-
tion ¢ given by ¢. Moreover, we have

T = M/T, = o(Mj)(z, D)o(T4)(z D) = o(T)(z, D).
Thus, using the density of Fy ® Gy in Fy®Gpy, we obtain the following result.
Proposition 8 The vector space generated by operators of type (28) is dense in L(Fy, .7:'9).

4.3 Convolution product of operators

Let Ty, T, two operators in L£(Fy, Fp); the convolution product of Ty and T3, denoted
by T; * T3, is uniquely determined by

o(Th * Tz) = o(T)o(T3).
If the operators T} and T are of type (28), i.e., Ty = My, Ty, and Tp = My, Ty,, then
T+ Tz = Mp ;Tusgn:
In particular, if T = M;Ty, then for every n € N we have
T‘n = anT¢tn. (29)
Let T, (resp. M;) be a convolution (resp. multiplication) operator. Then for every n €N
T;" = Tyen =Ty and M;" = Mg = M.

Lemma 9 Let v, two Young functions and (F,) a sequence belonging to Fru8G,.
Then (F,) converges in F, ®G,, if and only if

1. (F,) is bounded in F,,®G,,.

2. (F,) converges simply.
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PROOF. The proof is based on the nuclearity of the spaces Fy and Gp.. A similar
proof is established with more details in [4]. m

Proposition 10 LetT € Lq. Then the operatore*™ := 3 ., T belongs to L(Feev., Fs)

PROOF. Let T € L(Fp, Fo) and put S, = Yy, TT'," Then using Lemma 9 we show
that o(S,) converges in F,s®G,s+ to e’T), from which the assertion follows. m

Let T € L(Fy, Fy) and consider the linear differential equation
dE
E—TE’ E(0)=1.

Then the solution is given informally by : E(t) = €T, t € IR. In the particular case, where
T is a convolution or a multiplication operator; the solution E(t) = €T is well defined
since T = e*T. If T is not a convolution or a multiplication operator then the following
theorem gives a sufficient condition on T to insure the existence of its exponential 7.
Theorem 11 Let K = (Kim) € Fy®Gy satisfying (Kimy Ky g )k = 0 for every m,l' >
1, m'\1>0and1 < k<mAl and denote by T the operator associated to K. Then

T =T"" VneN.
Moreover, €7 = e*T € L(Fo0y., Fus).
PROOF. Using Proposition 8, it will be sufficient to assume that K = (fi ® ém),
t.e.,
T=MTy= ) M;D,,,
1,m>0

where fi(2) = (2%, fi). Assume that f; =%, 7€ N and ¢,, = y®™, y € N". Then it is
easy to see that

mAl
Dy, My = My Dy, + Z k!ClkCr’::<y1 n)kal-kD¢m-h’
k=1
an equality on Fy. The assumption (K, Ky m)x = 0 implies that (y,n) = 0. Then
Dy, My, = My, D, (30)

Thus, using the density of the vector space generated by {#®, n € N} in the space N
and the density of the vector space generated by {y®™, y € N’} in N'®™ we can extend
equality (30) to every f; € N® and ¢,, € N"©™ such that (¢, fi)e =0, V1 <k <IAm.
Hence, we obtain

MiTy= ) MyD,, = Y Dy, My =TyM;.
i,m>0 i,m>0
Using equalities (25) and (29), for every n € N we have
T" = (M{Ty)" = (My)" (Tg)" = MpnTyon = T*™.
This completes the proof. =
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5 Applications to Quantum Stochastic Differential Equations

A one parameter quantum stochastic process with values in £(Fy, Fy) is a family of
operators {E}, t € [0,T]} C L£L(Fy, Fp) such that the map ¢t — E; is continuous. For such
a quantum process E; we set

n

E K, n € N\{0}, t€[0,T].

Then we prove using Lemma 9 that the sequence (E,) converges in L(Fy, Fy). We denote
its limit by

t
/E,ds := lim E, in L(Fp, Fp).
0

n—+00

o (/Ot E,ds) = /ota(E',)ds, vt € [0,T].

Theorem 12 Let t € [0,T) — f(t) € Fs and t € [0,T] — §(t) € Fg be two continuous
processes and set Ly = M;;)Ty). Then the linear differential equation

dEt
dt

has a unique solution E;, € L(F o)., Fes) given by
Et = e,.l(f()t L'ds)_

Moreover, we have

= My EiTyy,  Eo=1, (31)

PROOF. Applying the symbol map to equation (31) to get

d;ﬁ_f_?ﬂ =o(L)o(E), o(l)=1.

Then o(E;) = efoo(E+)ds which is equivalent to E, = ¢*(Js L+4s)  Finally, we conclude by
Proposition 10 that Ey € L(F(e+)s, Feo). ®

Theorem 13 Let L, be a quantum stochastic process with values in L(Fy, Fg) such that

(/ L ds) Z (Kim(t), 2% @ n®™),

l,m>0

and assume that for everyt € [0,T], m',1 > 0 and m,l' > 1 we have (Kim(t), K (t)),c =

0,V1<k<mAl. Then the followzng differential equation
dE ,
I L:E, E(0)=1

has a unique solution in L(F (), Feo) given by

E(t) = elo L%,
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