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Most of the mathematical approaches for quantum Langevin equation are based on the non-
commutativity of the random force operators. Non-commutative random force operators are
introduced in order to guarantee that the equal-time commutation relation for the stochastic
anlihilation and creation operators preserves in time. If it is true, it means that the origin of
dissipation is of quantum mechanical. However, physically, it is hard to believe it. By making
use of the unified canonical operator formalism for the system of the quantum stochastic
differential equations within Non-Equilibri um Thermo Field Dynamics, it is shown that it is
not true in general.

I. INTRODUCTION

The studies of the Langevin equation for quantum systems were started in connection with the devel-
opment of laser [1-3], and are still continuing in order to develop asatisfactory formulation [4-9] (see
com ments in [10] $)$ . Most of the mathematical approaches for quantum Langevin equation are based on
the $\mathrm{u}\mathrm{o}\mathrm{n}$-commutativity of the random force operators. For dissipative systems, for example, we have
equations for the operators $\langle a(t)\rangle$ and $\langle a^{\uparrow}(t)\rangle$ averaged with respect to random force operators of the
fonns

$\frac{d}{dt}\langle a(t)\rangle=-i\omega\langle a(t)\rangle-\kappa\langle a(t)\rangle$, (1)

$\frac{d}{dt}\langle a^{\uparrow}(t)\rangle=i\omega\langle a^{\uparrow}(t)\rangle-\kappa.\langle a^{\uparrow}(t)\rangle$ , (2)

with the initial condition

$\langle a(0)\rangle=a$ , \langle $a^{\uparrow}(0)^{\backslash },$
$=a^{\uparrow}$ , (3)

where a and $a^{\uparrow}$ satisfy the canonical commutation relation

[a,$a^{\uparrow}]=1$ . (4)

The equal-time commutation relation for these operators decays in time:

$[\langle a(t)\rangle, \langle a^{\uparrow}(t)\rangle]=\mathrm{e}^{-2\kappa t}$ . (5)

Random force operators $df(t)$ and $df^{\uparrow}(t)$ are introduced in order to rescue this situation. If the random
force operators in the Langevin equations

da(t) $=-iwa(t)dt$ $-na(t)dt+\sqrt{2\kappa}df(t)$ , (6)
$da^{\uparrow}(t)=i\omega a^{\dagger}(t)dt-\kappa a^{\dagger}(t)dt+\sqrt{2\kappa}df^{\uparrow}(t)$ , (7)

satisfy

$[df(t), df^{\mathrm{t}}(t)]=dt$ , (8)

the equal-time commutation relation for the stochastic operators $a(t)$ and $a^{\uparrow}(t)$ preserves in time:

d $([a(t), a^{\uparrow}(t)])=0$ , (9)

meaning that

$[a(t), a^{\uparrow}(t)]=1$ , (10)
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The above argument is of zero temperature related only to the zer0-point fluctuation. However, it
has been extended to include the situations for finite temperature. Then, we have acrucial question.
Should we interpret that the origin of thermal dissipation is quanrum mechanical? In this paper, we
will investigate this question with the help of the system of the stochastic differential equations within
Non-Equilibrium Thermo Field Dynamics (NETFD) [11-38].

NETFD is acanonical operator formalism of quantum systems in far-from-equilibrium state which
provides us with aunified formulation for dissipative systems by the method similar to the usual quantum
field theory that accommodates the concept of the dual structure in the interpretation of nature, i.e.
in terms of the operator algebra and the representation space. The representation space of NETFD
(named therrmal space) is composed of the direct product of two Hilbert spaces, the one for non-tilde
fields and the other for tilde fields. It can be said that NETFD is aframework which gives afoundation
of Green’s function formalisms, such as Schwinger’s closed-time path method, Keldysh-method, and so
on [39-41], in terms of dissipative quantum field operators within the representation space constructed
on an unstable vacuum.

In the extension to take account of the quantum stochastic processes [23-28], NETFD again allowed
us to construct aunified canonical theory of quantum stochastic operators. The stochastic Liouville
equations both of the Ito and of the Stratonovich types were introduced in the Schr\"odinger representation.
Whereas, the Langevin equations both of the Ito and of the Stratonovich types were constructed as the
Heisenberg equation of motion with the help of the time-evolution generator of corresponding stochastic
Liouville equations (Fig. 1). The Ito formula was generalized for quantum systems.

NETFD has been applied to various systems, $\mathrm{e}.\mathrm{g}$ . the dynamical rearrangement of thermal vacuum in
superconductor [29], spin relaxation [30], various transient phenomena in quantum optics [31-35], non-
linear damped harmonic oscillator [36], the tracks in the cloud chamber (a non-demolition continuous
measurement) [37], microscopic derivation of the quantum Kramers equation [38].

Heisenberg Rep. Schr\"odinger Rep.

FIG. 1. System of the Stochastic Differential Equations within Non-Equilibrium Thermo Field Dynamics. RA
stands for the random average. VE stands for the vacuum expectation
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In the next section, the framework of NETFD will be briefly explained. In section III, two systems of
the stochastic differential equations will be introduced, one with non-unitary time evolution generator
and the other with unitary time evolution generator. Both systems are constructed to be consistent
with the same quantum master equation. The key is the existence of the fluctuation-dissipation theorem
between the multiple of martingale operators and the imaginary part of $\mathrm{h}\mathrm{a}\mathrm{t}- \mathrm{H}\mathrm{a}\mathrm{n}\dot{\mathrm{u}}\mathrm{l}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{l}$. In section $\mathrm{I}\mathrm{V}$,
two systems will be applied to the model of damped harmonic oscillator interacting with irrelevant ran-
dom force system by the linear dissipative coupling. It will be shown that both systems are consistently
applicable. The existence of the non-commutative random force operators is essential for the system
with unitary time evolution generator. In section $\mathrm{V}$ , two systems will be applied to the model of damped
harmonic oscillator interacting with irrelevant system by the position-position interaction. It will be
shown that the system with unitary time evolution generator cannot produce the framework which is
consistent with the master equation, since there appear only commutative random force operators in
martingale. Section $\mathrm{V}\mathrm{I}\mathrm{w}\mathrm{i}\mathrm{U}$ be devoted to summary and discussion.

II. FRAMEWORK OF NETFD

The dyna mics of physical systems is described, within NETFD, by the Schr\"odinger equation for the
thermal $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum $|0(t)\rangle$ :

$\frac{\partial}{\partial t}|0(t)\rangle=-i\hat{H}|0(t)\rangle$ . (11)

The time evolution generator $\hat{H}$ is an tildian operator satisfying
$(i\hat{H})^{\sim}=i.\hat{H}$ . (12)

The tilde conjugation $\sim \mathrm{i}\mathrm{s}$ defined by
$(A_{1}A_{2})^{\sim}=\overline{A}_{1}\overline{A}_{2}$ , (13)

$(c_{1}A_{1}+c_{2}A_{2})^{\sim}=c_{1}^{*}\overline{A}_{1}\dashv- c_{2}^{*}\overline{A}_{2}$ , (14)
$(\overline{A})^{\sim}=A$ , (15)

$(A^{\uparrow})^{\sim}=\overline{A}^{\uparrow}$ , (16)

where $c_{1}‘\delta 11\mathrm{d}$
$c_{2}$ are $c$-numbers. The tilde and non-tilde operators at an equal time are mutually com-

mutative:

$[A,\overline{B}]=0$ . (17)

The thermal $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $1|$ is the eigen-vector of the hat-Ha miltonian $\hat{H}$ with zero eigen-value:

$\langle$ $1|\hat{H}=0$ . (18)

This guarantees the conservation of the inner product between the bra and ket vacuums in time:

$\langle 1|0(t)\rangle=1$ . (19)

Let us assume that the thermal vacuums satisfy

$\langle 1|^{\sim}---\langle 1|, |0(f_{0})\rangle^{\sim}=|0(t_{0})\rangle$ , (20)

at acertain time $t=\mathrm{t}\mathrm{o}$ . Then, (12) guarantees that they are satisfied for all the time:

$\langle 1|^{\sim}=\langle 1|, |0(t)\rangle^{\sim}=|0(t)\rangle$ . (21)

The tilde operator and the non-tilde operator are related by the thermal state condition for the bra
vacu ums

$\langle$
$1|\tilde{A}=\langle 1|A^{\uparrow}$ , (22)

which reduces the numbers of the degrees of freedom to the original ones. The numbers of the degrees
of freedom were doubled by the introduction of tilde operators.

The observable operator $A$ should be an Hermitian operator consisting only of non-tilde operators.
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III. TWO SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS

A. Quantum Master Equation

Let us consider the system of quantum stochastic differential equations which is constructed to be
consistent with the quantum master equation (the quantum Fokker-Planck equation)

$\frac{\partial}{\partial t}|0(t)\rangle=-i\hat{H}|0(t)\rangle$ , (23)

with the hat-Hamiltonian

$\hat{H}=\hat{H}_{S}+i\hat{\Pi}$ , (24)

where

$\hat{H}_{S}=H_{S}-\tilde{H}_{S}$ , (25)

with $Hs$ being the Hamiltonian of arelevant system. It is easily seen that $\hat{H}s$ satisfies

$\langle$ $1|\hat{H}_{S}=0$ . (26)

It is assumed that the imaginary part 77 of the hat-Hamiltonian can be divided into two parts, i.e., the
relaxational part $\hat{\Pi}_{R}$ and the diffusive part $\hat{\Pi}_{D}$ :

$\hat{\Pi}=\hat{\Pi}_{R}+\hat{\Pi}_{D}$ , (27)

and each of them satisfies

$\langle$ $1|\hat{\Pi}_{R}=0$ , $\langle$ $1|\hat{\Pi}_{D}=0$ . (28)

Introducing the time-evolution operator $\hat{V}$ (t) by

$\frac{d}{dt}\hat{V}(t)=-i\hat{H}\hat{V}(t)$ , (29)

with the initial condition $\hat{V}(0)=1$ , we can define the Heisenberg operator

$A(t)=\hat{V}^{-1}(t)A\hat{V}(t)$ , (30)

which satisfies the Heisenberg equation

$\frac{d}{dt}A(t)=i[\hat{H}(t), A(t)]$ , (31)

for dissipative systems.
The equation of motion for the averaged quantity $\langle 1|A(t)|0\rangle$ is derived by means of the Heisenberg

equation (31) by taking its vacuum expectation:

$\frac{d}{dt}\langle 1|A(t)|0\rangle=i\langle 1|[f\grave{f}(t), A(t)]|\mathrm{O}\rangle$ . (32)

The same equation can be also derived with the help of the master equation (23) as

$\frac{d}{dt}\langle 1|A|\mathrm{O}(t)\rangle=-i\langle 1|A\hat{H}|0(t)\rangle$. (33)

We would like to emphasize here that the existence of the Heisenberg equation of motion (31) for coarse
grained operators is one of the notable features of NETFD. This enabled us to construct acanonical
formalism of the dissipative quantum field theory, where the coarse grained operators $a(t)$ etc. in the
Heisenberg representation preserve the equal-time canonical commutation relatio
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$[a(t), a^{\uparrow}(t)]=1$ , $[\tilde{a}(t),\tilde{a}^{\uparrow}(t)]=1$ . (34)

Note that we have an equation of motion for avector $\langle$ $1|A(t)$ :

$\frac{d}{dt}\langle 1|A(t)=i\langle 1|[\hat{H}(t), A(t)]$

$=i(1|[H_{S}(t), A(t)]$

$-\kappa\{\langle 1|[A(t), a^{\uparrow}(t)]a(t)+\langle 1|a^{\uparrow}(t)[a(t), A(t)]\}+2\kappa r^{-}\mathrm{t}\langle 1|[a(t), [A(t), a^{\uparrow}(t)]]$ (35)

in terms of only non-tilde operators with the help of the condition (71). Applying the $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum |0\rangle to
(35), we obtain the equation of motion for the averaged quantity (32).

B. Non-Unitary Time-Evolution

The system of stochastic differential equations with non-unitary time evolution is constructed by the
following general procedures.

The stochastic Liouville equation

$d|0f(t)\rangle\rangle=-i\hat{\mathcal{H}}f.tdt|0f(t)\rangle\rangle$ , (36)

of the Ito type is specified with the stochastic hat-Hamiltonian

$\hat{\mathcal{H}}_{f,t}dt=\hat{H}dt+d\hat{\mathrm{A}}f_{t}$

$=\hat{H}sdt+i\hat{\Pi}dt+d\hat{M}_{t}$ , (37)

where $\Pi\wedge=\hat{\Pi}_{R}+\hat{\Pi}_{D}$ is the same that appeared in the master equation (23). The martingale operator
$d\hat{M}_{t}$ annihilates the $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $1|$ of the relevant system:

$\langle$ $1|d\hat{M}_{t}=0$ , (38)

which means that the stochastic Liouville equation (36) preserves its probability just within the relevant
system. This feature is the same as the one within the system of stochastic differential equations for
classical systems. The martingale operator satisfies the fluctuation-dissipation theorem of the second
kind:

$d\hat{M}_{t}d\hat{M}_{t}=-2\hat{\Pi}_{D}dt$ , (39)

which should be interpreted as aweak relation.’
Applying $\langle$ $|$ to (36), we have an equation for

$|0(t)\rangle=\langle|0_{f}(t)\rangle\rangle$ , (40)

which is nothing but the quantum master equation (23).
Introducing the stochastic time evolution operator

$d\hat{V}f(t)=-i\hat{\mathcal{H}}f,tdt\hat{V}f(t)$ , (41)

we can define the stochastic Heisenberg operator

$\mathrm{A}(\mathrm{t})=\hat{V}_{f}^{-1}(t)A\hat{V}f(t)$ , (42)

which satisfies the stochastic Heisenberg equation (the Langevin equation)

’It is similar to the classical cases where the fluctuation-dissipation theorem of the second kind is specified
within the stochastic limit
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dA(t)=i $[\hat{\mathcal{H}}f(t)dt,$ $A(t)_{\mathrm{J}}^{\rceil}-d\hat{M}(t)[d\hat{M}(t), A(t)]$ , (43)

of the Ito type. Here, we introduced the martingale operator in the Heisenberg representation by

$d\hat{M}(t)=d(\hat{V}_{f}^{-1}(t)M_{t}\hat{V}_{f}(t))$ . (44)

Note that

$d\hat{M}(t)=d’\hat{M}(t)$ . (45)

with

$d’\hat{M}(t)=\hat{V}_{f}^{-1}(t)d\mathrm{A}f_{t}\hat{V}f(t)$ . (46)

Making use of the relation of the ItO-Stratonovich stochastic calculus (see Appendix B), we can derive
from (36) the stochastic Liouville equation

$d|0f(t)\rangle\rangle=$ Hfitdt $\circ|0f(t)\rangle\rangle$ , (47)

of the Stratonovich type, where the symbol $\circ$ indicates the Stratonovich stochastic multiplication. The
stochastic hat-Hamiltonian

Hfitdt $=\hat{H}sdt+i\hat{\Pi}Rdt+d\hat{M}_{t}$ , (48)

contains only the relaxational part $\hat{\Pi}_{R}$ .
With this hat-Hamiltonian, we can write down the stochastic Heisenberg equation

$dA(t)=i1^{\hat{H}}f(t)dt\circ$, $A(t)]$ , (49)

of the Stratonovich type. Note that it does not have the term producing diffusive time-evolution, which
is the same characteristics that appeared in the system of classical stochastic differential equations.

C. Unitary Time-Evolution

The system of stochastic differential equations with unitary time-evolution is constructed by the fol-
lowing general procedures.

The stochastic Liouville equation

$d|0_{f}(t)\rangle\rangle=-i\hat{H}_{f,t}^{U}dt\circ|0_{f}(t)\rangle\rangle$ , (50)

of the Stratonovich type is specified with the stochastic hat-Hamiltonian

$\hat{H}_{f,t}^{U}dt=\hat{H}_{S}dt+d\Lambda\hat{f}_{t}^{U}$ , (51)

with the Hermitian martingale operator

$(d\hat{M}_{t}^{U})^{\uparrow}=d\hat{M}_{t}^{U}$ . (52)

Note that (50) does not satisfy generally the conservation of probability just within the relevant system,
i.e.,

$\langle$
$1|d\hat{M}_{t}^{U}\neq 0$ , (53)

but it does within whole the system, the relevant and irrelevant systems, i.e.,

$\langle\langle$
$1|d\Lambda\hat{\prime}f_{t}^{U}=0$ . (54)

Here, $\langle\langle$ $1|=\langle 1|\langle|$ with $\langle$ $|$ being the $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum of the quantum Brownian motion (see Appendix $\mathrm{C}$). The
martingale operator satisfies the fluctuation-dissipation theore
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$d\mathrm{A}\hat{f}_{t}^{U}d\hat{M}_{t}^{U}=-- 2\hat{\Pi}dt$ , (55)

of the second kind.
Introducing the unitary stochastic time evolution operator $\hat{U}_{f}(t)$ by

$d\hat{U}_{f}(t)=-i\hat{H}_{f,t}^{U}dt\circ$ $\text{\^{U}}_{f}(t)$ , (56)

with the initial condition $\hat{U}_{f}(0)=1$ , we can define the stochastic Heisenberg operator

$\mathrm{A}(\mathrm{t})=\hat{U}_{f}^{-1}$ (t)A\^Uf(t), (57)

which satisfies the stochastic Heisenberg equation (the Langevin equation)

$dA(t)=i[\hat{H}_{f}^{U}(t)dt\circ, A(t)]$ , (58)

of the Stratonovich type. Note that the time evolution generator $\hat{U}_{f}(t)$ is aunitary operator:

$\hat{U}_{f}^{1}(t)=\hat{U}_{f}^{-1}(t)$ . (59)

By making use of the relation between the Ito and Stratonovich stochastic calculus, we can derive
from (50) the stochastic Liouvile equation

$d|0_{f}(t)\rangle\rangle---i\hat{\mathcal{H}}_{f,t}^{U}dt|0f(t)\rangle\rangle$ , (60)

of the Ito tyPe with the stochastic hat-Hamiltonian

$\hat{\mathcal{H}}_{f,t}^{U}=\hat{H}dt+d\mathrm{A}\hat{I}_{t}^{U}$ . (61)

APPlying $\langle$ $|$ to (60), we see easily that it reduces to the quantum master equation (23).
Within the Ito calculus, the time evolution operator $\hat{U}_{f}(t)$ satisfies

$d\hat{U}f(t)=-i\hat{\mathcal{H}}_{f,t}^{U}dt\hat{U}f(t)$ , (62)

with the initial condition $\hat{U}_{f}(0)=1$ . The stochastic Heisenberg operator $A(t)$ defined by (57) satisfies
the stochastic Heisenberg equation

$dA(t)=i[\hat{\mathcal{H}}_{f}^{U}(t)dt, A(t)]-d\hat{M}^{U}(t)[d\hat{M}^{U}(t), A(t)]$ , (63)

of the Ito type. Here, we introduced the martingale operator in the Heisenberg representation by

$d\hat{M}^{U}(t)=d(\hat{U}_{f}^{-1}(t)M^{U}\hat{U}f(tt))$ . (61)

Note that [37]

d\^Af $(t)=d’\hat{M}^{U}(t)$ , (63)

with

$d’\hat{M}^{U}(t)=\hat{U}_{f}^{-1}(t)dM_{t}^{U}\hat{U}f(t)$ . (66)

IV. APPLICATION TO QUANTUM DAMPED HARMONIC OSCILLATOR

A. Quantum Master Equation

The hat-Hamiltonian of the semi-free field is $\mathrm{b}\mathrm{i}$-linear in $(a,\tilde{a}, a^{\uparrow},\tilde{a}^{\uparrow})$ , and is invariant under the phase
transformation a $arrow a\mathrm{e}^{i\theta}$ :

$\hat{H}=g_{1}a^{\uparrow}a+g_{2}\tilde{a}^{\dagger}\tilde{a}+g3aa+g_{4}a^{\uparrow}\tilde{a}^{\uparrow}+g\mathit{0}$ , (57)
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where $\#’ \mathrm{s}$ are time-dependent $\mathrm{c}$-number complex functions.
The operators $a,\tilde{a}\dagger$ , etc. satisfy the canonical commutation relation:\dagger

$[a_{\mathrm{k}}, a_{\mathrm{k}}^{\uparrow},]=\delta_{\mathrm{k},\mathrm{k}’}$ , $[\tilde{a}_{\mathrm{k}},\tilde{a}_{\mathrm{k}}^{\uparrow},]=\delta_{\mathrm{k},\mathrm{k}’}$ . (68)

The tilde and non-tilde operators are mutually commutative. Throughout this paper, we do not label
explicitly the operators $a,\tilde{a}^{\uparrow}$ , etc. with asubscript $\mathrm{k}$ for specifying amomentum $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ other degrees
of freedom. However, remember that we are dealing with adissipative quantum field.

The tildian nature $(i\hat{H})^{\sim}=i\hat{H}$ makes (67) tildian:

$\hat{H}=\omega(a^{\uparrow}a-\tilde{a}^{\dagger}\tilde{a})+i\hat{\Pi}$ , (69)

with

$\hat{\Pi}=c_{1}(a^{\dagger}a+\tilde{a}^{\uparrow}\tilde{a})+c2aa+c_{3}a^{\uparrow}\tilde{a}^{\uparrow}+c_{4}$, (70)

where $\omega$ $=\Re \mathrm{e}g_{1}=-\Re \mathrm{e}g_{2}$ , $c_{1}=\mathrm{G}\mathrm{m}$ $g_{1}=\mathrm{G}\mathrm{m}$ $g_{2}$ , $c_{2}=\Im \mathrm{m}g_{3}$ , $c_{3}=\mathrm{G}\mathrm{m}$ $g_{4}$ and $c_{4}=\Im \mathrm{m}$ go.
With the help of (22) for $A=a$ :

$\langle$
$1|\tilde{a}=\langle 1|a^{\dagger}$ , (71)

the property $\langle$ $1|\hat{H}=0$ gives us the relations

$2c_{1}+c_{2}+c_{3}=0$ , $c_{3}+c_{4}=0$ . (72)

Then, (70) reduces to

$\hat{\Pi}=c_{1}(a^{\dagger}a+\tilde{a}^{\uparrow}\tilde{a})-c2aa-(2c_{1}+c_{2})a^{\dagger}\tilde{a}^{\dagger}+(2c_{1}+c_{2})$. (73)

Let us write down here the Heisenberg equations for $a$ and $a^{\uparrow}:$

$\frac{d}{dt}a(t)=-\mathrm{i}\mathrm{u}\mathrm{a}(\mathrm{t})+c_{1}a(t)-(2c_{1}+c_{2})\tilde{a}^{\Uparrow}(t)$ , (74)

$\frac{d}{dt}a^{\Uparrow}(t)=i\omega a^{\Uparrow}(t)-c_{1}a^{1\dagger}(t|\backslash$ -Cla(t). (75)

Since the semi-free hat-Hamiltonian $\hat{H}$ is not necessarily Hermite, we introduced the symbol $\dagger\uparrow$ in order
to distinguish it from the Hermite conjugation \dagger . However in the following, we will use \dagger instead of \dagger \dagger ,
for simplicity, unless it is confusing. By making use of the Heisenberg equations (74) and (75), we obtain
the equation of motion for avector $\langle$ $1|a(\dagger t)a(t)$ in the form

$\frac{d}{dt}\langle 1|a^{\uparrow}(t)a(t)=-2\kappa\langle 1|a^{\uparrow}(t)a(t)+i\Sigma^{<}\langle 1|$, (76)

where we introduced $\kappa$ and $\Sigma^{<}$ respectively by

$\kappa=c_{1}+c_{2}$ , (77)
$\Sigma^{<}=i(2c_{1}+c_{2})$ . (78)

In deriving (76), we used the thermal state condition (22) in order to eliminate tilde operators.
Applying the thermal ket vacuum $|0\rangle$ to (76), we obtain the equation of motion for the one-particle

distribution function
$n(t)=\langle 1|a^{\Uparrow}(t)a(t)|0\rangle=\langle 1|a^{\dagger}a|0(t)\rangle$ , (79)

$\uparrow \mathrm{T}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{g}\mathrm{h}\mathrm{o}\mathrm{u}\mathrm{t}$ this paper, we confine ourselves to the case of boson fields, for simplicity. The extension to the
case of fermion fields are rather straightforward
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$\frac{d}{dt}n(t)=-2\mathrm{K}\mathrm{n}(\mathrm{t})+i\Sigma^{<}$ . (80)

The equation (80) is the Boltzmann equation of the system. The function $\Sigma^{<}$ is given when the inter-
action hat-Hamiltonian is specified.

The initial $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum $|0$) $=|0(t=0))$ is specified by

$a|0\rangle=f\tilde{a}^{\mathfrak{j}}|0\rangle$ , (81)

with areal quantity $f$ . Here, we are neglecting the initial correlation [42]. The initial condition of the
one particle distribution function $n=n(t=0)$ can be derived by treating $\langle 1|a\tilde{a}|\mathrm{O}\rangle$ as follows. In the
first place,

$\langle 1|a\tilde{a}|\mathrm{O}\rangle=\langle 1|afa^{\uparrow}|0\rangle$

$=f(\langle 1|a^{\uparrow}a|0\rangle+\langle 1|0\rangle)$

$=f(n+1)$ , (82)

where we used the tilde conjugate of (81) for the first equality, and the canonical commutation relation
(68) for the second. On the other hand,

$(1|a\tilde{a}|\mathrm{O}\rangle=(1|\tilde{a}a|0\rangle$

$=\langle 1|a^{\uparrow}a|0\rangle$

$=n$. (83)

Here, for the first equality, we used (17), i.e., the commutativity between the tilde and non-tilde operators,
and, for the second equalty, (71). Equating (82) and (83), we see that

n $= \frac{f}{1-f}$ , (f $= \frac{n}{1+n})$ . (84)

If it is assumed that there is only one stationary state, we can refer the stationary state as athermal
equilibrium state. We will assign the thermal equilibrium state to be specified by the Planck distribution
function with temperature $T$ :

$n(t arrow\infty)=\overline{n}=.\frac{1}{\mathrm{e}^{\omega/T}--1}$ . (85)

Then, we have from (80)

$i\Sigma^{<}=2\kappa\overline{n}$ . (86)

In this case, the Boltzmann equation (80) reduces to

$\frac{d}{dt}n(t)=-2r.(n(t)-\overline{n})$ . (87)

Solving (77) and (78) with respect to $c_{1}$ and $c_{2}$ , a1ld substituting (86) for $\Sigma^{<}$ into (70), we finally
arrive at the most general form of the semi-free hat-Hamiltoni an $\hat{H}$ corresponding to the stationary
process [13]:

$\hat{H}=\hat{H}_{S}+i\hat{\Pi}$ , (88)

where

$\hat{H}s=Hs-\tilde{H}s$ , $H_{S}=\omega a^{\uparrow}a$, (80)

$\hat{\Pi}=-\kappa[(1+2\overline{n})(a^{\uparrow}a+\tilde{a}^{\uparrow}\tilde{a})-2(1+\overline{n})a\tilde{a}-2\overline{n}a^{\uparrow}\tilde{a}^{\uparrow}]-2\kappa\overline{n}$. (80)
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This hat-Hamiltonian is the same expression as the one derived by means of the principle of correspon-
dence $[11,12]$ when NETFD was constructed first by referring to the projection operator formalism of
the damping theory [43-45]. The hat-Hamiltonian (88) with (89) and (90) describes time-evolution of
the system of adamped harmonic oscillator.

Adetailed investigation of the system is given in Appendix A. Here we just write down an attractive
expression which leads us to anew concept, named spontaneous creation of dissipation. The expression
is given by

$|0(t) \rangle=\exp[-\int d^{3}k\langle 1|\gamma_{k,t}\tilde{\gamma}_{k,t}|0\rangle\gamma_{k}^{*}.\tilde{\gamma}_{k}^{*}]|0\rangle$ (91)

where

$\langle 1|\gamma_{k,t}\tilde{\gamma}_{k,t}|0\rangle=-n_{k}(t)+n_{k}(0)$ (92)

is the order parameter for dissipative time evolution of the unstable vacuum. The annihilation and
creation operators

$\gamma_{k,t}^{\mu=1}=\gamma_{k,t}$ , $\gamma_{k,t}^{\mu-2}----\tilde{\gamma}_{k}^{*}.$ , (93)

$\overline{\gamma}_{k,t}^{\mu_{-}^{-}1}=\gamma_{k}^{*}$ , $\overline{\gamma}_{k,t}^{\mu=2}.=-\tilde{\gamma}_{k,t}$ , (94)

are defined by

$\gamma_{k,t}^{\mu}=B_{k}(t)^{\mu\nu}a_{k}^{\nu}$ , $\overline{\gamma}_{k,t}^{\mu}=\overline{a}_{k}^{\nu}B_{k}^{-1}(t)^{\nu\mu}$ , (95)

with the time-dependent Bogoliubov transformation:

$B_{k}(t)^{\mu\nu}=(1+n_{k}(t)-1-n1k,(t))$ . (96)

They satisfy the canonical commutation relation

$[\gamma_{k,t}^{\mu},\tilde{\gamma}_{k,t}^{\nu},]=\delta_{k,k’}.\delta^{/A\nu}$ , (97)

and annihilate the bra- and $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuums at time $t$ :

$\gamma_{k,t}|0(t)\rangle=0$ , $\langle$
$1|\tilde{\gamma}_{k}^{*}=0$. (98)

B. Non-Unitary TimeEvolution

Confining ourselves to the case where the interaction hat-Hamiltonian between the relevant system
and the irrelevant system of Brownian motion is $\mathrm{b}\mathrm{i}$-linear in ( $a$ , $a^{\uparrow}$ , and their tilde conjugates) and
($dBJ$ , $dB_{t}^{1}$ , and their tilde conjugates), and is invariant under the phase transformation $aarrow a\mathrm{e}^{:\theta}$ , and
$dB_{t}arrow dB_{t}\mathrm{e}^{i\theta}$ , the martingale operator satisfying (38) is given by

: $d\hat{M}_{t}$ : $=i(\gamma^{*}dW_{t}+\tilde{\gamma}^{*}d\tilde{W}_{t})$ , (99)

where we introduced the random force operator

$dW_{t}=\sqrt{2\kappa}(\mu dB_{t}+\nu d\tilde{B}_{t}^{\uparrow})$ , (100)

and the annihilation and creation operator

$\gamma_{\nu}=\mu a+\nu\tilde{a}^{\dagger}$ , $\gamma^{*}=a^{\dagger}-\tilde{a}$, (101)

of the relevant system with $\mu+\nu=1$ , which satisfy the commutation relation
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$[\gamma_{\nu}$ , $\gamma^{*}|=1$ , (102)

and annihilate the relevant bra-vacuum:

$\langle$ $1|\gamma^{*}=0$ , $\langle$
$1|\tilde{\gamma}^{*}=0$ . (103)

Note that the normal ordering : $\cdots$ : in (99) is defined with respect to the annihilation and the creation
operators. Making use of the annihilation and the creation operators, we can rewrite $\hat{\Pi}_{R}$ and $\hat{\Pi}_{D}$

consisting of $\hat{\Pi}$ introduced in (90) as

$\hat{\Pi}_{R}=-\kappa(\gamma^{*}\gamma_{\nu}+\tilde{\gamma}^{*}\tilde{\gamma}_{\nu})$ , (104)

$\hat{\Pi}_{D}=2\kappa(\overline{n}+\nu)\gamma^{*}\tilde{\gamma}^{*}$ . (105)

The Langevin equations for $a(t)$ and $a^{\uparrow}(t)$ are given by

da(t) $=-iua\{t$) $dt$ $-\kappa[(\mu-\nu)a(t)+2\nu\tilde{a}^{\mathrm{t}}(t)]dt+dW_{t}$ , (106)
$da^{\mathrm{t}}(t)=i\omega a^{\uparrow}(t)dt-\kappa[2\mu\tilde{a}(t)-(\mu-\nu)a^{\mathrm{t}}(t)]dt+d\tilde{W}_{t}$, (107)

where we used the facts

$dW(t)=dWt$ , $d\dagger\tilde{V}(t)=d\tilde{W}_{t}$ . (103)

If we put $\nu=1/2$ , then $\mu=1/2$ , (106) and (107) reduce, respectively, to

da$(t)=-i\omega a(t)dt-\kappa\tilde{a}^{\uparrow}(t)dt+dW_{t}$ , (109)
$da^{\mathfrak{j}}(t)=i\omega a^{\uparrow}(t)dt-\kappa\tilde{a}(t)dt+d\tilde{W}_{t}$ . (110)

Although $dW_{t}$ and $d\tilde{W}_{t}$ are commutative, we have the conservation of the equal-time canonical commu-
tation relation

$d([a(t), a^{\uparrow}(t)])=0$ . (Ill)

Applying the $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle\langle$ $1|$ to (106) and (107), we have, for any value of $\nu$ ,

$d\langle\langle 1|a(t)=-i\omega\langle\langle 1|a(t)dt.-\kappa\langle\langle 1|a(t)dt+\sqrt{2\kappa}\langle\langle 1|dB_{t}$ , (112)
$d\langle\langle 1|a^{\mathrm{t}}(t)=i\omega(\langle 1|a^{\uparrow}(t)dt-\kappa\langle\langle 1|a^{\uparrow}(t)dt+\sqrt{2\kappa}\langle\langle 1|dB_{t}^{1}.$ (113)

Note that these Langevin equations for the vector $\langle\langle$ $1|a(t)$ and $\langle\langle$ $1|a^{\uparrow}(t)$ have, respectively, the same
structure as (6) and (7).

C. Unitary Time-Evolution

The unitary martingale operator satisfying (52) is given by

: $d\hat{M}_{t}^{U}$ : $=i\mathit{5}$ : $(a^{\uparrow}dB_{t}-dB_{t}^{\uparrow}a+\mathrm{t}.\mathrm{c}.)$ :

$=i(\gamma^{*}dW_{t}+\tilde{\gamma}^{*}d\tilde{W}_{t})-i(dW_{t}^{*}\gamma_{\nu}+d\tilde{W}_{t}^{*}\tilde{\gamma}_{\nu})$ : (I11)

with t.c indicating tilde conjugate. Note that there is no cross term between tilde and non-tilde operators.
Here, we introduced new random force operators

$dW_{t}^{*}=\sqrt{2\kappa}(dB_{t}^{\dagger}-d\tilde{B}_{t})$ , (115)

which annihilates the $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $|$ of the irrelevant system:

$\langle$ $|dW_{t}^{*}=0$ , $\langle$ $|d\tilde{W}_{t}^{*}=0$, (110)
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and satisfies the commutation relation

$[dW_{t}, dW_{t}^{*}]=2\kappa$ . (117)

The expression (114) is consistent with the microscopic Hamiltonian of the linear dissipative coupling.
The martingale operator (114) satisfies the fluctuation-dissipation theorem (55) with (90). Therefore,

we conclude that there exists the system of stochastic differential equations with unitary time-evolution
operator consistent with the quantum master equation (23) with the hat-Hamiltonian (88).

The Langevin equations for $a(t)$ and $a^{\uparrow}(t)$ are given by

da(t) $=-iua(t)dt+\sqrt{2\kappa}dB(t)$ , (118)
$da^{\uparrow}(t)=i\omega a^{\dagger}(t)dt+\sqrt{2\kappa}dB^{\dagger}(t)$ , (119)

where the operators $dB(t)$ and $dB\dagger(t)$ in the Heisenberg representation are defined by

$\sqrt{2\kappa}dB(t)=\hat{U}_{f}^{-1}(t)\circ\sqrt{2\kappa}dB_{t}\circ\hat{U}f(t)$

$=\sqrt{2\kappa}dB_{t}$ -sa(t)dt, 120)
$\sqrt{2\kappa}dB^{\uparrow}(t)=\hat{U}_{f}^{-1}(t)\circ\sqrt{2\kappa}dB^{\uparrow}\circ\hat{U}tf(t)$

$=\sqrt{2\kappa}dB_{t}^{\mathfrak{j}}-\kappa a^{\uparrow}(t)dt$ . (121)

In deriving (120) and (121), we used the properties

$[ \hat{U}_{f}(t)\circ, \sqrt{2\kappa}dB_{t}]=[\hat{U}_{f}(t), \sqrt{2\kappa}dB_{t}]+\frac{1}{2}[d\text{\^{U}}_{f}(t), \sqrt{2\kappa}dB_{t}]$

$=\kappa a\hat{U}_{f}(t)dt$ , (122)

$[\hat{U}f(t)\circ, \sqrt{2\kappa}dB_{t}^{\uparrow}]---\kappa a^{\uparrow}\hat{U}f(t)dt$. (123)

and

$[\hat{U}f(t), dB_{t}]=[\hat{U}f(t), dB_{t}^{\uparrow}]=0$ , (124)

which comes from the characteristics of the Ito multiplication:

$\langle|\hat{U}f(t)dB_{t}|\rangle=\langle|\hat{U}f(t)dB_{t}^{\dagger}|\rangle=0$ . (125)

Substituting (120) and (121), and applying $\langle\langle$ $1|$ , (118) and (119) reduce to (112) and (113) having the
same structures as (6) and (7), respectively.

V. APPLICATION TO QUANTUM KRAMERS EQUATION

A. Quantum Master Equation

Let us find out the general structure of hat-Hamiltonian which is bilinear in $(x, p,\tilde{x},\tilde{p})$ . $x$ and $p$

satisfies the canonical commutation relation

$[x, p]=i$ . (126)

Accordingly, $\tilde{x}$ and $\tilde{p}$ satisfies

$[\tilde{x},\tilde{p}]=-i$ . (127)

The conditions, $(i\hat{H})^{\sim}=i\hat{H}$ , and $\langle$ $1|\hat{H}=0$ give us the general expression

$\hat{H}=\hat{H}_{S}\neq iff$ , 128)
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$\hat{H}_{S}=H_{S}-\tilde{H}_{S}$ , $H_{S}= \frac{1}{2\sqrt}p^{2}+\frac{m\omega^{2}}{2}x^{2}$ , (129)

$\hat{\Pi}=\hat{\Pi}_{R}+\hat{\Pi}_{D}$ , (130)

with

$\hat{\Pi}_{R}=-i\frac{1}{2}\kappa(x-\tilde{x})(p+\tilde{p})$ ,

$\hat{\Pi}_{D}=-\frac{1}{2}\kappa m\omega(1+2\mathrm{n})(x-\tilde{x})^{2}$ (131)

Here, we neglected the diffusion in $x$-space. The Schr\"odinger equation

$\frac{\partial}{\partial t}|0(t)\rangle=-i\hat{H}|0(t)\rangle$ , (132)

gives the quantum Kramers equation [46].
The Heisenberg equation for the dissipative system is given by

$\frac{d}{dt}x(t)=i[\hat{H}(t)\dot, x(t)]$

$= \frac{1}{m}p(t)+\frac{1}{2}\kappa\{x(t)-\tilde{x}(t)\}$ , (133)

$\frac{d}{dt}p(t)=-muJ^{2}x(t)-\frac{1}{2}\kappa\{p(t)+\tilde{p}(t)\}+i\kappa rmv(1+2\mathrm{n})\{x(t)-\tilde{x}(t)\}$ . (134)

Applying the $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $1|$ of the relevant system, we have the equations for the vectors:

$\frac{d}{dt}\langle 1|x(t)=\sqrt\underline{1}\langle 1|p(t)$ ,

$\frac{d}{dt}(1|p(t)=-,n\omega^{2}\langle 1|x(t)-\kappa\langle 1|p(t).$ (135)

B. Non-Unitary Time-Evolution

The stochastic Liouville equation within the Ito calculus becomes

$d|0f(t)\rangle\rangle=-i\acute{\mathcal{H}}f,’ dt|0f(t)\rangle\rangle$ , (136)

with the stochastic hat-Hamiltonian

$\hat{\mathcal{H}}_{f,t}dt=\hat{H}dt\cdot\vdash d\hat{M}_{t}$ . (137)

Here, the martingale operator $d\hat{M}_{t}$ satisfying (38) is defined by

$d\hat{M}_{t}=(x-\tilde{x})(dX_{t}+d\tilde{X}_{t})$ , (138)

with

$dX_{t}= \frac{\sqrt{\kappa mu/}}{2}(dB_{t}+dB_{t}^{1})$ , (139)

where $dXt$ ) $dB_{t}^{1}$ and their tilde conjugates are the operators representing quantum Brownian motion (see
Appendix $\mathrm{C}$). The generalized fluctuation-dissipation theorem is given by

$d\hat{M}_{t}d\hat{M}_{t}=-2\hat{\Pi}Ddt$ . (130)
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Taking arandom average, the stochastic Liouville equation (136) reduces to the quantum master equation
(132) with $|0(t)\rangle=\langle|\mathrm{o}_{f}(t)\rangle\rangle$ .

The stochastic Heisenberg equation (the Langevin equation) for this hat-Hamiltonian is given by

$dx(t)=i[\hat{\mathcal{H}}f(t)dt, x(t)]-d\hat{M}(t)[d\hat{M}(t), x(t)]$

$= \frac{1}{m}p(t)dt+\frac{1}{2}\kappa\{x(t)-\mathrm{x}(\mathrm{t})\}dt$ , (141)

$dp(t)=-m \omega^{2}x(t)dt-\frac{1}{2}\kappa\{\mathrm{p}(\mathrm{t}) \mathrm{p}(\mathrm{t})\}dt-(dX_{t}+d\tilde{X}_{t})$ , (142)

where we used the properties

$dX(t)=dX_{t}$ , $d\tilde{X}(t)=d\tilde{X}_{t}$ . (143)

Applying the bra vacuum $\langle\langle$ $1|$ to (141) and (142), we have the Langevin equations for vectors

$d\langle\langle 1|x(t)=\sqrt\underline{1}\langle\langle 1|p(t)dt$ , (144)

$d\langle\langle 1|p(t)=-\mathit{7}7l\omega^{2}\langle\langle 1|x(t)dt-\kappa\langle\langle 1|p(t)dt-2\langle\langle 1|dX_{t}$ . (143)

The averaged equation of motion is given by applying $|0\rangle$ to (144) and (145) in the forms

$\frac{d}{dt}\langle\langle x(t)\rangle\rangle=\frac{1}{m}\langle\langle p(t)\rangle\rangle$, (146)

$\frac{d}{dt}\langle\langle p(t)\rangle\rangle=-m\omega^{2}\langle\langle x(t)\rangle\rangle-\kappa\langle\langle p(t)\rangle\rangle$, (147)

where $\langle\langle\cdots\rangle\rangle=\langle 1|\langle|\cdots|\rangle|1\rangle$ . The vacuums $\langle$ $|$ and $|\rangle$ are introduced in Appendix C. These averaged
equations can be also derived from (133) and (134) by taking the average $\langle\langle\cdots\rangle\rangle$ .

C. Unitary Time-Evolution

The martingale operator representing position-position interaction may be given by

$dM_{t}^{U}=xdX_{t}-\tilde{x}d\tilde{X}_{t}$ . (148)

We did not include the crossing terms between tilde and non-tilde operators to be consistent with the
microscopic interaction Hamiltonian.

The fluctuation-dissipation theorem for this martingale operator is given by

$dM_{t}^{U}dM_{t}^{U}=-2\hat{\Gamma}I^{U}dt$, (149)

with

$\Pi^{U}=-\frac{\kappa m\omega}{8}\wedge$ (1+271) $(x-\tilde{x})^{2}$ (150)

Then, the Ito stochastic hat-Hamiltonian becomes

$\hat{\mathcal{H}}_{f,t}^{U}dt=\hat{H}^{U}dt+dM_{t}^{U}$ , (151)

where

$\hat{H}^{U}=\hat{H}_{6},$ $+i\Pi^{U}\wedge$ . (152)

is the hat-Hamiltonian for the master equation. Tlrc master equation is different from (23).
The stochastic Heisenberg equations (the Langevin equations) for $x(t)$ and $p(t)$ become

$dx(t)= \frac{1}{m}p(t)dt$ , (133)

$dp(t)=-m\omega^{2}x(t)dt-dt$ , (134)
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where we used the fact

$dX(t)=dX_{t}$ . (155)

Applying $\langle\langle$ $1|$ to (153) and (154), we have the Langevin equations for the vectors $\langle\langle$ $1|x(t)$ and $\langle\langle 1|p(t)$

in the forms

$d \langle\langle 1|x(t)=\frac{1}{m}(\langle 1|p(t)dt,$ (156)

$d\langle\langle 1|p(t)=-m\omega^{2}\langle\langle 1|x1_{\backslash }t$ ) $dt-\langle\langle 1|X_{t}$ , (157)

which are different from (144) and (145).

VI. SUMMARY AND DISCUSSION

Within the system of non-unitary time-evolution generator (non-unitary system), the time evolution
generator $V_{f}(t)$ is constituted by the commutative random force operators 4and $d\tilde{W}_{t}$ . Therefore, the
random force operators $dW(t)$ and $dX(t)$ in the Heisenberg representation is, respectively, equal to $dW_{t}$

and $dX_{t}$ in the Schr\"odinger representation, i.e.,

$dW(t)=dW_{t}$ , $dX(t)=dX_{t}$ . (158)

In the application of the system of unitary time-evolution generator (unitary system) to the damped
harmonic oscillator where the martingale operator is constituted by non-commutative random force
operators manifesting the linear dissipative coupling between the relevant and irrelevant sub systems,
the random force operators in the Heisenberg representation are related to those in the Schr\"odinger
representation by

$dW(t)=dW_{t}-\kappa\gamma_{\nu}(t)dt$, (159)
$dW^{*}(t)=dW_{t}^{*}-\kappa\gamma^{*}(t)dt$ . (160)

The second terms show up because of the non-commutativity. The appearance of these terms is essential
in order to make the unitary system consistent with corresponding master equation.

On the contrary, in the application of the unitary system to the quantum Kramers equation where
the martingale operator is constituted only by commutative random force operators manifesting the
position-position coupling between the relevant and irrelevant sub systems, the random force operators
in the Heisenberg representation is equal to those in the Schr\"odinger representation, i.e.,

$dX(t)=dX_{t}$ . (161)

Therefore, the unitary system cannot be consistent with corresponding master equation.
The above applications tells us that the origin of dissipation cannot be quantum mechanical. In spite

of this unsatisfactory nature of the unitary system, it is attractive since hat-Hamiltonian for microscopic
system is Hermitian and there is no mixing terms between tilde and non-tilde operators. The hat-
Hamiltonian should have the structure

$\hat{H}=H-\tilde{H}$ , $H^{\uparrow}=H$, (162)

for microscopic systems. In fact, we succeeded to extract the correct stochastic hat-Hamiltonian for the
stochastic Kramers equation by an appropriate coarse graining of operators (the stochastic mapping) in
time and corresponding renormalization of physical quantities [38]. The simple limit [49] does not give
us the correct Kramers equation. This something touchy situation should be investigated based on the
unified system of stochastic differential equations shown in this paper. It will be reported in the future
publications.
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APPENDIX A:NEW ASPECT FOR ADAMPED HARMONIC OSCILLATOR

1. Thermal Doublet

Let us introducing the thermal doublet notation by

$a(t)^{\mu=1}=a(t)$ , $a(t)^{\mu=2}=\tilde{a}^{\uparrow}(t)$ , (A3)
$\overline{a}(t)^{\mu=1}=a^{\dagger}(t)$ , $\overline{a}(t)^{\mu=2}=-\tilde{a}(t)$ . (A3)

Then, the canonical commutation relation can be written as

$[a(t)^{\mu},\overline{a}(t)^{\nu}]=\delta^{\mu\nu}$ . (A3)

Note that

$a(t)^{\mu}=\hat{V}^{-1}(t)a^{\mu}\hat{V}(t)$ , $\overline{a}(t)^{\mu}=\hat{V}^{-1}(t)\overline{a}^{\mu}\hat{V}(t)$ . (A3)

Making use of the thermal doublet notation, the hat-Hamiltonian (88) reduces to

$\hat{H}=\omega\overline{a}^{\mu}a^{/4}+i\hat{\Pi}+\omega$, (A5)
$\hat{\Pi}=-\kappa\overline{a}^{\mu}A^{\mu\nu},x^{\nu}+\kappa$ , (A6)

with

$A^{\mu\nu}=(\begin{array}{l}1+2\overline{n}-2\overline{n}2(1+\overline{n})-(1+2\overline{n})\end{array})$ . (A7)

The Heisenberg equations for the semi-free particle become

$\frac{d}{dt}a(t)^{\mu}=i[\hat{H}’(t), a(t)^{\mu}]$

$=-i[\omega\delta^{/\iota\nu}-i\kappa A^{\mu\nu}]a(t)^{\nu}$ .
$\frac{d}{dt}\overline{a}(t)^{\mu}=i[\hat{H}(t),\overline{a}(t)^{\mu}]$

$=\overline{a}(t)^{\nu}i[\omega\delta^{\nu\mu}-i\kappa A^{\nu\mu}]$ . (A8)

2. Annihilation and Creation Operators

Let us introduce the annihilation and creation operators,

$\gamma(t)^{\mu=1}=\gamma(t)$ , $\gamma(t)^{\mu=2}=\tilde{\gamma}^{*}(t)\backslash$ , (A9)
$\overline{\gamma}(t)^{\mu=1}=\gamma^{*}(t)$ , $\overline{\gamma}(t)^{/\iota=2}=-\tilde{\gamma}(t)$ , (A1O)

by

$\gamma(t)^{\mu}=B(t)^{\mu\nu}a(t)^{\nu}$ , $\overline{\gamma}(t)^{\mu}=\overline{a}(t)^{\nu}B^{-1}(t)^{\nu\mu}$ , (A1O)

with the time-dependent Bogoliubov transformation:

$B(t)^{\mu\nu}=(1+n(t)-1-n_{1}(t))$ , (A12)

where $n(t)$ is the one-particle distribution function satisfying the Boltzmann equation (87).
The annihilation and creation operators satisfy the canonical commutation relation

$[\gamma(t)^{\mu},\overline{\gamma}(t)^{\nu}]=\delta^{\mu\nu}$ , (A13)
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and annihilate the bra- and $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuums at the initial time:

$\gamma(t)|0\rangle=0$ , ( $1|\tilde{\gamma}^{*}(t)=0$ . (A14)

The equation of motion for the thermal doublet $\gamma(t)^{\mu}$ is derived as

$\frac{d}{dt}\gamma(t)^{\mu}=\frac{dB(t)^{\mu\nu}}{dt}a(t)^{\nu}+B(t)^{\mu\nu}\frac{d}{dt}a(t)^{\nu}$

$=[ \frac{dB(t)}{dt}B^{-1}(t)]^{\mu\nu}\gamma(t)^{\nu}-i[B(t)(\omega 1-i\kappa A)B^{-1}(t)]^{\mu\nu}\gamma(t)^{\nu}$

$=-i[\omega\delta^{\mu\nu}-i\kappa\tau_{3}^{\mu\nu}]\gamma(t)^{\nu}$ , (A15)

where the matrix $\tau_{3}^{\mu\nu}$ is defined by

$\tau_{3}^{11}=-\tau_{3}^{22}=1$ , $\tau_{3}^{12}=\tau_{3}^{21}=0$. (A16)

For the third equality, we used the relations

$\frac{dB(t)}{dt}=(\begin{array}{ll}1 -10 0\end{array})$ $\frac{dn(t)}{dt}$ , (A17)

$\frac{dB(t)}{dt}B^{-1}(t)=--\frac{n(t)}{dt}\tau_{+}$ , (A14)

$B(t)AB^{-1}(t)=\tau_{3}+2[n(t)-\overline{n}]\tau_{+}$, (A19)

where

$\tau_{+}=(\begin{array}{l}0100\end{array})$ . (A20)

The Boltzmann equation (87) has been used also.
The solution of (A15) is given by

$\gamma(t)^{\mu}=\exp\{-i(\omega\delta^{\mu\nu}-i\kappa\tau_{3}^{\mu\nu}.)(t-t’)\}\gamma(t’)^{\nu}$ . (A21)

This expression gives

$\langle 1|\gamma(t)\gamma^{*}(t’)|0\rangle=\mathrm{e}^{-:(\omega-:\kappa)(t-t’)}\langle 1|\gamma(t’)\gamma^{*}(t’)|0\rangle$

$=\mathrm{e}^{-:(\omega-:\kappa)(t-t’)}$ , (A22)
$\langle 1|\tilde{\gamma}(t’)\tilde{\gamma}^{*}(t)|0\rangle=\langle 1|\gamma(t’)\gamma^{l}.(t)|0\rangle^{\sim}$

$=\mathrm{e}^{-:(\omega+i\kappa)(t-t’)}$ . (A20)

3. TwO-Point Function (Propagator)

The time ordered two point function $G(t, t’)^{\mu\nu}$ has the form

$G(t,t’)^{\mu\nu}=-i\langle 1|T[a(t)^{/4}\overline{a}(t’)^{\nu}]|0\rangle$

$=[B^{-1}(t)\mathcal{G}(t,t’)B(t’)]^{\mu\nu}$ (A21)

where

$\mathcal{G}(t,t’)^{\mu\nu}=-i\langle 1|T[\gamma(t)^{\mu}\overline{\gamma}(t’)^{\nu}]|0\rangle$

$=(\begin{array}{ll}G^{R}(t,t’) 00 G^{A}(t,t’)\end{array})$ , (A25)
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$G^{R}(t, t’)=-\mathrm{i}\mathrm{O}(\mathrm{t}-t’)\mathrm{e}^{-i(\omega-i\kappa)(t-t’)}$ ,
$G^{A}(t, t’)=i\theta(t’-t)\mathrm{e}^{-i(\omega+i\kappa)(t-t’)}$ .

(A26)

(A27)

In deriving the above expression, we used the elements of the solution (A21) with some algebraic ma-
nipulations. For example,

$\mathcal{G}(t, t’)^{11}=-i\langle 1|T[\gamma(t)\gamma(t’)^{*}]|0\rangle$

$=-i\{\theta(t-t’)\langle 1|\gamma(t)\gamma^{*}(t’)|0\rangle+\theta(t’-t)\langle 1|\gamma^{*}(t’)\gamma(t)|0\rangle\}$

$=-i\theta(t-t’)\mathrm{e}^{-i(\omega-i\kappa)(t-t’)}$

$=G^{R}(t, t’)$ . (A28)

In the third equality, we used (A22) and (A23).

4. Miscellaneous

The representation space (the thermal space) of NETFD is the vector space spanned by the set of bra
and ket state vectors which are generated, respectively, by cyclic operations of the annihilation operators
$\gamma(t)$ and $\tilde{\gamma}(t)$ on $\langle$ $1|$ , and of the creation operators $\gamma^{*}(t)$ and $\tilde{\gamma}^{*}(t)$ on $|0\rangle$ .

The normal product is defined by means of the annihilation and the creation operators, Le. $\gamma^{*}(t),\tilde{\gamma}^{*}(t)$

stand to the left of $\gamma(t),\tilde{\gamma}(t)$ . The process, rewriting physical operators in terms of the annihilation
and creation operators, leads to aWick-type formula, which in turn leads to Feynman-type diagrams for
multi-point functions in the renormalized interaction representation. The internal line in the Feynman-
type diagrams is the unperturbed two point function (A24).

5. Condensation of Particle Pairs

Introducing the annihilation and creation operators in the Schrodinger representation

$\gamma^{\mu=1}=\gamma_{t}$ , $\gamma^{\mu=2}=\tilde{\gamma}^{\mathrm{f}}$ , (A29)
$\overline{\gamma}^{\mu=1}=\gamma^{*}$ , $\overline{\gamma}^{\mu==2}=-\tilde{\gamma}_{t}$ , (A30)

by the relation

$\gamma(t)^{\mu}=\hat{V}^{-1}(t)\gamma_{t}^{\mu}\hat{V}(t)$ , $\overline{\gamma}(t)^{\mu}=\hat{V}^{-1}(t)\overline{\gamma}_{t}^{\mu}\hat{V}(t)$ , (A21)

with $\hat{V}(t)$ being specified by (29), we can rewrite the hat-Hamiltonian (88) as

$\hat{H}=\omega(\gamma\gamma_{t}-*\wedge(\tilde{\gamma}_{t})\sim \mathrm{f}-i\hat{\Pi}$, (A32)

with

$\hat{\Pi}=-\kappa(\gamma^{*}\gamma_{t}+\tilde{\gamma}^{*}\tilde{\gamma}_{t}+2[n(t)-\overline{n}]\gamma\tilde{\gamma}^{\mathrm{o}})\mathrm{f}\dotplus$ . (A33)

It is easily derived by means of the doublet notation (A5).
Substituting (A32) into the quantum master equation (88), we have

$, \frac{\partial}{\partial t}|0(t)\rangle=-2\kappa[n(t)-\overline{n}]\gamma^{*}\tilde{\gamma}^{*}|0(t)\rangle$

$= \frac{dn(t)}{dt}\gamma^{*}\tilde{\gamma}^{*}|0(t)\rangle$ . (A34)

It is solved to give
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$|0(t) \rangle=\exp[\int_{0}^{t}dt’\frac{d’n(t’)}{dt},\gamma^{*}\tilde{\gamma}^{*}]|0\rangle$

$=\exp[[n(t)-n(0)]\gamma^{*}\tilde{\gamma}^{*}]|0\rangle$ . (A36)

This expression tells us that the time evolution of the unstable vacuum is realized by the condensation
of $\gamma_{k}^{*}\tilde{\gamma}_{k}^{\mathrm{f}}$-pairs into the vacuum. The attractive expression (A35), which was obtained first in [29], led
us to the notion of amechanism named the spontaneous creation of dissipation [14,15,50-52]. The
corresponding $o$ rder parameter is given by

$\langle 1|\gamma_{t}\tilde{\gamma}_{t}|0\rangle=-f\iota(t)+n(0)$ (A36)

where we used the relation
$\gamma_{t}=\gamma_{t=0}-[n(t)-n(0)]\tilde{\gamma}^{*}$ . (A37)

We can obtain the results (A35) and (A36) only by algebraic manipulations. This technical convenience
of the operator algebra in NETFD, which is very much si milar to that of the usual quantum field theory,
enables us to treat open systems in far-from-equilibriu $\mathrm{m}$ state simpler and more transparent [30-35].

It also shows that the vacuum is the functional of the one particle distribution function $n_{k}(t)$ . The
dependence of the thermal vacuum on $n_{k}(t)$ is given by

$\frac{\delta}{\delta n_{k}(t)}|0(t)\rangle=\gamma_{k}^{*}\tilde{\gamma}_{k}^{*}|0(t)\rangle$ . (A38)

We see that the vacuum $|0(t)\rangle$ represents the state where exists the macroscopic object described by the
one particle distribution function $n_{k}(t)$ . The master equation (23) can be rewritten as

$\{\frac{\partial}{\partial t}+\int d^{3}k\frac{dn_{k}(t)}{dt}\frac{\delta}{\delta n_{k}(t)}\}|0(t)\rangle=0$. (A39)

This shows that the reference vacuum, in this case, is migrating in the super-representation space spanned
by the one particle distribution function $\{n_{k}(t)\}$ with the velocity $\{dn_{k}(t)/dt\}$ as aconserved quantity.

It is easy to see from the normal product form (A32) of $\hat{H}$ that it satisfies (18), since the annihilation
and creation operators satisfy

$\gamma_{t}|0(t)\rangle=0_{:}$ $\langle$
$1|\tilde{\gamma}^{*}=0$ . (A40)

The hat-Hamiltonian (88) can be also written in the form

$\hat{H}=\omega$
$(d^{\uparrow}d-\tilde{d}^{1}\tilde{d})-i\kappa(d^{\uparrow}d+\tilde{d}^{1}\tilde{d})$ , (A41)

where $d^{\mu=1}=d$ , $d^{\mu=2}=\tilde{d}^{1}$ and $\overline{d}^{\mu=1}=d^{\uparrow},\overline{d}^{\mu=2}=-\tilde{d}$ are defined by
$d^{\mu}=\overline{B}^{\mu\nu}a^{\nu}$ , $\overline{d}^{\mu}=\overline{a}^{\nu}\overline{B}^{-1\nu\mu}.$ , (A42)

with

$\overline{B}^{\mu\nu}=(\begin{array}{ll}1+\overline{n} -\overline{n}-1 1\end{array})$ . (A43)

The $\mathrm{k}\mathrm{e}\mathrm{t}$-thermal vacuum, $|0\rangle$ $=|0(0)\rangle$ , is specified by (81) which can be expressed in terms of $d$ and
$\tilde{d}^{1}$ , which are introduced in (A42) below, as

$d|\mathrm{O}\rangle=(n-\overline{n})\tilde{d}^{\uparrow}|0\rangle$ . (A44)

It is easy to see from the diagonalized form (A41) of $\hat{H}$ that
$d(t)=\hat{V}^{-1}(t)d\hat{V}(t)=de^{-(i\omega+\kappa)t}$ , (A43)

$\tilde{d}^{\Uparrow}(t)=\hat{V}^{-1}(’tj\tilde{d}^{\uparrow}\hat{V}(t)=\tilde{d}^{\uparrow}e^{-(i\cdot-\kappa)t}$. (A40)

The difference between the operators which diagonalize $\hat{H}$ and the ones which make $\hat{H}$ in the form
of normal product is one of the features of NETFD, and shows the point that the formalism is quite
different from usual quantum mechanics and quantum field theory. $\mathrm{T}\mathrm{l}\dot{\mathrm{u}}\mathrm{s}$ is amanifestation of the fact
that the hat-Hamiltonian is atime-evolution generator for irreversible processes. In thermal equilibrium
state, $n(t)=\overline{n}$ , they coincide
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6. Irreversibility

Let us check here the irreversibility of the system. The entropy of the system is given by

$S(t)=-\{n(t)\ln n(t)-[1+n(t)]\ln[1+n(t)]\}$ , (A47)

whereas the heat change of the system is given by

d’Q $=\omega dn$ . (A48)

Thermodynamics tells us that

dS $=dS_{e}+dS_{i}$ , $dS_{e}=d’Q/T_{R}$ , (A49)
$dS_{i}\geq 0$ . (A50)

The latter inequality (A50) is the second law of thermodynamics. Putting (A47) and (A48) into (A49),
for dS and dSe, respectively, we have arelation for the entropy production rate $[53^{\tau}\rfloor$

$\frac{dS_{i}}{dt}=\frac{dS}{dt}-\frac{dS_{e}}{dt}=2\kappa[n(t)-\overline{n}]\ln\frac{n(t)[1+\overline{n}]}{\overline{n}[1+n(t)]}\geq 0$. (A51)

It is easy to check that the expression on the right-hand side of the second equality satisfies the last
inequality which is consistent with (A50). The equality realizes either for the thermal equilibrium state,
$n(t)–\overline{n}$ , or for the quasi-stationary process, $\kappaarrow 0$ .

APPENDIX B:ITO AND STRATONOVICH MULTIPLICATIONS

The definitions of the Ito [47] and the Stratonovich [48] multiplications are given, respectively, by

$X^{(H)}(t)\cdot d\mathrm{Y}^{(H)}(t)=X^{(H)}(t)[\mathrm{Y}^{(H)}(t+dt)-\mathrm{Y}^{(H)}(t)]$ , (Bi)

$dX^{(H)}(t)\cdot \mathrm{Y}^{(H)}(t)=[X^{(H)}(t+dt)$ – $X^{(H\rangle}(t)]\mathrm{Y}^{(H)}(t)$ , (B2)

and

$X^{(H)}(t) \circ d\mathrm{Y}^{(H)}(t)=\frac{X^{(H)}(t+dt)+X^{(}}{2}\underline{H)(t)}[\mathrm{Y}^{(H)}(t+dt)-\mathrm{Y}^{(H)}(t)]$ , (B3)

$dX^{(H)}(t) \circ \mathrm{Y}^{(H)}(t)=[X^{(H)}(t+dt)-X^{(H)}(t)]\frac{\mathrm{Y}^{(H)}(t+dt)+Y^{(H)}(t)}{2}$ , (B4)

for arbitrary stochastic operators $X^{(H)}(t)$ and $\mathrm{Y}^{(H)}(t)$ in the Heisenberg representation. From (B1),
(B2) and (B3), (B4), we have the formulae which connect the Ito and the Stratonoyich products in the
differential form

$X^{(H)}(t)\circ d\mathrm{Y}^{(H)}(t)=X^{(H)}(t)d\mathrm{Y}^{(H)}\langle t$) $+ \frac{1}{2}dX^{(H)}(t)$ . $d\mathrm{Y}^{(H)}(t)$ , (B3)

$dX^{(H)}(t) \circ \mathrm{Y}^{(H)}(t)=dX^{(H)}(t)\cdot \mathrm{Y}^{(H)}(t)+\frac{1}{2}dX^{(H)}(t)\cdot d\mathrm{Y}^{(H)}(t)$. (B6)

The connection formulae for the stochastic operators in the Schr\"odinger representation are given, in
the same form as (B5) and (B6), by

$X^{(S)}(t) \circ d\mathrm{Y}^{(S)}(t)=X^{(S)}(t)d\mathrm{Y}^{(S)}(t)+\frac{1}{2}dX^{(S)}(t)\cdot d\mathrm{Y}^{(S)}(t)$ , (B7)

$dX^{(S)}(t) \circ \mathrm{Y}^{(S)}(t)=dX^{(S)}(t)\cdot \mathrm{Y}^{(S\rangle}(t)+\frac{1}{2}dX^{(S)}(t)\cdot d\mathrm{Y}^{(S)}(t)$ , (B8)

where the operators $X^{(S)}(t)$ and $dX^{(S)}(t)$ in the Schrodinger representation are introduced respectively
through $X^{(H)}(t)=\hat{V}_{f}^{-1}(t)X^{(S)}(t)\hat{V}_{f}(t)$ and $dX^{(H)}(t)=\hat{V}_{f}^{-1}(t)dX^{(S)}(t)\hat{V}f(t)$ .
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APPENDIX C:QUANTUM BROWNIAN MOTION

Let us introduce the annihilation and creation operators $b_{t}$ , $b_{t}^{\uparrow}$ and their tilde conjugates satisfying
the canonical commutation relation:

$[b_{t}, b_{t}^{\uparrow},]=\delta(t-t’)$ , $[\tilde{b}_{t},\tilde{b}_{t}^{1},]=\delta(t-t’)$ . (C2)

The vacu ums ( $|$ and $|$ ) are defined by

$b_{t}|)=0$ , $\tilde{b}_{t}|)=0$ , ( $|b_{t}^{1}=(|\tilde{b}_{t}$ . (C2)

The argument $t$ represents time.
Introducing the operators

$B_{t}= \int_{0}^{t-dt}dBt,$ $= \int_{0}^{t}dt’b_{t’}$ , (C3)

$B_{t}^{\uparrow}= \int_{0}^{t-dt}dB_{t}^{1},$ $= \int_{0}^{t}$ de $b_{t}^{1},$ , (C4)

and their tilde conjugates for $t\geq 0$ , we see that they satisfy $B(0)=0$, $B^{\uparrow}(0)=0$,

[Ba, $B_{t}^{1}$ ] $= \min(\mathit{8}, t)$ , (C3)

and their tilde conjugates, and that they annihilate the vacuum $|$ ) with the thermal state condition for
( $|$ :

$dB_{t}|)=0$ , $d\tilde{B}_{t}|)=0$ , ( $|dB_{t}^{1}=(|d\tilde{B}_{t}$ . (C6)

These operators represent the quantum Brownian motion.
Let us introduce aset of new operators by the relation

$dC_{t}^{\mu}=\overline{B}^{\mu\nu}dB_{t}^{\nu}$ , (C7)

with the BogoHubov transformation defined by

$\overline{B}^{\mu\nu}=(\begin{array}{ll}1+\overline{|\iota} -\overline{n}-1 1\end{array})$ , (C8)

where $\overline{n}$ is the Planck distribution function. We introduced the thermal doublet:

$dB_{t}^{\mu=1}=dB_{t}$ , $dB_{t}^{\mu=2}=d\tilde{B}_{t}^{1}$ , (C9)
$d\overline{B}_{t}^{\mu=1}=dB_{t}^{1}$ , $d\overline{B}_{t}^{\mu=2}=-d\tilde{B}t\cdot$

, (C1O)

and the similar doublet notations for $dC_{t}^{\mu}$ and $d\overline{C}_{t}^{\mu}$ . The new operators annihilate the new vacuum $\langle|$ ,
a1ld have the thermal state condition for $|\rangle$ :

$dC_{t}|\rangle=0$ , $d\tilde{C},|\rangle=0$, $\langle$
$|dC_{t}^{1}=\langle|d\tilde{C}_{t}$ . (Cll)

We will use the representation space constructed on the vacuums $\langle$ $|$ and $|\rangle$ . Then, we have, for example,

$\langle|dB_{t}|\rangle=\langle|dB_{t}^{1}|\rangle=0$, (C12)
$\langle|dB_{t}^{1}dB_{t}|\rangle=\overline{n}dt$, $\langle|dB_{t}dB_{t}^{1}|\rangle=(1+\mathrm{n})dt$. (C13)

They can be written

$dB_{t}^{1}dB_{t}=dB_{t}d\tilde{B}_{t}=ruli$ , (Cll)
$dB_{t}dB_{t}^{1}=dB_{t}^{1}d\tilde{B}_{t}^{1}=(1+\overline{n})dt$, (C13)

as weak relations
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