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0. PRELIMINARIES

PSL(2,Z) is the group of 2 x 2 matrices over Z with determinant 1
modulo +E. This group has the following generators

0 -1 11
S=(1 0)’ T‘(01)
satisfying the relations
S$?=(TS)® =E.

Any element of PSL(2,Z) can be presented as follows by using S and T,

PSL(2,Z) 5 T"ST*S:..T"S.

From now on, we use the following sequence of integers to indicate the
element.

[b1,b2,--- 8]
Then we get the following relations by using this symbol.
[blabZ" . 7bi70,bi+2,'°' abl] = [b17b2a"' 7bi +bi+21' . ,bl]

[blyb21"' ’bi7171717bi+4,"' 7bl] = [bl’621"° ,bi’bt'+4,"' abI]

It is known that two symbols present the same element in PSL(2,Z) if and
only if they can be transformed to each other by finite sequence of the above
relations.

1. THE DEFINITION OF THE FINITE TYPE INVARIANT OF PSL(2,Z)
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Let T denote the free abelian group generated by all the elements in
PSL(2,Z) and T',, denote the group spanned by the following set

Z (_l)the number of (—1)’s in {eij} « [ by,bs, - -

c.-].=:tl

T bl ]cil ,ci2 1°**9Cigy ?

where

[b1,b2,"' ,bi“"' 7bi2,"' 7bin,"' ,bl ]Cilvciz""vcin
= [bl)b21'°' 9bi1 — ¢ +1, 7bi2 — Ciy +1) 7bin —-C,'n-l-l,--- 7bl]'

Note that if ¢;; is 1, then b;; does not change and that if ¢;; is —1, then b;; is
changed to b;; + 2.

Now we define the finite type invariant of PSL(2,Z) as following.

Definition. An additive map from I'/T4; to Q is called an invariant of
type n.

Let ~,, (we call this n-equivalence) denote the equivalence relation defined
by [pyq in I -

2. ON TYPE 0, 1 AND 2 INVARIANTS

Theorem 1. ‘
I.1/f‘1=Z{[ ],[0‘],[1],[0,1],[1,0],[1,1]}.

Moreover, 0-equivalence class of ( : g ) is determined by its congru-

ence class modulo 2.

From now on, we restrict ourselves to the matrices 0-equivalent to the
identity E and consider finite type invariants. Let T'(2) be the span over Z
of matrices 0-equivalent to the identity. We know that any element of I['(2)
can be presented as a sequence of even integers with even length, subject to
the following relation

[20,1,202,"' ,2(1,‘,0,2(1“_2,"' 3202m]
= [2&1,2612,' ° ,2((1,' + ai+2)7' ° a2a2m ]

By similar calculation, we have the following
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Theorem 2. _ B
['(2)/T(2). = Z{[ ],[0,2],[2,0]}.

In fact, any element of ['(2) is I-equivalent to
(1 —A)[ ]+A0[0a2]+A1[2a0]a

where
2m m m
A= E a;, Ap= E azi, A= E azi-1-
=1 =1 i=1

Moreover, 1 — A, Ag, A; are well-defined.

]f[201,2a2,--- ,2(12"-,] = ( : g )) then

v/2 /2

Ao = Z(_l)[(zi_l)g], A, = Z(_l)[('h'—.l)%].

i=1 i=1

Where [ ] denotes the greatest integer function.

To prove the formulas, we use Tuler’s result of the linking number of a

2-bridge link ([2]).

Corollary 2.1. Any type 1 invariant is of the form
c1(1 — A) + c2Ap + ¢34,

where ¢;’s are constants.

Theorem 3.

r'(2)/T(2)s = 2{[ ],(0,2],(2,0],(2,2],[0,2,2,0],[0,4],[4,0]}.

In fact, any element of I'(2) is 2-equivalent to

(A-1)(A-2)

5 [1-A40(A—-2)[0,2]+ A1(A—-2)[2,0]

m—-1m-1

+ Z Z a2;—1Q2; [ 2, 2] + Z Z a2¢a25+1 [0’2’ 2’0]

=1 j=i =1 j=i



Ay(A; -1

_PM_ 5 )[4,0]_

1)
If[2a1,2a3, - ,2amm ] = [ & P ), then
ay, «@2, y2lom | = ~ 5 ’

(a=1)/2 (a=1)/2

3 S S ]

=1 j=¢ i=1 J=

m—1m-—1 (a=-1)/2 (a— 1)/2 N o
Z Z 202541 = Z Z (2"1)6]*'[2’ i,
=1 j=¢ J=t

To prove the formulas, we use the result of the Casson knot invariant of
a 2-bridge knot ([1]).

Corollary 3.1. Any type 2 invariant is of the form

A—-1)(A-2
dl( )2( ) + d2Ao(A — 2) + d3 Ay (A —2)
(a-1)/2 (e=1)/2 (¢-1)/2(2-1)/2 _
+d, Z Z [(21-1)1]+[2J:L]+d5 Z Z (2;-1)-}]+[2J}]
= o
Ap(Ao—1 A(A -1
+d6—0( ; )+d7———1( ; ),

where d;’s are constants.
Detail will appear elsewhere.
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