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NEVANLINNA THEORY AND PAINLEVE TRANSCENDENTS

SHUN SHIMOMURA
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Department of Mathematics, Keio University

Consider the first Painlevé equation
(D) w"” = 6w? + 2z

('= d/dz). All the solutions of (I) are transcendental and meromorphic in the whole
complex plane (see [2], [6]). In this article we explain how the Nevanlinna theory is
used in the study of Painlevé transcendents. In Section 1, we make a survey of basic
facts in the Nevanlinna theory related to our purpose. For a detailed explanation
about the Nevanlinna theory, the reader may consult [1], [3], [4]. In Section 2, the
deficiency and the ramification index are examined for the first Painlevé transcen-
dents. The final section is devoted to the proof of the finiteness of the growth order.
Throughout this article, we use the notation below: for ¢(r),¥(r),r € [ro, +00),

(i) o(r) € ¢P(r), if ¢(r) = O((r)) as r = +o0;

(i) ¢(r) < ¥(r), if (r) € ¥(r) and ¥(r) K é(r) hold simultaneously.

1. Basic notation and facts in the Nevanlinna theory

Let f(z) be an arbitrary meromorphic function in C. For r > 0, denote by n(r, f)
the cardinal number of the poles of f(z) in the disk |z| < r, each counted according
to its multiplicity. Then the counting function of f(z) is defined by

N f) = [ 5 (5o )= (0, ) dp (0, ) logr
The prozimity function of f(z) is deﬁned by
2n )
mirf) =55 [ log* If(re)ldp,

where log™ z = max{logz,0}. Then we put

T(r, f) =m(r, f) + N(r, f),
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which is called the characteristic function of f(z). By definition, it is easy to see
that, for meromorphic functions f(z), g(z), formulas such as

m(r,af + Bg) < m(r, f) + m(r,g) + O(1),
m(r, fg) < m(r, ) + m(r,g),
T(r,af + Bg) < T(r,f) + T(r,g9) + O(1),
T(r,fg) < T(r,f) + T(r,9)
(a,B € C) are valid. Let {a;}%_, and {b; }i=1 be respectively the zeros and the

poles of g(z) in the disk |z| < r, each repeated according to its multiplicity. By the
Jensen-Poisson formula, for every z satisfying lz| <,

L1 1 l()l—i/“lo jg(reie)] - g
. og [g(=z ~27r0 g 19 | zlg‘P

Sl - S e )

Substituting g(z) = z7?f(z) = ¢, + O(2) (cp # 0, p € Z) into (1.1) with z =0, we

have
(1.2) m(r,f)+ N(r, f) =m(r,1/f) + N(r,1/f) + log|cp|-
Replacing f(z) by f(z) — a, a € C, we obtain the first main theorem.

Theorem 1.1. For an arbitrary meromorphic function f(z) and for an arbitrary
a € C,

T(r,1/(f — a)) =T(r, f) + O(1).
By the definition of T'(r, f), we have T(r,e*) < r, T(r,exp(z?)) < r2. Further-

more

Proposition 1.2. A meromorphic function f(z) satisfies T(r,f) = O(logr), if

and only if f(z) is a rational function.

Proof. 1t is easy to see that an arbitrary rational function f(z) satisfies T'(r, f) =
O(logr). To show the reverse, suppose that T(r, f) = O(logr). We have

n(r, f) —n(0, f) <

— [ ' = (n(p,) = (0, )do

NG

~— logr
namely the number of poles is finite. Since T(r,1/f) = T(r, f) + O(1) = O(logr),
the number of zeros is also finite. Then, g(z) = f(z)[[;(z — a;)™? [1;(z - bj) is
entire and satisfies g(z) # 0, where {a;} and {b;} are respectively the zeros and the
poles of f(z). By (1.1), for |z| < r /2,

logr
0Q1) < T(" ’f) +0(1) = O(1);

|=*

1 2T '
log |g(2)| = 2_77/0 log |g(re*®)]| - l—‘—_7|2d90

2 2 .
<2 / log |g(re?)|dp < m(r,g) < T(r, f) + logr < logr,
(o]
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which implies that g(z) is a polynomial. Hence f(z) is a rational function. O
The growth order of f(z) is defined by

o(f) = limsup I—OM.

r—00 10g r

For example, o(e?) = 1, o(exp(z2)) = 2, and o(q) = 0 for a rational function ¢(2).
From the identity due to H. Cartan ({1])

1 27

T(rf) =5z | N1/ = )dp +log" 1£(0))
we obtain T .
1 [ |
T 0) = L[ e - )

provided that |f(0)| # co. Combining this with the relation T(r,f)=T(r,1/f) +

log |c| (cf. (1.2)) in the complemental case |£(0)] = oo as well, we derive

Proposition 1.3. The characteristic function T(r, f) is increasing and convez with
respect to logr.

Furthermore, we have

Proposition 1.4. A meromorphic function f(z) is transcendental if and only if
logr/T(r,f) = o(1) as r — oo.

Proof. Suppose that f(z) is transcendental. We regard T (r, f) = T(r) as a function
of logr. If dT,(r)/dlogr < B for some B > 0, then T.(r) < Blogr + O(1) < logr,
which contradicts the supposition. Since dT,(r)/dlogr is increasing with respect to
r (cf. Proposition 1.3), dTy(r)/dlogr — oo as r — oo. For any € > 0, there exists
re > 0 such that dT,(r)/dlogr > 1/e, r > r. and hence Ty(r) 2 e~ llogr + O(1),
r > r., which implies logr/T(r, f) =+ 0 asr — oco. U

Put, for an arbitrary a € C,

i (1 (f — @)
S(a.f) = limint =276

and

i)
§(o0, f) = hrrgloréf (. )

These quantities are called the deficiency of a, and that of oo, respectively.

Proposition 1.5. Suppose that f(z) is a transcendental meromorphic function.
If 8(a, f) < 1, then f(2) admits infinitely many a-points (a € CU{oo}). If f(z)
admits only finite number of a-points in C, then §(a, f) = 1. :

Proof. For simplicity, we prove for the case where a = co. Suppose that 8(o0, f) <
8o < 1 for some &y. Then there exists a sequence {r,} such that m(r,,f) <
6T(r,, f) as r, — co. Observing that

N(rv, f) = T(ry, f) = m(ro, f) > (1 = 80)T(ru, ),
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and that
N(r,, f) = /(;ru %(n(Paf) - n(O, f))dp + n(0, flogr, < n(ru, f)logr,,

we have

n(ry, f) > (1 —80)T(ry, f)/logr, — oo

as 1, — 00, because f(z) is transcendental (Proposition 1.4). The second assertion
is clear. O

To count the multiple poles, we consider n;(r,f) = 3 (u(r) — 1). Here u(r)
denotes the multiplicity of a pole 7 and ), denotes the summation for all poles in
the disk |z| < r. The function

M) = [ 5 (ma(o 1) = ma(0, 1)) dp-+ (0, ) g

measures the frequency of the multiple poles. Then we consider, for a € C,

= limi Nl(ral/(f_a))
9(a, ) = limjng 22D,

I T Nl(raf)
e D= e

which are called the ramification indez of a, and that of oo, respectively. If all the
a-points are simple, then 9(q, f) = 0, and if they are double, then 9(a, f ) <1/2.
Let ¢(r) be a function defined on the interval [rg, +00), ro > 1. We write

¢(r) = S(r, f)

if ¢(r) = o(T(r, f)) as r — +o0 outside of a possible exceptional set of finite linear
measure. Applying (8/0z —i0/dy) to (1.1) (with g = f), we obtain

’ 1 2n ) ip
o= st e e
A a 1 b
+;(z—a, r"’—a,z)_jz:;(zz—bJ +r2 —-Jl-),z)

for |z| < r. By this inequality, we estimate logarithmic derivatives (cf. [1]).

Proposition 1.6. For a meromorphic function f(z), and for an arbitrary k € N,
m(r, f®/f) = S(r, f). In particular, if o(f) < +oo, then m(r, f(F)/f) = O(log r).

Remark 1.1. In Proposition 1.6, S(r, f) can be replaced by O (log(rT(r, ) as
T — +00 outside of a possible ezceptional set of finite linear measure.

The second main theorem in the Nevanlinna theory, which is another basic result,
is stated as follows (see [4; Theorem 2.5.1 and the proof]).
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Theorem 1.7. For an arbitrary non-constant meromorphic function f(z) and for
an arbitrary number of distinct points ay,...,aq € C,q € N, we have

q
m(r, f) +Y_m(r,1/(f — a3)) + N(r,1/f") + Na(r, f) < 2T(r, f) + S(r, f).

j=1

From this theorem, we immediately obtain

§(o0, f) +9(c0, ) + Y (8(aj, ) + 9(aj, f)) < 2.

q
=1

J

This implies that, for each n € N, the number of the points a € C satisfying
8(a, f) > 1/n (resp. ¥(a, f) > 1/n) does not exceed 2n, and hence all the points
with non-zero deficiency (resp. non-zero ramification index) constitute a countable
set. Thus we have

Corollary 1.8. For an arbitrary non-constant meromorphic function f(z),
Y (8(a, f) +9(a, f)) <2, € =CuU{eo},
aea

where the summation ranges all the points in C such that §(a, f) > 0 or 9(a, f) > 0.
The following lemma is due to J. Clunie (see [4; Lemma 2.4.2]).

Lemma 1.9. Let f be a transcendental meromorphic function such that fP+1 =
Q(z,f), p € N, where Q(z,u) is a polynomial in z, u and its derivatives. Suppose
that the total degree of Q(z,u) as a polynomial in u and its derivatives does not
ezceed p. Then m(r, f) = S(r, ).

Proof. Note that

m(rif) =5 [ Tog*Iftreldp = o [ 108" I5(re e
F = {p € [0,2n] | |f(re’®)| 2 1}.

The polynomial Q(z,u) is written in the form

Qnw) = Y alue@)t @), q(s) € Cla,

totu+-+e, <p

¢ = (1o, t1, s tp), p € N. Hence, from f?*! = Q(z, f), we derive, for ¢ € F,
e < Y lallf /f12 - 1f 9 f1,

which implies
m(r, f) < m(r, '/ ) + -+ m(r, f ¥/ f) + logr < S(r, f).
O

The following lemma due to A. Z. Mohon’ko and V. D. Mohon’ko ({5], [4; Propo-
sition 9.2.3]) gives an estimate for the proximity function of the reciprocal of f(z)—c.



Lemma 1.10. Let F(z,u) be a polynomial in z, u and its derivatives. Suppose
that u = f is a transcendental meromorphic function satisfying F(z, f) = 0, and

that c is @ complez number. If F(z,c) #0, then m(r,1/(f —¢)) = S(r, f).
Proof. Put g = f — c. Then, by supposition,

F(z,f) — F(z,¢) = G(2,9) = > ho(z)g*(g')" -+ (g¥))%,
1<wotu+-+u<vo

h.(z) € Clz], ¢ = (t0,t1, s tp), p € N, 70 = deg G. If |g(re'?)| < 1, then

1/g(re'®)| < |F(z,0)| 7 D IRullg’ /gl -+ 19 /g,

from which the conclusion follows. O

Remark 1.2 In Lemma 1.9 or 1.10, S(r, f) can be replaced by O(log(rT(r, f))) as
r — +00 outside of a possible exceptional set of finite linear measure. Furthermore,
if 0(f) < +o00, then S(r, f) can be replaced by O(logr) (without an exceptional
set) (cf. Remark 1.1 and Proposition 1.6).

From [4; Lemma 1.1.1], we have

Lemma 1.11. Let ¢(r) and (r) be monotone increasing functions on (0, +oo)
satisfying ¢(r) < (r) outside of an ezceptional set of finite linear measure. Then,
there ezists a number ro > 0 such that ¢(r) < ¥(2r) on (ro, +00).

2. Deficiency and ramification index for solutions of (I)

Every solution of (I) is transcendental. Indeed, if (I) admits a rational solution
expressed in the form z™ Zj>o cjz™? (co # 0,m € Z) around z = oo, then sub-
stitution of this into (I) yields m = 1/2, which is a contradiction. Let w(z) be an
arbitrary transcendental meromorphic solution of (I). Then we have ([7], [8], [10])

Theorem 2.1. For every a € C, §(a,w) = 0; and §(co,w) = 0.
Theorem 2.2. For every a € C, J(a,w) < 1/6; and J(oco,w) < 1/2.

For every a € C, w = a is not a solution of (I). Applying Lemma 1.10 to w(z), we
have m(r,1/(w—a)) = S(r,w). By Lemma 1.9, we also have m(r,w) = S(r, w). This
estimate and Proposition 1.6 yields that m(r,w’) < m(r,w)+m(r,w'/w) = S(r,w).
Thus we have the lemma below, from which Theorem 2.1 immediately follows.

Lemma 2.3. For every a € C, m(r,1/(w — a)) = S(r,w), m(r,w) = S(r,w), and
m(r,w') = S(r,w).

Substituting the Laurent series expansion around a movable pole into (I), we
have

Lemma 2.4. Around each movable pole z = c,

w(2) = (2 — o) 2+ O(2 — €oo).
Proof of Theorem 2.2. From (1), we obtain
(2.1) U'(2) = —2w(z2),
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(2.2) T(z) = w'(2)? — dw(z)® — 2zw(z).
For a € C, consider the set
A={z|w(z) =aqa, w'(z) =0}

We may suppose the cardinal number of A is oco; otherwise ¥(a,w) = 0. If 2* €
A,w"(z*) = 0, then z* = —6a®. Now choose a point zo € 4\ {—6a’}. Then, from
(2.1), we have
U(2) = U(z0) = —2 / w(t)dt,
20

and hence, by (2.2),

(2.3) G(z) =w'(2)? — 4(w(2)® — @®) — 2z(w(z) — a)
(2.4) —2a(z — 70) — 2 / w(t)dt.
Furthermore,

G'(2) = 2(a —w(z)), G"(z)=—2w'(2), G®(z) = —2w"(z) = —2(6w(2)? + 2).
Hence, for every o € A\ {—6a%},
G(o) = G'(0)=G"(0) =0, G¥(0)=—-2(6a’+0)#0,

namely o is a triple zero of G(z). This fact means that

25 N(nlf(w—-a) < %N(r, 1/G) + O(logr) < %T(r, G) + O(log ).

By Lemma 2.3, m(r,G) < m(r,w')+m(r,w) = S(r,w). Substituting the expression

of Lemma 2.4 into (2.4), we have N(r,G) = (1/2)N(r,w) = (1/2)T(r,w) + S(r,w).

Hence T(r,G) = (1/2)T(r,w) + S(r,w). Combining this with (2.5), we obtain
. :

(2.6) Ni(r,1/(w—a)) ET(r,w) + S(r,w),

from which 9(a,w) < 1/6 immediately follows. Since every pole of w(z) is double,

1 1
(2.7) Ny(r,w) = SN(r,w) = (T(r,w) + S(r,w)).
Hence 9¥(oco,w) < 1/2, which completes the proof. U

3. Finiteness of the growth order
The following result ([9]) indicates that the order of w(z) is finite.



Theorem 3.1. For an arbitrary solution w(z) of (I), we have T(r,w) = O(r°),
where C' 1s a positive number independent of w(z) and the coefficient a.

By Remarks 1.1 and 1.2, once Theorem 3.1 is established, the notation S(r,w)
in the results for solutions of (I) is replaced by O(logr). For example, we have

Corollary 3.2. Let w(z) be an arbitrary solution of (I). Then,
(i) m(r,w) = O(logr), m(r,1/(w — a)) = O(logr) for every a € C;
(i) Ni(r,1/(w — a)) < (1/6)T(r,w) + O(logr) for every a € C;
(iii) Ni(r,w) = (1/2)T(r,w) + O(logr) and 9(co,w) = 1/2.

We prove Theorem 3.1 for solutions of (I).

3.1. Basic lemmas. Let w(z) be an arbitrary solution of (I). Put
(3.1) 6 =21

We begin with the following lemma, which is proved by a modification of Hukuhara’s
argument ([6]).

Lemma 3.3. Let a be a point satisfying |a| > 5. If |w(a)| < 6%|a|'/2/6, then
(1) w(z) is analytic and bounded for |z — a| < &g,
(i) |w(z)| > 6%|a|*/?/5 for (5/6)8, < |z — a| < &,,

where

(3.2) 8lal™'/* min{1,8|al*/*/|w’'(a)|} < 8. < 36]a|~2/4.

Proof. We put z = a+ pt, p = a4, w(z) = w(a + pt) = 6a'/%y(t) in (I). Then
(I) becomes

(3.3) () = 66v(t)® + 071 (1 + p°t)
("= d/dt). Integrating both sides twice, we have
(3.4) v(t) = v(0) + 9(0)t + 67142 /2 + g(2),

t T
g(t) = 19_1p5t3 + 60/ / v(s)*dsdr,
6 0 Jo

where
v(0) = 67 a" /% (a), 9(0) = 67 1a"%/ 4w’ (a).

By supposition,
(3.5) [v(0)] < 67 a7 /w(a)] < /6.
(1) Case |9(0)] < 1. We put

o = sup{n|M(n) < 86}, M(n) = max{|v(t)|]|t] < 5}.
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By (3.5), o > 0. Suppose that no < 36. Since |a| > 5, by (3.1), we observe that,
for [t] < no,
36) 1ot < 30~ +60 [ [ lo(o)Pasllar

< 671p|°(36)% /6 + 66(86)%(36)%/2 < 6/4.
Hence, from (3.4), (3.5) it follows that, for It] < no, |
3.7)  Jo(®)] < [v(0)] + [¢] + 67 |¢[? /2 +6/4<(1/6+3+9/2+1/4)6 < 7.926,

which contradicts the definition of no. This implies that no > 30 and that (3. 6) is
valid for |t| < 36. Moreover, by (3.4), if 2.5 < |t| < 36, then

()] = 671 112/2 — [o(0)] — [t] — lg(t)] > (2.5/2 — 1/6 — 2.5 — 1/4)8 > 6/5.

Therefore, [w(z)] > 6%[a[/2/5 for (5/6)6, < |z — al < 6, with 5, = 36|a|~"/%
(2) Case |0(0)| = k > 1. Put

m = sup{n|M(n) < 56},
and suppose that 7; < (2/x)6. Then, by (3.1), for [t| < m,
(3.8) l9(2)] < 672 |p|°(26)° /6 + 60(56)° (26)* /2 < 6/24
(cf. (3.6)). By (3.4), (3.5) and this inequality, for It] < m,
(3.9) |v(t)| < |v(0)| + &lt| + 67 |t]?/24+6/24 < (1/6 + 2+ 22/2 4+ 1/24)6 < 4.30,

which contradicts the definition of n;. This implies 71 > (2/x)0, and hence (3.9) is
valid for |t| < (2/k)8. For (0.8/x)8 < [t| < (1.2/x)6, we have

lo(t)] > &lt] — 071 [¢*/2 — [v(0)] — |g(2)] > (0.8 —0.8%/2 —1/6 — 1/24)8 > /5.
Hence |w(z)| > 62|a|'/?/5 in (5/6)da < |z — a| < do with &, = (1.2/K)8|a|~1/% =
1.26]a|=1/4(8|al*/*/|w'(a)|), which completes the proof. [ ‘

Lemma 3.4. Under the same supposition as in Lemma 3.3, if |w(a)| < 6%|al|*/? /6,
then '
(i) |w(z)| > 6%|2|*/2/5.5 for (5/6)8a < |z — a| < ba.

Proof. By (3.1), (3.2) and the supposition |a| > 5, we have |z| > la] — 6o > 4 and
12172 = |a|/?| < |z — a|/(|2['/2 + |a|1/2) < 6,/4 < 6 < 1/10. Hence, by Lemma
3.3,(i1), for (5/6)é, < |z — a] < 4,
lw(z)| — 82|22 /5.5 > |w(z)| — 6%[a|*/?/5.5 — 62| 2['/* — |a|'/?| /5.5
> 02(1/5 — 1/5.5)|a|/? — 6||2]*/% — |a|*/?| /5.5 > (V5/55 — 1/55)8* > 0,

which completes the proof. O



3.2. Path. By Lemma 3.4, we construct the path as follows:

Lemma 3.5. Let o be an arbitrary pole of w(z) satisfying |o| > 10, and Ry a
number satisfying 5 < Ro < 6. Then there ezists a curve I'(0) : 2 = ¢(z), 0 < z <
T, such that

(1) 16(0)| = Ro, $(z) = o

(2) = is the length of I'(0) from $(0) to ¢(z);

(3) |#(z)| is monotone increasing on [0,z,];

(4) |dz| < (6/v/11)d|z| along T(o);

(5) lw(z)| = 27*|2|'/? along T'(o).

Proof. For the simplicity of the description, we treat the case where argo = 0.
For o in the generic position, we can show this lemma by the same argument.
Consider the segment Sp = [Rp,0] C R. Start from 2 = Ry, and proceed along
So. If |w(z)] > 6%|2|*/?/6 on So, then we put I'(c) = Sp. Suppose that a point
a € S satisfies |w(a)| < 62|a]'/?/6 and |w(z)| > 6%|2|'/2/6 for Ry < z < a. Draw
the semi-circle C, : |z — a| = §,, Rez > 0 (cf. Lemma 3.3) which crosses R at a_
and a4 (a— < a4). Note that a; € Sp, because the pole o does not belong to the
interior of C,. Let a*, a} (Rea® < Rea}) be the points on the semi-circle C} :
|z — a| = (5/6)d,, Rez > 0 such that the segments [a_,a* ] and [a},a;] come in
contact with C;. Replace the segment [a_, a] by the curve y(a) which consists of
the segments [a_,aZ ], [a},a4] and the shorter arc (a*,a} ) C C;. Then we get a
new curve I'1 = ((So \ [a—,a+]) U~v(a)) N{z]||z| > Ro}. By Lemmas 3.3 and 3.4,
and by a geometric consideration, we have, on Iy,

(3.10) lw(z)| > 6%|z|*/2/6 > 2711 ||1/?
and
(3.11) |dz| < (6/V/11)d]z|.

Start again from z = a4. Suppose that we first meet a point b € T';, b > a4 such
that |w(b)| = 62[b|*/2/6. (If such a point does not exist, then we put I'(¢) = I';.)
By the same argument as above, we obtain the curve v(b), which crosses I'; at b’_,
by (Imb. >0, by € Sp, Red. < by). Replacing the part I'; from b’ to b, by that
of v(b) from b_ to by, we get a path I';. On it, (3.10) and (3.11) are valid. Start
from z = b4, and continue this procedure. As will be shown below, after repeating
this procedure finitely many times, we arrive at the pole 0. Thus we get the path
I'(o) with the properties (1) through (5). To show the finiteness, suppose the
contrary that there exists a sequence {a(v)}$2o C So satisfying Y72 8,(,) < 1 and
lw(a(v))| < 62|0|'/2/6. Hence, by (3.2), we may choose a subsequence {a(vi)}520
satisfying a(v;) — a. € So, w(a(v;)) = w, # oo, w'(a(vj)) — oo as j — oo, which
implies w(a.) = w, # 00, w'(a,) = co. This is a contradiction. Thus the lemma is
proved. O

3.3. Auxiliary function. Consider the auxiliary function

(3.12) ®(2) = w'(2)* + %zz)) — 4w(2)® - 22w(2),
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which was used in the proof of the Painlevé property ([2]). Using the relation
(w'(2)?) = (4w(2)® + 22w(2))" — 2w(2)
obtained from (I), we have the relation

®(2) ___Z w'(2)
w(z)?  w(z)  w(z)®

(3.13) &'(2) +

Solving (3.13), we have

Lemma 3.6. For an arbitrary path ~(zo,2) starting from 2o and ending at z, if
w(t) # 0 on ¥(zo,2), then

(3.14)

= E(z0,2)7} z _E(zo,z) | 1 — E(20,1) w(t)d —
(p(z) - E( > ) [Q( 0) 2w(z)2 +2w(*"'0)2 ‘[Y(ZO,Z) 2w(t)4 (2t (t> 1)dt]

with E(z0,t) = exp (f7(10 9 w('r)‘zd'r), t € ¥(z0,2). Here v(z0,t) C ¥(20,2) 15 the
part of ¥(20,2) from 20 to t.
3.4. Completion of the proof. Take the circle |2| = Ro (5 < Ro < 6) on which

®(z) # oo. Let o be an arbitrary pole of w(z) such that |o| > 10, and U(o) a
domain defined by

Ulg)={z]||z—0cl < n(a)}, n(o) =sup{n<1 | lw(z)| > 2|z|*% in |z — 0| < n}.
Then we have

Lemma 3.7. InU(c), |®(2)| < Kolz|®. Here Ko is a positive number independent
of o, and A > 3/2 a number independent of w(z) and o.

Proof. Recall the path I'(c) given in Lemma 3.5 starting from zo(o), |20(¢)| = Ro.
Then, |w(t)] > 271|t[}/2, |dt| < (6/V/11)d|t| along I'(c). From these facts, for
t € I'(0), it follows that

dr| 222.6 [t d|r| '
E(zo(0),t)*] < ex / _ldrl <exp|—=— ——) =0@),
| ( 0( ) ) | p( T(ot) |w(7-)|2> = p( /—11 o |7_l ) ( )

A’ = 923 . 3/+/11, where T'(0,t) C T'(c) denotes the part of I'(o) from zo(0) to t.
Moreover, 1/w(t) = O(t~'/2) along I'(c). Using Lemma 3.6 and these estimates,
and observing that |®(z0(0))| < Mo, we have &(0) = O(c?8'+3/2) where Mo =
max{|®(z)|||z] = Ro}. In U(s), applying Lemma 3.6 with z = o, v(z0,2) =
[0,2] C U(o), we obtain &(z) = O(224'+3/2) in U(o). This completes the proof. [

Now we are ready to prove the theorem. Put w(z) = u(z)™?, z =0+ o~A/8sin
(3.12). Then it is written in the form

l.iu'(z)2 — 2u(2)%u'(2) — 4 — 2zu(z)* — u(2)°®(2) = 0.
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Hence v(s) = u(o + 0~2/65) satisfies

(3.15) (dv/ds)(s) = o72/%(1 + h(s,v(s))),
|h(s,v(s)) < 1/2, v(0) =0,

as long as

(3.16) |22/5u(z2)| = (o + o—A/Gs)A/sllv(s)I < €o,

and 2z € U(o) (cf. Lemma 3.7), where g9 = €¢(Kp) is a sufficiently small positive
constant independent of 0. If z satisfies (3.16), then |w(z)| > e52%|2|2/3 > e52|2|/2,
and hence z € U(0). Put

(3.17) n« = sup{n | (3.16) is valid for |s| < n}.
Suppose that 7. < €0/4. Then, integrating (3.15), we have
(3.18) [s1/2 < 10%/v(s)] < 3]sl/2 < 3e0/8
for |s| < n. < €0/4, which implies
(o +a™2/%5)278Ju(s)| < Jo/|lo(s)(1 + 1/ L)/ < £0/2

for [s| < n. and for |o| > L, where L is sufficiently large. For |o| > L, this
contradicts (3.17), which implies 7, > €o/4. Therefore, for |o| > L, (3.18) is valid
for |s| < €9/4, and w(z) is analytic for 0 < |z — o| < (€9/4)|o|~2/8. Thus we have

Lemma 3.8. For every pole o of w(z) satisfying |o| > L (> 10), w(z) is analytic
in the domain 0 < |z — o] < (eo/4)|o|~2/S.

For each pole o, |o| > L, we allocate the disk U,(0) : |z — o| < (e0/8)|o|~2/E.
Then, for arbitrary distinct poles o1, o2, we have U,(01) N U,(02) = 0. Hence the
cardinal number of the poles in the disk |z| < r does not exceed O(r?+2/3). Since
m(r,w) = S(r,w), using Lemma 1.11, we have T(r,w) = O(N(2r,w)) = O(r?+4/3),
which completes the proof for (I).
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