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Discrete indefinite improper affine spheres

NOZOMU MATSUURA*

Graduate School of Information Sciences, Tohoku University

Abstract

The purpose of this note is to discretize improper affine spheres and to investigate
them in detail. We clarify a link between discrete improper affine spheres and

Hirota's discrete Liouville equation.

1 Introduction

In recent years, there has been explosive progress in the theory of discrete integrable
systems. In this connection, discrete surfaces have been studied one after another with
strong ties to physics and great potential for computer analysis. Those relationship be-
tween geometry and integrable systems can be diagramed as on the next page: the right
arrows mean integrability contitions, the left ones geometric correspondent, the‘up ones
continuum limit, and the down ones discretization. In general, one differential equation
may have many discrete models, so how can we find a good one among them? A possible
strategy is to discretize it via geometry. Such a link between discrete integrable systems
and particular classes of discrete surfaces has been established. For example, Hirota’s
discrete sine-Gordon equation arises as the discrete integrability condition for discrete

pseudo-spherical surfaces [1][7].
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Discrete surfaces

Affine spheres are those surfaces for which the affine shape operator is a scalar multi-
ple of the indentity, but unlike the Euclidean case they are by no means simple or easy
to determine [6]. A discrete integrable analogue of proper affine spheres was given by A.
Bobenko and W. Schief [2][3], who presented a natural geometric discretization of them
and investigated the corresponding discrete Gauss-Codazzi equations in detail. But, im-
proper affine spheres make also an abundant and important class including ruled surfaces.

Furthermore, every solution to the Liouville equation
(1) (logw)yw + w2=0

describes an improper affine sphere in R3. The solution w of (1) becomes the volume
element of the affine metric. In this note, we discretize improper affine spheres. A discrete
integrable analogue of the equation (1) was constructed by R. Hirota [4] without using

any relation to geometry. We show that Hirota’s discrete Liouville equation

=0

(2) 2sinh Wi — Wi —W2+W+exp Wi - Wi - W, - W
2 : 2

describes our discrete improper affine spheres, and this observation permits the diagram

given above to commute.

2 Preliminary

In this section, let us recall basic notation of affine differential geometry. Let M be a

two dimensional smooth manifold and D the usual flat affine connection on R3. For an
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immersion f: M — (R3, D), we choose an arbitrary transversal vector field £ on M, that

is,
Ty R? = f(T.M) ® RE,
at each point x € M. The formulas of Gauss and Weingarten

DX(f*Y) = f*(VXY)_*'h(X’Y)f’
Dx¢ = —fSX)+7(X)¢

induce on M an affine connection V, a symmetric (0, 2)-tensor field h, a (1, 1)-tensor field

S and a 1-form 7. The determinant function of R3 induces a volume form 6 on M via
6(X,Y) = det(f.X, .Y, §).

The rank of the affine fundamental form h is independent of the choice of transversal
vector field £. We assume that the rank is 2, so that h can be treat-ed as a nondegenerate
metric on M. This is a basic assumption on which Blaschke developed affine differential
geometry of hypersurfaces. For each point + € M, there is a transversal field & defined in

a neighborhood of z satisfying the conditions
(3) w=860, V0=0.

Here w denotes the volume element of the nondegenerate metric h. The former is called
volume condition and the latter equiaffine condition. Since the determinant function is
parallel relative to D, the equation V6 = 76 holds. Therefore, the equiaffine condition is
equivalent to 7 = 0.

A transversal field satisfying (3) is called a Blaschke normal field, which is uniquely
determined up to sign locally. The immersion f: (M, V) — (R?, D) with Blaschke normal

field is called Blaschke immersion and h is called affine metric.

Lemma 2.1 The Laplacian of a Blaschke immersion, Af relative to the affine metric is

equal to 2€.

Definition 2.2 A Blaschke immersion f is called an improper affine sphere if S is iden-

tically 0. If S = AI, where )\ is a nonzero constant, then f is called a proper affine
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An affine sphere has the following characteristic property (cf. [6, p. 43]), which helps

us to discretize affine spheres.

Lemma 2.3 Let f: M — R3 be a Blaschke immersion. Then (f, M) is an improper
affine sphere if and only if the Blaschke normals are parallel in R3, and (f,M) is a

proper affine sphere if and only if the Blaschke normals meet at one point in R3.

Since a discretization of surfaces essentially depends on a choice of a coordinate system,

we need consider separately the cases of which metric is indefinite or definite.

3 Discrete indefinite improper affine sphere

Assume now that a Blaschke immersion f is an improper affine sphere and the affine
metric h is indefinite. We shall also say f an indefinite improper affine sphere. We
choose an asymptotic coordinate system (D, (u,v)) with respect to h so that h = 2wdudv.
By the volume condition, we have that w(u,v) = det(f,, f.,£). Applying if necessary a

transformation (u,v) — (v, —u), we can always achieve w > 0.

Proposition 3.1 Let f: D C M — R3 be an indefinite improper affine sphere. Then

the Gauss equations are as follows:

(4) fuu = %fu + gfv,
(5) fuw = W,
(6) fvv = gfu + %’fm

where £ is a nonzero constant vector in R3, and three functions a,b and w satisfy the

Gauss-Codazzi equations

(7) (logw),, +abw™2=0, a,=0, b,=0.

Proof We choose asymptotic coordinate system (D, (u,v)) and obtain

fur = Ih, (0/0u,0/0v) I{ = w

by Lemma 2.1. : - g
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Since a is a function only in u, we obtain adu® = dii®, where @ = [ a'/du. Namely,
we can take a = 1 = b without a loss of gencrality in the case that ab # 0. Then, the

compatibility condition (7) is reduced to the Liouville equation
(8) Wy + €72 =0,
where w = €. Consider the relations

~ ~ - 1 _
(9) (W —w)y, = —Pe 7, (0+w),==e""",

B

where 3 € R is a nonzero constant which is known as a Backlund parameter. The
integrability condition of (9) produces @,, = 0. Thus, the implicit relations (9) give a
link between the nonlinear equation and the linear equation. This connection may be
exploited to solve the Liouville equation in full generality. Inserting the general solution
w(u,v) = p(u)+q(v) into the Backlund relations (9), and subsequent integration produces

a general solution of the Liouville equation in the form

u v s t
f(u,v) =€ ] / (/3 / e 27 dg + -;- / 21 do + a) eP™ =91 dt ds + n(u) + ((v),
uo v Vo S0

to
where a € R is a constant and 7(u), ((v) are vectors in R3.

In the case that ab = 0, we easily obtain

f(u,v) = g/ e”(”)d(r‘/)e"(”)da + n(u) + ((v).

0

The following proposition is well known (cf. [6, pp. 92, 116]).

Proposition 3.2 If f is a ruled improper affine sphere, then it is locally of the form z =
zy+ ¢(x), where ¢ is an arbitarary function of x. Conversely, the graph of z = xy+¢(x)

is a ruled improper affine sphere.
Now we discretize improper affine spheres in a purely geometric manner. For a map
F: 72 — R3, we denote increments of the discrete variables by subscripts, namely,
F=F(mm), F=Fn+lm), F=Fnm+l), Fp=Fn+lm+l).
Moreover, decrements are indicated by subscripts with overbars, that is

Fr=F(n-1,m), Fy=F(nm-1).
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Taking the Gauss equations (4) (6) into account, we give the following definition. Dis-

cretizing surfaces is nothing less than discretizing the coordinate system.

Definition 3.3 A map F: Z%2 — R3 is called a discrete indefinite improper affine sphere
if it has the following properties: every five points F = F(n,m) and its neighbours
Fy, Fy, F, F5 lie on one plane. The vectors Fip + F — F} — F5 are all parallel in R3.

Proposition 3.4 Let F: Z? — R3 be a discrete indefinite improper affine sphere. Then

the discrete Gauss equations are as follows:

(10) (F-F)-(F-F) = 2R -F+5m-F),
(11) F12+F—F1—F2 = .QE,
(12 (F-F)=(F-F) = 2R -+ 2225 p),

where = is a nonzero constant vector in R3 and three functions A, B and 2 satisfy the

discrete Gauss-Codazzi equations
(13) 1902 — 82 + A1 By =0, A,—A=0, B;-B=0.

Moreover, these equations (10)-(13) become continuous ones (4)-(7) in the continuum

limit
(14) F=f N=wee, A=as3 B=be?,

where smooth variables are correlated to discrete ones as (u,v) = (1n,£9m) for small

positive numbers £, and ¢,.

Proof Since F is a discrete indefinite improper affine sphere, there exist functions on
Z? such that

Fn-F = P(Fh-F)+Q(F2 - F),
F12+F—F1—F2 = .QE,
Fo - F = R(Fz—F)-}-S(Fm—FQ),

where = is a nonzero constant vector in R®. The compatibility condition of F is equivalent
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to the system

0 = P,+Qy5— P,

0 = QR-Q,

0 = Pu2+QuS02+ Quf— QN — 1y,
0 = S,P-S5,

0 = R +S5,Q-R,

0 = RiN+5:Q2+ 514 -850 — .

The aimed equations (13) are obtained by setting A; = Q2 and B, = S12.

Next, we regard a discrete map F as an approximation of a smooth map f, that is
F(n,m) = f(ein,e2m)
for small £, €9, then, the Taylor expansions
512 3 622 3
Fl - F= 6l.fu + Tfuu + 0(51 )7 F2 —-F= €2fv + _2_f1m + 0(52 )

apply. Thus, the discrete Gauss and Gauss-Codazzi equations (10)-(13) produce contin-

uous ones (4)—(7) in the continuum limit &, — 0. a

In the case that AB # 0, the first equation of the systems (13) is locally written down

as

Wi W, —Wo4+ W Wi —W —Wo - W
12 1 2+ + A,Byexp 12 1 2

) . 2 =0

(15) 2sinh

where 2 = texpW.

Remark 3.5 The equation (15) is exactly Hirota’s discrete Liouville equation (2) when
AB = 1. He constructed a discrete integrable analogue to the Liouville equat;idn (8)
without using any relation to geometry, and it has been revealed that his method to
discretize nonlinear partial differential equations produces good difference ones in the
view of discrete ‘integrability. Thus,‘ our discrete indefinite improper affine spheres are

described in terms of discrete integrable systems.

In the case that AB = 0, we obtain the following theorem, which is a discrete analogue

of Proposition 3.2.
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Theorem 3.6 Let F: Z? — R3 be a ruled discrete indefinite improper affine sphere, that

is, the points F(n,mq) lie on a line for any fized integer my. Then it is locally of the form
(n,m) — (n,m,nm + &(n)),
where & is an arbitarary sequence of n. Moreover it becomes the continuous graph z =

xy + o(x) by taking an appropriate continuum limit.

Proof We show that the difference systems (10)-(13) provide the theorem. From the

Gauss equation (11), the vector F(n,m) is of the form

Y X 2(i,5) E + F(n,0)+ F(0,m) — F(0,0), n,m >0,
~ Y. X 20,5) £+ F(n,0) + F(0,m) — F(0,0), n<0,m>0,
F(n,m)=( F(n,m), nm =0,

Y Y (i, §) E + F(n,0) + F(0,m) — F(0,0), n,m<0,

— Y Sk 206,5) E + F(n,0) + F(0,m) — F(0,0), n>0,m<0.

If AB # 0, a discrete indefinite improper affine sphere F' cannot be ruled. Hence we can

assume B = 0 without a loss of generality. The function £2(n,m) is of the form
£2(0,0)2(n, m) = P(r)Q(m),

where P(n) = 2(n,0) and Q(m) = £2(0, m) are arbitrary one variable functions.

We can assume that the initial value £2(0,0) is equal to 1, and we set formally the
summation Z,’z’:kz to be always zero for k; < k3. From the discrete Gauss equations (10)
and (12), we have

Y QU (F(0,1) - F(o, 0))+F(0 0), m>0,

F(0,m) =
_2j=m Q(])(F(Oal) - (OaO)) +F(010)7 m <0,
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() P(1) (F(1,0) - F(0,0))
+ S P S (A(k + 1)/ P(k)P(k + 1)) (F(0,1) — F(0,0))

+ S P S (A(k + 1)/ P(k)P(k + 1)) i P()E + F(0,0), n >0,
F(n,0) = <

—‘21;17,, P(l) (F(l,O) - F(Ov 0)) ) - .
+ 370 PR (A(k + 1)/ P(k)P(k + 1)) (F(0,1) — F(0,0))
| -5 PO (Alk + 1)/P(R)P(k + 1) Xilipy P)E + F(0,0), n<0.

Then we obtain the following expressions: in the case that n > 0 and m > 0,

n—1

F(n,m) = ZP(a:)(F(LO)-— F(0,0))

1=

'

n m—1
+ ( P(i)>_QU) +
1=0 =0

j =0

3

-1 n-1 i-1 | B
A+ PO }7‘;%1—*’),?(7)) (FO,1) - F(0,0)

n

-0
[l
—_ O

i—1

. A(k +1) _
P(z)k P41 P(“ZP(1> + F(0,0).

In the case that n < 0 and m > 0,

F(n,m) = —;V_:P(i)(F(l,O)—F(0,0))

1=

+(ZQ +EP( ip(f(f:fl) )(F(O,l)—F(0,0))

Jj= i=n

(ZP )ZQ(] +ZP(1)ZP(ka)}D)(k Z P(l )=+F(0,0).

I=k+1

In the case that n < 0and m <0,

Z P(i)(F F(0,0))

i=n

-1

_ (ij ) -3 PO P(;j‘f: T )(F(o,n - F(0,0))
i — k=1

i=n
-1

(S50 - 20 S s 3 p0) £+ 00

t=n i=n I=k+1
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In the case that n > 0 and m <0,

n-1

F(n,m) = ZP(i)(F(l,O)—F(0,0))

Zoo) S Z PP ) (F(0,1) ~ F(0,0)
=0
n—1 i—1
(Z;P(z ZQ(] ZOP gp(ﬁ(ff);)(k)ggp(z)) = + F(0,0).

Thus a ruled discrete indefinite improper affine sphere is locally the graph (n,m) —
*(n,m,nm + &(n)), where & is an arbitrary sequence of n.
Moreover, by regarding the functions P,Q and A as approximations of smooth func-

tions p, q and a, respectively, via
_ u—1ug\\ u— ug
P(n) = exp(p(uo+nk_1)) 1
V—17 V=1
Q(m) exp(q(vo+mk_l)) P

3
_ u—1u\ [u—1up
A(n) = a(u0+nk_1)(k_l),

we obtain

k-1 2 k—1 "

dim > P(n) = / Vo, lim 3 Q(m) = / ") dg,

n=0 uo n=0 vo

and
k—1
A(n+1)
D B s DP) / o

Thus, F' becomes the smooth graph z = zy + ¢(z) as k tends to infinity. O
4 Examples

We illustrate examples of discrete indefinite improper affine spheres.

Example 4.1 (discrete hyperbolic paraboloid) The graph z = (z2 — ?)/2 is called
hyperbolic paraboloid. The Gauss equations are f,, = ¢, fzy = 0 and f,, = —¢, where
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¢ =7(0,0,1). Hence a hyperbolic paraboloid is an indefinite improper affine sphere. We
choose an asymptotic coordinate system (u,v) and obtain f(u,v) = *(u + v,u — v, 2uv),

where the Gauss equations are
fuu=0, fuw=2 fo=0.
We call the map |
F(n,m) ="(n+m,n —m,2nm)
discrete hyperbolic paraboloid. The discrete Gauss eql'lations are
(H=F)-(F-F;)=0, Fiu+F-Fh-F=2 (Fo— F)—(F-F;)=0.

This is one of the simplest examples of discrete indefinite improper affine spheres.

Figure 1: hyperbolic paraboloid Figure 2: discrete hyperbolic paraboloid

Example 4.2 (discrete Cayley surface) The graph z = zy — 23/3 is called Cayley
surface. There is a simple characterization of the Cayley surface, namely, if the cubic form
C = Vh is not 0 and parallel relative to V, a Blaschke immersion is affinely congruent to

the Cayley surface. We call the map

2 —m?2 n3— 3nm?
F(n’m)zt("’HQ TG )

discrete Cayley surface. This is a ruled discrete indefinite improper affine sphere.



46

Figure 3: Cayley surface Figure 4: discrete Cayley surface
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