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COMPUTATIONS OF SPACES OF SIEGEL MODULAR CUSP FORMS
Cris POOR, POOR@QFORDHAM.EDU

ABSTRACT. We survey the known dimensions of SX, the space of Siegel modular forms of
weight k& and degree n. We mention a few new results for degrees 4, 5 and 6. We obtain
our results by combining a Vanishing Theorem and a restriction technique. For a fixed n, &k
the Vanishing Theorem gives an explicit set of Fourier coefficients which determine SX. The
restriction of Siegel modular forms to elliptic modular forms reveals linear relations among
these explicit Fourier coefficients. Sometimes we produce enough linear relations to determine
dim SX. We discuss conjectures to the effect that dim Sk may always be computed by these
means.

§1. Outline.

I. Vanishing Theorem giving upper bounds for dim S&.
II. Restriction to modular curves and examples computing dim SX.
III. Conjectures: will the method in part II always work.

All of the work in this talk is joint work with David Yuen.
§2. Notation.

e(z) =e?™* for z € C
Pa(R) = {Y € M;X(R) : Y > 0}, the positive definite real matrices.
Peemi(R) = {Y € M (R) : Y > 0}, the positive semi-definite real matrices.
X, = {T € Pn(Q) : Vz € Z",z'Tx € Z}, the positive semi-integral matrices.
Ho = {Q € M35(C) : SQ > 0}, the Siegel upper half space of degree n.
I'n = Sp,(Z), the modular group.
Fn = any fundamental domain for Iy, acting on H,,.
Sk = Siegel modular cusp forms of weight k and degree n.
For simplicity of exposition, assume level one and even weights throughout this talk.
All the results extend to SX(T', x) for T of finite index, x a character and k € $Z*.

§3. I. Vanishing Theorem.

“It is a basic and important problem to know how many Fourier coefficients
determine a modular form.” H. Katsurada (5]

The following Theorem of Siegel [3] gives a finite set of Fourier coefficients that determine
the form f € Sk. Loosely, f must be zero if its vanishing order is too high.
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Theorem (Siegel). Let f € SX have Fourier expansion f(Q) = > rex, o(T)e(tr(TQ)).
If a(T) =0 for all T such that tr(T) < Kkn Zk?r then we have f = 0.

Here we define
kn = Sup tr ((SQ)71).
The best known upper bound for K, is kn, < n 23 pr where u, is Hermite’s constant.

The partial order on X, given by A > B when A — B is semidefinite is natural whereas
all linear orders are artificial. How can the vanishing order of f be measured in an intrinsic
way without relying on height functions like the trace? We can measure vanishing order
by taking the semihull of the support of the Fourier series of f. This set turns out to be
a kernel, which we will define. This concept can then be used to formulate an intrinsic
vanishing theorem.

Definition. Let f € S* have Foum’gr ezpansion f(Q) = Y rcx a(T)e(tr(TR)). Define:
supp(f) = {T € &, : a(T) # 0} C P.(R)
v(f) = Closure{ConvexHull (R>; supp(f))} C P™(R)

= Semihull(supp(f))
Definition. A kernel is a closed conver set K C P™i(R) satisfying:
(1) RZIK = K, '
(2) 0¢ K,

(3) R>0K 2 Pn(R)'
Proposition. Let f,g € S,. We have v(fg) = v(f) + v(g).

Proof. Unpublished.

The operator v thus behaves like a valuation. The v(f) for f € S, are all kernels
and so the intrinsic vanishing of a Siegel modular cusp form may be measured by kernels.
Complete proofs of the Kernel Lemma and the Semihull Theorem may be found in [7].

Kernel Lemma. If f € S, then v(f) is a kernel.

Proof. (sketch) The Koecher Principle tells us that v(f) € Ps™i(R). The proof of the
Kernel Lemma uses the same techniques as the proof of the Koecher Principle. The useful
added information is item (3). O

The kernel v(f) is related to the critical points of the invariant function det(Y)f |£(Q)].

Semihull Theorem. Let f € Sk. Write Q = X +4Y € Hn. If det(Y)%|f(Q)] attains a
mazimum at Qo = Xo + 1Yy then Z’%Yb"l € v(f).

Proof. (sketch) For all P € P$$™(Z), ¢ € Z* such that inf (tr(Pv(f))) > ¢ apply the
maximum modulus principle on {¢ : ¢ > —¢€}, € > 0 to

f(Qo+CP).

@) -

(—
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For every cusp form f we know that det(Y)§ |£(R2)| attains a maximum in F,. This
makes an intrinsic Vanishing Theorem possible.

Vanishing Theorem ( Intrinsic Version). Let f € Sk. If Ik? (SF) " Nu(f) = 0 then we
have f = 0.

It must be confessed, however, that use of this Intrinsic Version in specific exam-
ples requires more information about F, than is presently available. F; is well known.
Gottschling [2] has given a description of F2 but it is surprisingly complicated: 73 is
bounded by 28 real algebraic hypersurfaces. Although present computations still rely on
linear orders, the Intrinsic Version allows us great freedom in the choice of a linear order.
Siegel used the trace, tr(T). Witt used the reduced determinant, det(T")!/". Eichler used
Hermite’s function, m(T'). We use the dyadic trace, w(T):

For T € X, define: w(T) = Yei1r>lf(k) %
The following Theorem, along with techniques for calculating the dyadic trace, can also
be found in [7].
Theorem. Let f € Sk have the Fourier ezpansion f() = Y 1. a(T)e(tr(T9Q)).
If a(T) = 0 for all T such that w(T) < %n Zk;F then we have f = 0.

Table 1 illustrates for degree 4 how favorably the dyadic trace version compares with
Siegel’s trace version. Table 1 contains all even k > 0 for which dim S¥ is presently known.

Table 1. (degree n=4)

k # FCs # FCs dim S%
weight (trace) (dyadic trace) | true dim.
2 0 0 0
4 17 0 0
6 334 1 0
8 3285 2 1
10 22635+ 10 1 (new)
12 100000+ 23 2
14 tables run out 85 3 (new)

Example. Let Jg € S$ be Schottky’s form. Igusa [4] proved the identity:
-2 . 2 . . — p—
(27%-3°-5-7) Jg = OEs@Es — U3, -

According to Table 1, we can prove this identity by the relatively easy task of verifying
it for 2 Fourier coefficients. In summary, the Vanishing Theorem gives a D such that
dim S*¥ < D. We can decrease D by studying the restrictions of Siegel modular cusp forms
to modular curves. This is the topic of part I1.
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§4. II. Restriction to Modular Curves.
Let s € Po(Z). Let £ € Z* such that €s~* € P,(Z). Define:

¢s : H1 — Hn, : ¢ : S:;: - S?k (To(4)) -
T+ ST Q= f()) — (7 f(s7))

Casually, if f(Q) is a Siegel modular form then f(s7) is an elliptic modular form. This
is the “Eichler trick.” It is usually seen in the context of theta series where ¢* sends the
thetanullwerte of degree n to the theta series for s of degree 1.

The Fourier coefficients of ¢} f at each cusp can be worked out in terms of the Fourier
coefficients of f. Let ¢ = e(7) for 7 € H;.

(@3£)r) = f(s7) = D a(De(tr(Tsr)) = Y a(T)g" T =3 ( > a(T)) 7.

TeX, TeXn Jj=1 \T:tr(Ts)=j

It is essential to make use of similar expansions at the other cusps of I'o(¢)\H1, see [8] for
details.

~Since ¢} f is modular for I'g(¢), the Fourier coefficients of ¢? f for all cusps satisfy linear
relations. These induce linear relations on the Fourier coefficients of f and this is the whole
point of the method. ‘

| 211 1 2 111
Example. n=4;£=2;s= Dy = 1 g (2) 8 - Also let H = i g g g
1 0 0 2 1 0 0 4

We compute the following expansion:

(¢, f) () =a(Da)g* + (16a(Ds) + 48a(As)) ¢°
+ (144a(Dy4) + 288a(Aq) + 216a(A3 & A;) + 48a(A2 © A2) + 12a(H)) ¢® + ...
(4.1)

The function ¢p, f € S$¥ (T'9(2)) is invariant under the Fricke involution because D' is
equivalent to 3Dy, a helpful lemma. We need information about the ring M; (To(2)). In
order to fix notation, define Eki’d(f) = (Ex(7) £ d¥ Ex(dr))/(1 &+ d%) where the Ex(r) =
1- g—': o 10k-1(n)g"™ are the Eisenstein series and the By are given by t/(e* — 1) =
S xeo Bit*/k!. We have Eif; € M¥(T'o(d)) except in the case of E5 ;. The ring M; (T'o(2))
is generated by E;, € M7 (I'o(2)) and E;, € M{ (I'o(2)) and the ring of cusp forms is
principally generated by C’é‘: 5 € S%(To(2)). The =+ superscript indicates an eigenvalue of
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+1 under the Fricke involution. The Fourier expansions of these generators are given by

o0
E;, (1) =1+24) (o1(n) — 201(n/2)) " = 1+ 24¢ + 24¢° + 96¢° + 24¢* + 144¢° + . ..

=1
noo
E;, (1) =1-80) (03(n) — 403(n/2))¢" = 1 — 80g — 400g> — 2240¢> — 2960¢* — ...
n=1
Cia(2) = % (E;z (1)* - Eg, (7')2) = g —8¢% + 12¢° + 64¢* — 210¢° — 96¢° — . ..

The order of ¢7,, f at the cusp [I] is at least 4 and the order at the cusp [J] is the same

because ¢}, f is an eigenfunction of the Fricke involution. Thus we have (Cg,)*|¢p, f in
M; (I'o(2)) and we have

¢b,f = (Cg2)* (Form of weight 4k — 32).

Let us use this fact, along with column 3 of Table 1, to explain the entries in column 4 of
Table 1.

k =2,k = 4. From column 3 of Table 1 we see that the Vanishing Theorem alone proves
that S? = {0} and that S§ = {0}.

k = 6. S is controlled by one Fourier coefficient, a(D4). We see that ¢}, f = 0 and so
every coefficient in equation 4.1 gives a homogeneous linear relation; in particular we must
have a(D4) = 0 and hence we have S§ = {0}.

k = 8. S§ is controlled by two Fourier coefficients, a(D4) and a(A4). For k = 8 there is a
parameter ¢ € C such that

¢, f =c(Cay)* = c(¢* — 32¢° +432¢° — 2944q" + 7192¢® + 39744¢° — ...).
Elimination of the parameter ¢ provides a linear relation for any f € S§:

a(Dy) = c,
16a(D4) + 48a(A4) = —32c,
a(D4) + a(A4) = 0.

The relation a(D,) + a(A4) = 0 implies that dim S§ < 1.

k = 10. S1° is controlled by 10 Fourier coefficients. For k = 10 there are parameters
@, B € C such that ¢}, f = (Cg,)* (a(Ez2)* + BCq,). The element (E;,)%E,, cannot
occur in this representation because it has eigenvalue —1 under the Fricke operator. Elim-
ination of the parameters o and § provides two linear relations. Recall the form H, the
homomorphism ¢3; : S}° — S§°(I'o(6)) gives 8 relations on these same ten Fourier coeffi-
cients. The span of the two sets of relations is 9 dimensional so that we have dim S}o <1.
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We can also show that dim S}? < 2 and dim S3}* < 3 by using a lot of different ho-
momorphisms. In every case we can construct this same number of linearly independent
cusp forms so that all our upper bounds are in fact equalities. Table 2 gives the state of
progress for determining dim SX. The full generating functions are known only for n < 3;
the case n = 2 is due to Igusa, the case n = 3 to Tsuyumine.

Table 2. dim S*

n_ k—{2| 4|68 10f12) 14|16
1 0000 0 1 0 1
2 0000 1 1 1 2
3 0000 0 1 1 3
4 001 1 2 3
5 000 0 2
6 000
7 0 0
8 00
9 0
10 0
11 0
12

All the dim S5 were given by Igusa. Igusa also gave dim S¥ for k < 10. Eichler showed
that dim S2 = 0 for n = 4 and n = 5. The theory of singular forms developed by Freitag
and Resnikoff showed that S* = {0} for k < n/2. The SF = {0} for k < n/2 have been
left blank in Table 2 in order to make it easier to see the so-called singular zone. Bocherer
showed that the theta-series are onto for k > 2n. In view of this result we term the entries
for k > 2n the generic zone. The middle zone, n/2 < k < 2n, may be termed the sporadic
zone. All the dim S¥ were given by Tsuyumine, see [9].

Poor-Yuen used divisor methods in [6] to compute dim S§ for k = 6,8,12. Duke-
Imamoglu [1] used explicit formulae and L-functions to compute dim Sy for 4 < n < 7 and
dim S8 for 4 < n < 11 and dim S8 for n = 4,8. Nebe-Venkov computed dim S32. The
method of this paper adds dim S¥ for k = 10,14 and dim S¥ for k = 8,10 and dim S§ for
k = 8.

§5. III. Conjectures.

The previous sections have shown how to give progressively improved upper bounds for
dim S¥. In order to show equality, one constructs the correct number of linearly indepen-
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dent forms in SX. So far this has not been a problem, at least whenever the upper bound
turned out to be the correct dimension. One wonders how good this method for producing
upper bounds actually is and whether it might stabilize above the actual dimension. We
believe that the method described in this talk will always work. We wish to characterize
“the Fourier series of Siegel modular cusp forms from among all formal series. The conjec-
tures that follow are an attempt to do this. We write a formal series as D pc . a(T)q%,
the g, indicates that the exponent is an n x n matrix. We define what it means to say
that a formal series is of “Koecher Type.”

Definition. Let n,k € Z*. A formal series 3 rcx. a(T)qZ is of Koecher Type (n,k)
when we have a (v'Tv) = det(v)*a (T) for all v € GL.(Z).
More generally, let a set T C X, be given. A formal series Y rer a(T)qY is of Koecher

Type (n,k) when it can be extended to a formal series Y ¢y a(T)qEX of Koecher Type
(n, k).

Conjecture (Theory Version). Givenn, k € Z+. Fourier series in SX are characterized
among all formal series of Koecher Type (n, k) by the linear relations on the a(T), T € Xy,
induced by the ¢% homomorphisms at all cusps for all s € Pr(Z).

A second conjecture is formulated with computer applications in mind. By general
nonsense, these conjectures are equivalent.

Conjecture (Computer Version). Given n, k € Z*. Given a finite set T C X,.
There ezists a finite set S C Pn(Z) such that T -partial sums of Fourier series in SX are
characterized among all formal series Y et a(T)qX of Koecher Type (n,k) by the linear
relations on the a(T), T € T, induced by the ¢; homomorphisms at all cusps for s € S.

A better assertion would be that S is effectively computable from n, k and 7 but we
suspect this is more difficult. You probably shouldn’t believe either conjecture until you
see the following Theorem. The proof of this Theorem is unpublished.

Theorem. Given n, k € Z*. Fourier series in SX are characterized among all conver-
gent series Y 1 a(T)qE by the linear relations on the a(T), T € Xy, induced by the ¢
homomorphisms at all cusps for all s € Pn(Z).

A counterexample to the conjecture would be a strange creature indeed: a formal series
whose coefficients have super-exponential growth such that every time the substitution
gL := ¢*"(*T) is made for s € P,(Z) we obtain an elliptic modular form of level I'o(¢) for
the minimal £ such that £s~! is integral.

At this point we view the Conjecture as a regularity theorem. Recall the original
regularity theorem: a weakly harmonic distribution is already C*° and hence harmonic.
We wish to frame our Conjecture in an analogous manner. Call a formal series modular
if it is the Fourier series of a Siegel modular form. Call any formal series of Koecher Type
that gives an elliptic modular form of level I'g(£) every time the substitution g% := ¢t*(sT)
is made weakly modular. In the above spirit we may rephrase the Conjecture as: a weakly

modular formal series is already convergent and hence modular.
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