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Some Computer Assisted Proofs for Solutions of the Heat Convection Problems
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This is a continuation of our previous results [7]. In [7], the authors considered the
two-dimensional Rayleigh-Bénard convection and proposed an approach to prove the ex-
sistence of the steady-state solutions based on the infinite dimensional fixed-point theorem
using Newton-like operator with the spectral approximation and the constructive error es-
timates. We numerically verified several exact non-trivial solutions which correspond to
the bifurcated solutions from the trivial solution. This paper shows more detailed results
of verification for the given Prandtl and Rayleigh numbers, which enables us to study the
global bifurcation structure. All numerical examples discussed are taken into account of the
effects of rounding errors in the floating point computations.

1 The Rayleigh-Bénard Problems

Consider a plane horizontal layer (0 < z < h) of an incompressible viscous fluid heated from
below. At the lower boundary: z = 0 the layer of fluid is maintained at temperature T + 6T
and the temperature of the upper boundary (z = h) is T (see Fig.1).

W77 % Z % % T %%

h fluid layer

T ) ) 4T+5T
Fig.1. Geometry of the convection problem.
All variations with respect to y-direction are assumed to vanish, then according to the Oberbeck-

Boussinesq approximations [1, 3], the equations governing convection in a layer in the two-
dimensional (z-z) are described as follows:

ug +uug +wu, = —pz/po+vAu,
wy +uwy +ww; = —(pz+9gp)/po +vAw,
_ 1)
ugy +w, = 0,

0 +ub, +wb, = KA.
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In the above system (1), (u,0, w) is the velocity vector field in the respective direction (z, y, z);p
is the pressure field; 6 is the temperature; p is the fluid density; pg is the density at temperature
T + 6T v is the kinematic viscosity; g is the gravitational acceleration; « is the coefficient of
thermal diffusivity; x¢:=08/9¢(¢ = z, 2,t); and A := 8%/8z2+8%/822. The Oberbeck-Boussinesq
approximation also requires that the fluid density is to be independent of pressure and depends
linearly on the temperature 6, therefore p can be represented by

p— po=—po(f — T — 6T),

where «a is the coefficient of thermal expansion.
The Oberbeck-Boussinesq equations (1) have a stationary solution:

8T
w=0 w0, =T+ - P*=Po—gpo(z+0;s_hTz2)

representing the purely heat conducting state, where pg is a constant. By setting
4= u, W= w, :=6*-0, p:=p*—p,
the perturbed equations:
Gy + @iy + B, = Pg/po + vAd,
Wy + Uy + D, Pz/po — gab + vAw,
Uy + W, 0,
0; + 6Tw/h + 46, + 06, kA8,

()

are obtained. Moreover, transforming to dimensionless variables:
t—kt, u—d/s, wob/k, 0—8h/5T, p— p/(por?)

of (2), the dimensionless equations:

U + uug +wu, = pzp+ PAu,
wy + uwz +ww, = p,—PRO+ PAw, 3)
uz+w, = 0,

0 +w+ub, +wh, = A8

are led, where

is the Rayleigh number! and

is the Prandtl number.

'The Rayleigh number is sometimes defined by R = (§Tagh®)/(xv) when the dimensionless equations are
reduced to the domain of 0 < z < 1.
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2 A fixed-point formulation

We shall find the steady-state solutions, u, w; and 6; are equated to 0 in (3), and assume
that all fluid motion is confined to the rectangular region Q := {0 < z < 27/a, 0 < 2z < 7}
for a given wave number a > 0. Let us impose periodic boundary condition (period 27 /a) in
the horizontal direction, stress-free boundary conditions (u, = w = 0) for the velocity field
and Dirichlet boundary conditions (8 = 0) for the temperature field on the surfaces z = 0, ,
respectively. Furthermore, we assume the following evenness and oddness conditions:

u(z, 2) = —u(-=z,2), w(z,2)=w(-z,2), 0(z,z)=0(-=z,z2).
We introduce the stream function ¥, through the definition
u=-Y, w=V¥,

so that uy + w, = 0. Cross-differentiating the equation of motion in (3) in order to eliminate
the pressure p and setting © := v/PRE, we obtain

{ PA2Y = V/PRO,—U,A¥, + T, A¥, in Q, W
4

-A® = —/PRY,+V¥,0,—-Y,0, in Q.

From the boundary conditions imposed above, the stream function ¥ and departure of tem-
perature from linear profile © can be represented by the following double Fourier series:

U= Z Z Amn sin{amz) sin(nz), © = Z Z B cos(amz) sin(nz). (5)

m=1n=1 m=0n=1

By (5), we introduce following function spaces for k > 0:

o0 o0
Xk .= {\Il = Z Z Amn sin(amz) sin(nz) | Amn € R,

m=1n=1
00

Z i((am)% +n?)A2 < oo} ,
m=1n=1

o0 o0
Yk = {9 = z Z By cos(amz) sin(nz) | Bpy € R,

m=0n=1
Z Z((am)”" +n?*)B2_ < oo}

m=0n=1
which are considered as closed subspaces of usual k-th order Sobolev space H*(Q2).
For M;,Ni,M> > 1 and N > 0, we indicate a relation N := (M;, N;, M2, N3) and define
the finite dimensional approximate subspaces by

m=1n=1

M N
SJ(\}) = {\I}N =Y Efimn sin(amz) sin(nz) | Amn € R} )

m=0n=1

. Mz N»
,5'53) = {GN = Z Z B cos(amz) sin(nz) | By € R} ,

Sy = S$ x 5P,
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and denote an approximate solution of (4) by iy := (¥n,0x) € Sy which is obtained by an
appropriate method. Then setting
A(8,0) = VPRO, - U,AY, + T,A¥,,
{ £2(2,0) = —VPRY, +¥,0, - ¥,0,,
=¥y +uwl), 0 =6y +uw?,

(4) is rewritten as the problem to find (w()),w®) € X4 x Y?2 satisfying
PAZw() = f1(Tn +wD, 05 +w®) - PA2¥y in Q,
{ -Auw@ = fo(Iy +u®, 08 +wP)+Aby  in Q. (©)

Note that (w(),w(?) is expected to be small if iy is an accurate approximation. Defining
w = (w® w?),
hMw) = fi(Iy+wD, 8y +w?) - PA2Yy,
ho(w) = fo(In +wD, Oy +w?) + Ay,
h(w) = (h1(w),he(w)),
by virtue of Sobolev embbeding theorem and the definition of f; and fs, h is a bounded

continuous map from X3 x Y1 to X0 x Y0. Moreover, it is easily shown that for all (g;, g2) €
X9 x YO, the linear problem:

A2Y = g, in Q,
{ ;

—Aé = g2 in Q
has a unique solution (¥, 0) € X* x Y2. When this mapping is denoted by ¥ = (A2)~1g; and
© = (—A)~lg,, an operator:

K:=P 1A%, (-A) ) : XxY° - x3xy!?
is a compact map because of the compactness of the imbedding H*(Q) — H3(Q), H*(Q) —
H'(Q) and the boundedness of (A2)~! : X0 —» X4 (-A)~!:Y® — Y2. Therefore, (6) is
rewritten by a fixed-point equation:
w = Fw (8)

for the compact operator F := K o h on X3 x Y, and Schauder’s fixed-point theorem asserts
that, for a nonempty, closed, bounded and convex set W C X3 x Y1, if

FWCW (9)

holds, then there exists a fixed-point of (8) in W. A concrete computer algorithm to construct
a candidate set W which satisfies (9) is proposed in [7].

3 Numerical Examples

In the verification step, interval arithmetic is used to take account of the effects of rounding
errors in the floating point computations. We use Fortran 90 library INTLIB_90 coded by
Kearfott [5] with DIGITAL Fortran V5.4-1283 on Compaq Alpha Server GS320 (Alpha 21264
731MHz; Tru64 UNIX V5.1).
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3.1 The trivial solution

It is clear that the problem (4) has a trivial solution ¥ = © = 0 for all P and R. Fig.2 shows
the isotherm of the temperature T + 6T — ihT—z when T = 0 and 6T = 5.
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Fig.2 The isotherm of the temperature: stationary solution.

It is known that for small R the fluid conducts heat diffusively, and at a critial point R,
heat is transposed through the fluid by convection. It has been shown by Joseph [4] that (3)
has a unique trivial solution for R < R¢. However, the global structure of bifurcated solutions
after the critical Rayleigh point R¢ has not been known theoretically.

3.2 First bifurcated solutions from the trivial solution

In 1916, Rayleigh [6] considered the linearized stability and found the critical Rayleigh number

as follows
( a2 m2 + n2)3

=675 (m=ln=1la= 1/V2).

Rc = inf
m,n

The usual bifurcation theory implies that the stationary bifurcation occurs from the above
critical point. We select a = 1/ V2 and P = 10 in the following numerical experiments. After
the critical Rayleigh number R¢ = 6.75, we obtain two non-trivial approximate solutions for
various Rayleigh numbers R of the form:

M N Ms; No
Uy = Z Z Apn sin(amz) sin(nz), 6y = Z E B cos(amz) sin(nz)
m=1n=1 m=0n=1
for some Mi, My, N; and N, by Fourier-Galerkin method combined with Newton-Raphson
iteration. Fig.3 shows the velocity field (—(¥n)., (¥n)s) at R = 50,P =10, M; = Ny = My =
N, = 10, respectively. We illustrate the particular value of coefficients, under the figures, which
has the maximum absolute value in {Aps} and {Bmn}, respectively.
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Fig.3 The velocity field of the first bifurcated solution.



Fig.4 shows the isotherm of the temperature

6* =6T(1-z/mn — ©/VRPr)+T

when T =0, §T = 5.
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Fig.4 The isotherm of the temperature for the first bifurcated solution.

3.3 Second bifurcated solutions from the trivial solution

After the Rayleigh number

(a2m2 + n2)3

R =
a’m?

=135 (m=2,n=1a=1/v2),

we obtain two non-trivial approximate solutions which are expected to be second bifu
solutions from the trivial solution. Fig.5 and Fig.6 show the velocity field at R = 5(
10, M; = N; = My = N5 = 10 and the isotherm of the temperature, respectively.
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Fig.5 The velocity field of the second bifurcated solution.
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Fig.6 The isotherm of the temperature for the second bifurcated solution.

3.4 Third bifurcated solutions from the trivial solution
After the Rayleigh number

(a2m2 + ’n,2)3

R =
a?m?

=1331/36 (m=3,n=1,a=1/V2),

we obtain two non-trivial approximate solutions which are expected to be third bif
solutions from the trivial solution. Fig.7 and Fig.8 show the velocity field at R = !
10, M; = N; = My = N3 = 10 and the isotherm of the temperature, respectively.
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Fig.7 The velocity field of the third bifurcated solution.
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Fig.10 The isotherm of the temperature for the another non-trivial solutions.

3.6 Verification Results

We actually succeeded to verify the exact solutions of (4) corresponding to the approximate

solutions in Fig.9 and Fig.10, as in Fig.11. The vertical axis shows the absolute value of the

coefficient of the approximate solution: Oy = Y M2 N2 B . sin(amz)sin(nz). Each dot

implies that the verification procedure are succeeded.
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Fig.11 The bifurcation curve.

Table 1 shows the error bounds when R = 60, P =10, N := M; = My = N; = Ns.
There exist the solution (¥,0) € X3 x Y! of (4) in

ey +wd +wh,
0 by +wWP +wd.

Table 1. Verification results; R = 60, P = 10



No. | N| ¥z [6nlze | IWPlee  1WNeeo [ WD o WD 10
1|45 17.44 34.89 [ 1.40x107° 3.12x107!1 | 2.46x10~ 1! 1.26x10~7
2|45 17.44 34.89 | 1.40x107° 3.12x10711 | 2.46x10~1! 1.26x10~7
3130 8.14 30.57 [ 2.35x107% 2.56x10~% [7.75x10~® 1.35x10~*4
4130 8.14 30.57 | 2.35x107¢ 2.56x10~% | 7.75%x10™8 1.35x10~4
5 {50 9.62 29.43 | 9.75x107° 8.77x10710 | 6.96x107 1! 5.21x10~7
6 | 50 9.62 29.43 | 9.75x107° 8.77x10710 | 6.96x10~1! 5.21x10~7
7150 9.62 29.43 | 9.75x107° 8.77x10710 | 6.96x10~1! 5.21x10~7
8|50 9.62 29.43 | 9.75x107° 8.77x10710 | 6.96x10~ 1! 5.21x10~7
9120 2.84 19.49 | 3.40x1075 9.56x10~7 |1.75x10~6 1.10x10~3
10 | 20 2.84 19.49 | 3.40x1075 9.56x10~7 |1.75%10~6 1.10x10~3
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From our verification results we cannot decide whether the verified solutions are really bifur-
cated or simply isolated solutions. We also cannot say for certain whether the verified solutions
are continuous for the Rayleigh number or locally unique in the candidate sets. These questions
must be solved in our future works.

& 30k

[1] Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, Oxford University Press,
1961.

[2] Curry, J. H.: Bounded solutions of finite dimensional approximations to the Boussinesq
equations, SIAM J. Math. Anal. 10, pp.71-79 (1979).

[3] Getling, A. V.: Rayleigh-Bénard Convection: structures and dynamics, Advanced series in
nonlinear dynamics Vol.11, World Scientific, 1998.

[4] Joseph, D. D.: On the stability of the Boussinesq equations, Arch. Rational Mech. Anal.
20, pp.59-71 (1965).

[5] Kearfott, R. B., and Kreinovich, V., Applications of Interval Computations, Kluwer Aca-
demic Publishers, Netherland, 1996.
(http://interval.usl.edu/kearfott.html)

[6] Rayleigh, J. W. S.: On convection currents in a horizontal layer of fluid, when the higher
temperature is on the under side, The London, Edinburgh and Dublin Philosophical Maga-
zine and Journal of Science, Ser.6, Vol.32, pp.529-546 (1916); and Scientific Papers, Vol.6,
pp-432-446 (1920).

[7] W ERE, TR TR, IWE FA, EHE ¥03: Rayleigh-Bénard S0 EHARIC K3 5 HE B4R
fEfH & BAER I, EHIEFIBIE - FEEERREAT & SMEEH L L £ 050, RS EEMRATI 2
BTk 7e8%, Vol.1147 (2000) pp.132-136.



