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1 Introduction

Let us consider the following ergodic type Bellman equation of risk-sensitive control:

1 0 1
(1.1) X = =Av+ =|Vu|? + inf {z*Vv + 2* Az + =|2]*} + V(z),
2 2 z€RN . 2

where  is a constant and it is considered to characterize the minimum of the risk-sensitive
long-run criterion: '

. . 1 T 1 Zs 24, .
ll%n_i.l:f ﬁ lOgE_m[eafo {V(X.)+2| |*+2z AX, }ds}]

subject to
dXt = tht + dm.

where W; is an N— dimensional standard Brownian motion process on a filtered proba-
bility space and z, is a control process taking its value on RN. Note that (1.1) is rewritten
as

-0
(1.2) X = —;—Av — Az - Vv — 1—2—|Vv|2 + V(z) - %x*A*A:c
and in a similar way to [15] we can see that there exists a solution of (1.1) such that

(1 —0)v + 32*Az — 00, |z| — o0, if A is symmetric and

(1.3) V= %|Aa:|2 —(0—-1)(V - %z*Aza:) - %trA — 00, |z| = oo.

Furthermore, the solution is represented as

1 1,
v = —I_—olog'l/)—k 2(0—__1)‘3: A.’E

and -
1 ,\+minV
X=1-eM "1 0
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where 9 is the principal eigenfunction of the Schrédinger operator —3A + (V — min V)
and ); the corresponding eigenvalue :

—%Azﬁ 4+ (V —min V)¢ = A

The infimum in (1.1) is attained by

z =—Az — Vu(z)
so, taking a solution of
(1.4) dX, = (—AX, — Vu(X,))dt +dW,, Xo==

and defining a control Z; by R R
2t - _Axt - Vv(Xt),

then we have

v(X,) - v(z) = /0 (A%~ Vo) - VoK) + 20u(Ko)}de + | Vo(Ke)dW,.

Therefore, we see that

0 S0 V(R )+3 122422 AR s _ OxT+0v()—0v(RT)+0 [ Vo(R.)aW.~% [T Vo2 (X.)ds

When introducing a probability measure P by

dP

el 0T Ve(R)aW.— [T VoA (R.)ds
dP

Fr

we see that : A
. Ex[eo ‘[:'{V(X)+§|i.|2+i,‘AX.}da] — X9T+6v(z) E'x [e—au(xT)].

By using a new Brownian motion W; under P, we can rewrite (1.4) as
= Vlog(X.)dt + dW,.

Note that (X;, P;) ia an ergodic diffusion process with an invariant measure v(z)%dz. If

(1.5) E,[e"o"(xﬂ] - / e % @y(z)2dz < oo

as T — oo, then
% log Ez[ef’fé" {V(X)+élz*.|2+z*:Ax.}d,] S,
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which indicates that Z; is an optimal strategy. However it is not always the case. Indeed
we can give an example where (1.5) could be violated in what follows.

We consider the case where N = 1, 6 > 0 and V(z) = $z%, ¢ > 0. Then, vV =
3 A%z — (0 — 1)(V — 3A%?) — JA = 10A%2? — Z1eg? — 1 AL Therefore, if

(1.6) 0A? —(0—1)c>0,

then (1.3) holds. Under this assumption we see that ¢(z) = e~2%*", where g = \/0A% — (0 — 1)c.
Since , ‘

logy + —1—A:1:2 = (9 — A)z?

1
1-0 20— 1 2(1—0)

V=

condition (1.5) reads
(1.5) / e MDA~ §p < oo,

Thus, we need check whether 2(1‘—1’0)(9 — A) — g < 0 holds or not. As a result we see that,
ifi)1<6<4, A<0 ori)4<6, A<0, f5lA? <c< %A%, then (15) is
violated. Otherwise it holds under (1.6). ‘ '

Such a situation occurs in discussing ergodic control problems with criteria of exponen-
tial type and it is Fleming and Sheu that has noticed first by taking up one dimensional
problems concerning risk-sensitive portofolio optimizaion (cf. Fleming and Sheu [10]).
Related problems have been discussed extensively in [4],[5],[11],[12],[18],[21].

In the present paper, by taking up risk-sensitive portfolio optimization problems for
general factor models, we shall consider constructing optimal strategies for the problems
on infinite time horizon by using the solutions of corresponding ergodic type Bellman
equations. We shall show that the solutions define optimal strategies under some condi-
tion which suggest an integrability condition such as (1.5) by the invariant measures of
underlying ergodic diffusion processes. The ergodic diffusion processes are the optimal
ones of some other classical ergodic control problems with the same Bellman equations of
ergodic type, which correspond to the diffusion process (Xt, 151) in the case of the above
example. ' '

2 Finite time horizon case

We consider a market with m+1 > 2 securities and n > 1 factors. We assume that the set
of securities includes one bond, whose price is defined by ordinary differential equation:

(2.1) dS°(t) = r(X.)S°(t)dt, S°(0) =",

where 7(z) is a nonnegative bounded function. The other secutity prices St, i = 1,2,...,m
and factors X; are assumed to satsfy the following stochastic differential equations:

dSi(t) = S (t){g*(Xo)dt + o ok (X, )aWE),

(2.2) . ,
S0)=s, i=1,...m
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dX; = b(Xe)dt + M Xe)dW,

(23) X(0) =z € R",

where W; = (Wf)k1,.(n+m) is 8 m + n dimensional standard Brownian motion process
defined on a filtered probability space (2, F,P,F;) . Here 0 and X\ are respectively
m x (m+ n),n X (m + n) matrix valued functions. We assume that

g, o, b, A are locally Lipshitz

all? < Eoo*(z) < €}, c1,c2>0
lg(z)| < K(1+ |=])

*b(z) + 3 | M (2) 1< K(1 + |=[*)

(2.4)

where o* stands for the transposed matrix of o.

Let us denote investment strategy to i-th security S*(t) by h*(t), i = 0,1, ...,m and set
S(t) = (S'(¢), S*(2), -, S™(t))",

h(t) = (h'(¢), B*(2), .., , A™(1))"

and .
G: = o(S(u), X (u);u <t).

Here S* stands for transposed matrix of S.

Definition 2.1 (h%(t), h(t)*)o<t<r i3 said an invetment strategy if the following conditions
are satisfied

i) h(t) is a R™ valued G, progressively measurable stochastic process such that

m
(2.5) Y R +R() =1
=1
ii)
T
P( / Ih(s)|?ds < 00) = 1.
0
The set of all investment strategies will be denoted by H(T'). When (h°(t), h(t)*)o<e<r €
#H(T) we will often write h € H(T'") for simplicity since h°® is determined by (2.5).

For given h € H(T) the process V; = V;(h) representing the investor’s capital at time
t is determined by the stochastic differential equation:

W i dS0)
v, = Ze:oh(t)jsr,-m

= R@)yr(Xs)dt + 3, Bt {g'(Xe)dt + YT ok (Xe)dW Y}

Vo = v
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Then, taking (2.5) into account it turns out to be a solution of

# = r(X;)dt + h(t)*(g(Xe) — r(Xtr)lr)dt + h(t)*o(X.)dW,,
(2.6) t
‘/0 = v,

where 1 = (1,1, ...,1)*.
We first consider the following problem. For a given constant 8 > —2, 8 # 0 maximize
the following risk-sensitized expected growth rate up to time horizon 7"

-2
(2.7) J(v, % 1, T) = — 7 log Ele '],

where h ranges over the set A(T") of all admissible strategies defined later. Then we
consider the problem of maximizing the risk-sensitized expected growth rate per unit
time

(28) J('U, T; h,) = llmsup(—_z) log E{e—%lgVT(h)]’
T—o0 or

where h ranges over the set of all investment straregies such that h € A(T) for each T.
Since V; satisfies (2.6) we have

‘4—9/2 — v—0/2 exp{%‘l;’f](Xs,hs))ds
— & [ Ro(X,)dW, — & [3hioo*(X,)h,ds),
where

we,h) = (A 200" @)h — r(z) — (a(a) — r(z)1).

If a given investment strategy h satisfies

2 * *
(29) E[e—g-f:'h(s) o (X,)dW,—%— f(;r h(s)*oo (X.)h(s)ds] — 1’
then we can introduce a probability measure P given by

Ph(A) = E[e_% JT h*(s)o (X)W, — % [T h*(s)oa* (X)h(s)ds, ]

for A € Fr, T > 0. By the probability measure P" our criterion J(v,z;h;T) and
J(v, z; h) can be written as follows:

(27)’ J(‘U, _’E; h, T) frmnt logv —_ ; log Eh[e% f(;r 'I(Xayh(s))dS]
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(2.8) J(v,; h) = lim inf 7{2?" log EM[e Jo n(Xe(s)ds).

On the other hand, under the probability measure,
Wh = W= (W,—2 [ b (s)o(X.)dW,),
= W,+ 2[5 o*(X,)h(s)ds

is a standard Brownian motion process, and therefore, the factor process X; satisfies the
following stochastic differential equation

(2.10) dX, = (b(X,) - g-Aa*(X,)h(s))ds + A(X,)dWPE.
We regard (2.10) as a stochastic differential equation controlled by h and the criterion
function is written by P* as follows:
2 1or Eh et FT ™t n(Xah(a))ds
(2.11) | J(v,z; b; T — t) = logv — 7] log E"[e2 /o - ]

and the value function

(2.12) u(t,z) = sup J(v,z; 05T —1t), 0<t<T.
heH(T-t)

Then, according to Bellman’s dynamic programming principle, it should satisfy the fol-
lowing Bellman equation

Qu_ + sup L*u=0,
(2.13) Ot herm

(T, z) = logv,
where L" is defined by

IPult,z) = (AN (@) D%) + (b(z) - g,\o* ()h)* Du — g(pu)u,\* () Du — n(z, h).

Note that sup,cgm L*u can be written as
0
sup L u(t,z) = ltr(z\/\"(:l:)Dz'u) +(b— ——=Xo*(00*) (g — r1))*Du
heRm 2 0+2

—3(Du)*M(I - ,h{;za*(a'a*)"la)/\*Du + ai—z(g —rl)*(ogo*) (g —r1)
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Therefore our Bellman equation (2.13) is written as follows:
84 + 1tr(AX*D?u) + B(z)* Du — (Du)* AN~ X*Du + U(z) =0,
214 (T, z) = logv,
where
B(z) = b(z) - ggzra*(00*) " (9(z) — r(2)1)
(2.15) N71(z) = (I — ma *(o0*) 1o(x))
U(z) = giz(9 — r1)*(00™) (g — r1).

As for (2.14) we note that if 6 > 0, then

0 (7]
I<K<N1'<-JI
2(0+2) — — 4
and therefore we have
0 0
—— AN < AN < ——
4 - - 20+2)

Such kinds of equations have been studled in Nagai [20], or Bensoussan Frehse and Nagai
[3]. Here we can obtain the following result along the line of [3], Theorem 5.1 Wlth
refinement on estimate (2.17).

Theorem 2.1 i) If, in addition to (2.4), 6 >0 and
(2.16) vlEf < €A ()6 < plel, T =lal, iy >0,

then we have a solution of (2.14) such that
u, 2 Dyu, Dyju € IP(0,T; I (R")), 1<Vp<oo
P D v py e [2(0,T; IE (R™), 1<Vp<oo
u > logv, % <O0.

Furthermore we have the estimate

(2.17) IVl ) - y_%:’(t z) < & (IVQ3 + QI3 + IVOWX)I3,

+|VB|ar + |Bl3. + |Ul2r + |[VU;. +1), z€B,, te0,T)

where

|+ |2r =I| - l|zoo(Boy)
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and c, is a positive constant depending on n, v, v,, pu, and c.

it) If, in addition to the above conditions,

inf U(z) & 00, as T — o0,
lz|2r

then the above solution u satisfies
inf  u(z,t) > 00, as r— oo.
|z|>r,te(0,T)
Moreover, there exists at most one such solution in L=(0, T; W,.°(R™))

Remark. If
1
(2.21) s b <MQ1+r™), Im>0,

then we have
& < M'(1+r™), Im'
in estimete (2.17). In particular, if m = 0, then ¢, can be taken independent of r.
Let us define a class of admissible investment strategy Ar as the set of investment

strategies satisfying (2.9). Then, thanks to the above theorem and remark we have the
following proposition.

Proposition 2.1 i) We assume the assumptions in the above theorem and let u be a
solution of (2.14). Define

i"t = i"(t) Xt)
h(t,z) = saz(00*) (g —r1— $oX*Du)(t, z),

where X, is the solution of (2.3), then, under the assumption that
(2.22) Ele” ST @N 71X Dut0K)* (@a)dWa—1 Jg (2N A" Du+8K)* @N ~'X* Du+0K)(za)ds) _ 1
where )

=9532° o*(o0*)” l(g-— rl),

he € Ar is an optimal strategy for the portfolio opttm:zatmn problem of mazimizing the
criterion (2.7).

ii) if ‘
alé]? < &M% (z)€ < c2lé)?, c1,c2 >0

(2-23)
g, b, \, o are globally Lipshitz,

then (2.22) is valid.
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To disccuss the problem on infinite time horizon we introduce another stochastic con-
trol problem on a finite time horizon with the same Bellman equation as (2.14) and then
consider its ergodic counter part. For that let us set

G =b— Ao*(d0*) (g —r1)

and rewrite equation (2.14) as

%tf‘- + 24r(\"(2)D%) + G(z)* D

(2:24) ~ (=X*Du + NK)* N~} (=X"Du + NK)(z) + “}*K*NK(z) = 0,

u(T, z) = logw.

Since

—(=A*Du+ NK)*N~Y(=A*Du+ NK) = inf {z*Nz+2z*NK — 2()\z)*Du},

z€ Rntm

we can regard (2.21) as the Bellman equation of the following stochastic control peoblem.
Set
T—t ) i 0 + 2
(2.25) u(t,z) = igf E.| {Z;N(Y,)Z,+2Z;NK(Y;) + —Q——K*NK(Y,,)}ds + logv],
: 0

where Y; is a controlled process governed by the stochastic differential equatinion

(2.26) aY; = A(Y))dW, + (G(Y)) — 2\(Y2) Z,)dt,

and Z; is a control taking its value on R"*™. We define the set of admissible controls Z,
as all progressively measurable processes satisfying

T
E,| / |Z,|4ds] < 0o, Vg > 1.
A |

An ergodic counterpart of the above problem is formulated as follows. Consider the
problem:

r )
(227)  x=iofliminf %E,,[ / {Z*N(Y,)Z, + 2Z*NK(Y,) + gK*NK(Y,)}ds]

with controlled process Y; governed by (2.26). Then, corresponding Bellman equation is
written as

X = %tr(Az\*(z)Dzw) + G(z)* Dw

(228) * * N — * *
— (=A*Dw + NK)*N}(-X*Dw + NK)(z) + 42K*NK(z),
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whose original one is
(2-29) X = %tr(z\)\*(z)Dzw) + B(z)* Dw — (Dw)*AN~'X*(z) Dw + U(z) = 0,
namely,
— 1 * 2 6 * *\—1 *
X = Etr(/\,\ (z)D*w) + (b m)\a (00*) (g —r1))*Dw

— $(Dw)*A(I - 0%20’(0'0*)‘10),\*Dw + o—i—z(g —rl)*(o0*) (g —rl).

In the following section we shall analyze the Bellman equation of ergodic type (2.28).
Indeed we shall deduce equation (2.28), accordingly (2.29), as the limit of parabolic type
equation (2.24) as T' — oo under suitable conditions.

Remark. To regard our Bellman equation as (2.24) has a meaning from financial view
points. Indeed, under the minimal martingale measure P (cf. [7] Proposition 1.8.2 as for
minimal martingale measures), which is defined by

dP| [T aWa—} ST C(Xa)Pds
dP ’
Fr

¢(z) = o*(00*)~(z)(g9(z) — r(z)1) factor process X, is the diffusion process with the
genarator
L= %tr()\,\‘(m)Dz) +G(=z)'D,
namely, it is governed by the SDE
dX, = \(X;)dW,; + G(X;)dt

Here W, = W, + j: ¢(X,)ds and it is a brownian motion under the probability measure
P.

3 Ergodic type Bellman equation
In what follows we assume that

kTN (2)s o |z >3r >0, k>0

(3.1) %tr(x,\*(x))+z*c(z)+§ s S

and set .
L= §tr(A/\'(z)D2) + G*(z)D.

Proposition 3.1 We assume (2.4), (3.1) and (2.16) with

(3-2) v, >e T, r>>1,¢>0,

then L diffusion process (P,, X,) is ergodic and satisfies

(3.3) B, [e"VIH%P] < orv/1+RP
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Theorem 3.1 Assume the assumptions of Theorem 2.1, (3.1) and that
%, pr < K(1+7r™)
1R, IVQI, |Bl, [VB], U, [VU|, |[V(AX)] < K(1 + |=]™),

then, as T — oo,
u(0,z;T) — u(0,0; T') — w(zx),

7u(0,%;T) = x,
uniformly on each compact set, where (w X) is the solution of (2 28) such that w €
C*(R).
Our Bellman equation of ergodic type (2.28) is rewritten as

X = %tr(/\/\*(x)D2w) + G(z)*Dw

3.10 '
(3.10) inf,epnim{2*Nz + 22*NK — 2(A2)*Dw} + H2K*NK(z),

and the infimum is attained by
2(x) = N~]\*(z) Dw(z) — K (=),

which define the following elliptic operator considered as the generator of the optimal
diffusion for (2.27)

i- %tr()v\*(a:)D2) }+ G*(z)D — 20N-12*(z) Dw(z) — AK (z))"D.

Then we have the following proposition.

Proposition 3.2 Unde the assumption of Theorem 3.1 L diffusion process is ergodic.

4 Optimal strategy for portfollo optlmlzatlon on in-
finite time horizon

Define the set of admissible strategies A by
- A={h:he A(T),VT}

and set R R
H, = H(X)

H(z) = 523(00%) ™ (g — 1 — S0X* Dw)(z),

where X, is the solution of SDE (2.3), then we have the following theorem.
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Theorem 4.1 In addition to the assumptions of Theorem 3.1 we assume (2.23) and that
4 ' * - *) % *\— *
(4.1) 797(9 —r1)*(00)~ (g — r1) — (Dw)*Ao*(00*)1oA*Dw — 00, |z| — 00,

then H, is an optimal strategy for portfolio optimization mazimizing long run criterion

(2.8 A
J(v,z; H) = sup J(v, z; h).
heA

Remark. Under the probability measure B, the factor process is an ergodic diffusion
process with the generator L. In fact, by calculation, we can see that

1tr(A*D?) + (b — §20* H — EAN*Dw)*D
= tr(AX*(z) D?) + G*(z)D — 2(AN~1\*(z) Dw(z) — AK(z))*D.

Then, under assumption (4.1), L diffusion process (P;, X;) satisfies

B et X)) /eg"’(’)p(dz) <oo, as T — oo

where p is the invariant measure of (P, Xt).

5 Example

Example (Linear Gaussian case)
Let us consider the case where

g9(z) =a+ Az, o(z) = X,
b(z) =b+ Bz, A(z) = A,
r(z) =r,

where A, B, X, A are all constant matrices and a and b are constant vectors. Such a case
has been considered by Bielecki and Pliska [4], [5],Fleming and Sheu [11},[12] and Kuroda
and Nagai [18].

In this case the solution u(t, z) of (2.14) has the following explicit form

u(t,z) = %z‘P(t)z + q(t)*z + k(t)

where P(t) is a solution of the Riccati differential equation:

51) P(t) — P(t)KoP(t) + K; P(t) + P(t)K1 + 523A*(EX*) 1A =0,
1
&4 P(T) =0,
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Ko = 3A(I — ;%534 (25%)15)A"
K1 = B — ;%A (Z5") 1A,

The term ¢(t) is a solution of linear differential equation:
i(6) + (K7 — P)Ka)a(t) + PO + (7254° — ;%3 P()AZ?)(E52) " (a — r1) = 0
9(T) =0

and k(t) a solution of

Bt) + Str(AAP(2)) - gq(t)*AA*q(t) +5q() + 7+ ——(a — r1)*(E2*)a - r1)

1
0+2
+10 +2)q(t)*A2"‘(22*) EA*q(t) — 725 (a—r1)*(ZE*)1XA%g(t) = 0
k(T) =logv
If
G=B-AX*(Zx*)'A is stable,

then
i) P(0) = P(0;,T) converges, as T' — 0o, to a nonnegative definite matrix P, which is a
solution of algebraic Riccati equation:

- . - . 2 ‘
KiP+ PKi = PKoP + 5o A°(257) 4 = 0.

Moreover P satisfies the estimate

2

(5.2) 0<P< / e*? A*(2X*) 1 Ae*Cds.
0

ii) q(0) = ¢(0; T") converges, as T — 0o, to a constant vector §, which satisfies

* 0 * *\—1 _

iii) X ) converges to a constant p(#) defined by

(@a—r1)*(Zx*) (a—r1)

1 D * 0 ~* * ~ * ~ 1
p(0) = —tr(PAA )— 1 AA*G+ b q-+r+ )
+ g d AS (EE)TIEAG — 525 (a — r1)*(ZE7) 1A
if, moreover,

(5.3) (B*, A*(£x*)7'Y) is controllable,
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iv) the solution P of the above algebraic Riccati equation is strictly positive definite.
Finally, if, in addition to the above conditions,

(5.4) (B, A) is controllable,

then _
v) the investment strategy h; defined by

2

(7] 0 ~
_ = *x\—1 _ _ = * ~ _ = *
e =575(E5) Mo —r1 - SEAG+ (A - A P)XY]

h

is optimal for the portofolio optimization on infinite time horizon maximizing the criterion
(2.8): _

sup J(v,z; h) = J(v,z; h) = p(9)

heA

if and only if
(5.5) PAS*(ZE*)IZA*P < A*(ZX*) 714,

where P = $P (cf. [18]).

Set
1 - D ~%
w(z) = 57 Pz +q'z,

then w(z) satisfies (2.28) and (5.5) is equivalent to
/ 1@ y(dz) < oo

under the assumptions (5.3) and (5.4), where p(dz) is the invariant measure of L diffusion
process. We consider the case where n = m = 1. Then XX*, AX*, A, B are all scalars
and (5.5) is written as

2 ~
(5.5) O P(ASY? < A2
We can find sufficient condition for (5.5’) by using estimate (5.2). Indeed, If
(5.6) AY(AZ)A(ZE) f e2*Cds)? < 1
(]

then (5.5’) holds. (5.6) is equivalent to
(2B(ZZ*) — 3(AX*)A)(2B(XX*) — (AX*)A) > 0,
from which we see that

(5.7) B< %Az*(zz*)—lA if AZ*A>0
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(5.8) B < gAE‘(ZE*)‘IA if AZ*A<0

since G = B — AX* (ZE*)_.IA < 0 by the stability assumption. |
We illustrate an example where (5.5°) is violated as follows. Set # = 4 and B =
2A3*(¥X*)"14, then we have

PE(6AA* — 4(AX")?) = A?
and therefore (5.5’) is violated if and only if

6AA* — 4(AX*)? < 4(AZ*)?,
namely |
(5.9) 4(AZ*)? > 3AATY".
Set A = (1,), X = (1,0), then (5.9) is equivalent to

Ao +1+V3A—0)HAo+1—-V3(A—0)}>0.
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