obooooooOooo 12870 20020 66-74

66

THE EQUIVALENCE OF WEAK SOLUTIONS AND ENTROPY
SOLUTIONS AND APPLICATIONS

KAZUO KOBAYASI (WASEDA UNIVERSITY)
IRk (BREXP)

1. INTRODUCTION

Let Q be a bounded open set in RN, N > 1, with Lipschitz boundary 90 and let
T > 0. Given an f € L'(Q) (where @ = (0,T) x ) and a go € L'(f2) consider the

initial-boundary value problem
%0) _ Ab(u) +dive(u)=f in Q,
(E) <bu)=0 on (0,T) x 09,
g(u)(0,-) = go in §,

where

(H1) g, b: R — R are continuous and nondecreasing functions satisfying ¢g(0) = 5(0) =
0, and ¢ : R — R¥ is a continuous function satisfying ¢(0) = 0.

There exists a vast literature on problems of this type. A number of different notions
of solutions for these problems has been introduced, and the existence and uniqueness of
such solutions has been studied by many authors (cf. e.g., [1-9, 12-16]).

Throughout this paper we always assume that f € L*(0,T; H"}()) N LY(Q), go €
L'(Q) and go(z) € R(g) for a.e. z € N. Let us first recall from [8] the definition of weak
solution of (E).

Definition 1.1. A weak solution of (E) is a measurable function u satisfying

ower@, XY e o),

b(u) € L*(0,T; Hy(R)),  ¢(u) € (L)Y,

Q’gt_“) - Db(u) + divg(u) = inD'(Q),

9(u(0,z)) = go(z) a.e in

For the existence of a weak solution we refer to [1] and [4]. Due to the possible degen-
eracy of b and g, in general, one can not expect that weak solutions of (E) are unique.
To prove the uniquness Carrillo [8] introduced the following notion of entropy solution
for (E) as in Kruzhkov [14] and obtained the L'-contraction and uniqueness of entropy

solutions of (E).
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In what follows, H denotes the multi-valued function defined by H(r) = 0 if r < 0,
H(0) = [0,1], H(r) = 1 if r > 0 and we denote by H;,j = 0,1, its single-valued section
which takes the value j at r = 0.

Definition 1.2. An entropy solution of (E) is a weak solution u satisfying
| Holw = )}{Vb(u) - VE — ($(u) - 4(s)) - V€ (1.1)
= ((aw) = g(s))ée — fe}dtds
< [ (90— g(s))*€(0)ds
and
JHol=s —wiVhw) - VE- (6w - 4(~s) - VE  (12)
= ((ow) = g(~9))é — fe}dtdz
> — [ (90— 9(~5))€(0)d

for any (s,€) € RY* xCg°([0, T)xQ)* and for any (s,€) € RxCe([0,T)xQ)*. Here, rt =
max{r,0}, r~ = —min{r,0}, Rt = [0,00) and Xt denotes all nonnegative functions
which belong to X, where X = C3°([0,T) x Q) or X = C&([0,T) x Q).

On the other hand, Brézis and Crandall [6] has proved the uniqueness of weak solutions
of the equation of porous medium type that is a special case of (E) where g(r) = r
and ¢(r) = 0 for all » € R. Their idea of the proof is to apply (I — eA)™! to the
difference of equations. This technique requires the use of the existence theory (nonlinear
semigroup theory) to get the L'-contraction for weak solutions. However, to our knowlege,
it is unknown that a weak solution of the porous medium equation is indeed an entropy
solution in the sense of the above definition. Thus it is worthwhile to ask whether or not a
weak solution of (E) indeed becomes an entropy solution of (E). If this is true, then we can
prove the L'-contraction and uniqueness of weak solutions without the use of existence
theorem.

The purpose of this paper is to investigate the equivalence of weak solutions and entropy
solutions under the additional assumption on ¢.

2. THE MAIN RESULT AND EXAMPLES

We assume the following additional condition.
(H2) There exist functions ¢(!), ¢ ¢ C(R, RV ) and constants C,ry > 0 such that

¢(0) =0, $D(b(r))g(r) =0 ifb(r) =0, (21)
#(r) = gV (b(r)) + $P(b(r))g(r), r €R, (2.2)

|8(r)] < Cb(r)?  for |r| > ro. @23)
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Remark 1. It is easy to check that (2.3) follows from the following condition
|¢(r)| < Clbo(r)|  for |r| 2 0. (2.3)
Our main result is the following theorem.

Theorem 2.1. Assume that (H1) and (H2) hold. Then any weak solution of (E) is an
entropy solution.

Remark 2. If b is strictly increasing, then we have from [8, Corollary 9] the following
equivalence:

Theorem 2.2. Let (H1) hold. Let b=! € C(R). Then any weak solution of (E) is an

entropy solution.

As a direct consequence of the above theorem and [8,Corollary 10] we have the following
uniqueness theorem for weak solutions.

Corollary 2.3. Assume that (H1) and (H2) hold. Let gz € L' (), gio € R(g) and
fi € L*((0,T); H(Q))NLY(Q). Let u; be a weak solution of (E) with f = f; and go = gio
fori=1,2. Then

llg(u1(2)) — g(ua(t)) |l @)

t
< |lg10 — gzD"L‘(ﬂ) +/0 ||f1(3) - fz(s)”Ll(n)ds-

We here give some examples.

Ezample 1. Let b : R = R be continuous and nondecreasing function satisfying
b(0) =. We consider the equation of porous medium type:
%’;‘ — Ab(u) = f in Q,
(Ey) b(u) =0 on (0,T) x 09,
u(0,-) = uo in Q.

Then, Theorem 2.1 with ¢ = 0 implies that any weak solution of (E) is an entropy solution.
Hence, by Corollary 2.8 we have the uniqueness of weak solutions of (E). (See [6].)

Ezample 2.  Let us consider the equation

& _ Aw+ div(p(w) =f, we PB(v) in Q,
(B) {w=0 on (0,T) x 09,
'U(O', ) = v n Q

where B is a (possibly multi-valued) mazimal monotone operator with 3(0) > 0 and ¢ €
C(R,RN). Wesetv+w=u,([+8)'=gand ([+p7" =b, thenv = g(u), w = b(u)
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and ¢(u) = ¥(b(v))g(u). Hence, (E;) becomes
25s) _ Ab(u) + divg(u) = f in Q,
(E3) <b(u)=0 on (o0,T) x 69,
9(u(0,)) = v in Q.
If beta and psi satisfy in addition that ; ‘
[¥(b(r))g(r)| < Cb(r)*

for all sufficiently large |r|, then any weak solution of (E}) is an entropy solution.

Ezample 3.  Let us consider the equation

H—ABw)+e-Vx=f x€q) in Q
(Es) {v=0 on (0,T)x 0,
v(0,-) = v in Q.
where B is a continuous and nondecreasing function with (0) = 0, v is (possibly multi-

valued) mazimal monotone operator with ¥(0) > 0 and e € RN. Then, if we set u =
v+ x,9=T+y1b=Pog and ¢ = e(l - 9),then (E3) converts into

8L — Ab(u) + div(u) = f in Q, ,
(E3) b(u) =0 ‘ on (0,T) x 09,
9(u(0,)) = vo. o in o

If b is in addition strictly increasing , then Theorem 2.2 assures that any weak solution
of (E}) is an entropy solution.

FEzample 4. Let us finally consider the following equation of dam problems (see [9]):
gy S5 =vtdifxe), x€q() in Q
X(()) ) + U(Oa ) = Xo + PO
where v is a mazimal graph in R. If we set u = x+v, g(u) = u, b(u) = (I +v)"Y(u) and
d(u) = e(u —v) = e(g(u) — b(u)), then v = (I +7)7" = b(u) and (E4) becomes
9g(u)
ot
To check Condition (H2) we set
¢V(r) = —er and  ¢O(r)=e

Since b(u) = 0 implies ¥(0) 3 u, (2.1) holds true whenever ¥(0) = {0}. (2.8) is satiafied
wnenever Hm |yjoyo0 [b(u)[?/|u| > 0 (see (2.3")).

= Ab(u) + dive(u).
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3. SKETCH OF PROOF OF THE MAIN. THEOREM

Let us mention briefly the main ingredients of the proof. For the complete proof we refer
to [13]. We begin with the following lemma which is an evolutional version of [8,Lemma

2].

Lemma 3.1. Let e € RN F € L*(Q)N and Gy, G, € L'(Q). Let u be a measurable
function on @ such that g(u) € LY(Q), dg(u)/dt € L*(0,T; H~'(R)) and g(u(0,z)) =
do(z) a.e. z in Q. Suppose that there are mg,m; € R with my < mqo such that the
following inequality holds with s replaced by m; and G replaced by G;,1=0,1:

[ £w) — g(6))* (=6 -+ V) + F - Ve + GEYatd 3.1)
< [ (90— g(s))*€(0)dz
for any € € D}',where
Df =CL([0,T) x Q) or DF = C§°([0 T) x Q)*.
Then, (3.1) is also valid with G = Gix +Go(1 — X) for any s € [my, mo), for any ¢ € DF,

and for some x € H((g(u) — g(m1))* + g(m1) — g(s) — (g(u) — g(m0)) ™).

Lemma 3.2. Any weak solution of (E) is a pre-entropy solution, that is, (1.1) and (1.2)
hold for any (s,€) € R x C([0,T) x Q)*.

Proof Let s € R and i = 0,1. If b(s) ¢ E, then it follows from [8, Lemma 5] that
(1.1) and (1:2) hold for any ¢ € C°((0,T) x ). Take any s € R with b(s) € E
and let b‘l(b(s)) [my,mg]. If m; is finite, there exists a sequence {s:} such that
s > mo, sy < my, b(s,) ¢ E, s;, & m; and Ho(u—sn)—+H(u m;) a.e. in Q. Then,
passing n — oo in (1.1) with s = s}, yields

| Hlw = ma){b(w) - V€ = (4(w) ~ $(m:)) - VE (32)
~ (9(u) — 9(m))e — f}dtdz < [ (90— g(m))*€(0)d

for any £ € C°([0,T) x Q)"’. If mg = oo and m; = —oo, then Hy(u — mp) = 0 and
H;(u — m,) = 1; hence (3.3) is still valid because u is a wea.k solution. For the letter use
we here remark that (3.3) also holds for any ¢ € C([0,T) x Q)+ provided m; > 0. We
apply Lemma 3.1 with

e = —4®(b(mo)) = — 4@ (B(m1)) = —D(b(s)),
| F = Ho(u — $){Vh(u) + $(s)) — 6 (b(u)

+ (2 (5(s)) — 2 (b(w)))g(w)},
G; = —Hi(u —m,)f
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| Ho(u = $){Vb() - V£ — (#(u) = 4(s)) - V¢ | (33)

- (9(u) — 9())é — Fra€}dtda < [ (g0 — 9(s))*¢(0)da,

where x; = Ho(t —mo)(1 — x) + Hy(u —m1)x for some x € H((g(u) - g(m1))* +g(mi) -
g(s) = (g9(w) — g(mo))*).

Now, for any s € [ml,mo) there exists a sequence {s,} such that s < s, < mg and
s, — s. Then, passing n — oo in (3.4) with s = s, yields -

/Q Ho(u = $){Vb(w) - V€ ~ ($(u) ~ §(s)) - V¢

~ (9(u) = 9(s))& — fEYdtdz < [ (90— g(s))*E(0)de

Thus, (1.1) holds for any (s,€) € R x C$°([0,T) x Q)*.
Similarly we can prove that (1.2) holds for any such (s, §). \ |

The next lemma is crucial in our argument.

Lemma 3.3. Any pre-entropy solution of (E) satisfies o
L e (){(Vh(w) = 6(u)) - VE - g(w)ée — fetdtda < [ gte(@)de (3.4
and ) ,
J, A-(=w){(Vb(u) - 6(u) - VE = g(w)ée — fE}dtde > — [ g6(0)dz  (3.5)

for any € € C$([0, T)vx Q)"’ and for some ﬁi(:tu) € H(+u).

Proof. We assume that u = u(¢, z) is a pre-entropy solution of (E). Let ( ((t,z,s,y) be
a smooth function in R?N*2 such that

(s,y) = ((t,2,5,y) € CL((0,T) x W)t for each (¢,2) € Q,
(t,z) = ((t,z,8,y) € C°([0,T) x Q)T foreach (s,y) € Q

Let n = n(s,y) € C§°(Q)*. Then, from the definition of pre-entropy solution we have

(3.6)

[, o HOA(Vbu) = $()) - (VaC +V,0) @)
— g(u)(& + G) — fOndtdedsdy .
: + ras
< (oxyxg (ndzdsdy

- /QXQ{(V b(ut) — ¢(ut)) - Vyn — g(u ") didadsdy.

Now let ¢ € C°([0,T) x C)*, where C is a bounded open cyhnder in RY for which either
C CQor CNOAN is a part of the graph of a Lipschitz continuous function. Then there
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exists a sequence of mollifiers o, defined on R with suppo, C (—2/¢,0) and there exists
a sequence of mollifires p,, defined on RM such that

T po(z—y) € CP(N) foreach ye CNQ.
The function (™4 defined by
(A, z,5,y) = E(t, 2)pa(t — 8)oe(t — )
satisfies (3.7) and
V(™0 + V("0 = po0,V.E, (M0 + () = Epaoe.
Using (™ as a test function ¢ in (3.8) and passing to the limit with n,¢ — oo,

[, B @){(Vb(w) = $(w) - VE = g(u)t, ~ fE}ndsdy (3.8)
<= [ (Vb = (") - V1 — o(u* InYedsdy

for some H,(u) € H(u).

On the other hand, from the definition of pre-entropy solution we have that div {Vb(u*)—
#(ut)} — (0/0t)g(ut) becomes a Radon measure on Q). Therefore, passing to the limit in
(3.9) with n — 1 on @, we obtain '

[ B {(Vb) = d(w) - VE - ()t — fE}dtde O (39)
< [ Adv((Tb() — $(u))6) - 5 (9(u)e) et
= /ﬂ aF€(0)dz + fo g /a (QnC)(Vb(u+) — ¢(ut)) - EvdHN L,

Here we used the result in [10, Theorem 2.2], and v is the outward unit normal to d(2NC)
and HV-! is the usual (N — 1)-dimensional Hausdorff measure (e.g. see [11]). We recall
from [10] that the second integral on the right hand of (3.10) is defined by

/OT /fﬂ(nnc)(Vb(“+) — $(u*)) - EvdtdHN !

T
: + + _ N-1
= ess. lim /o /;mnc)(Vb(u oW,)—d(ut oW, ) (vy0 U, )JU, dtdH"

740

where W, (-) = ¥(-,7) with a Lipschitz deformation ¥ : (2N C) x [0,1] = QNC, v, is
the outward unit normal to ¥, (8(2 N C)) and J¥, denotes the Jacobian of ¥, .

Choose a deformation ¥ of (2N C) and p € RV with the following properties: If 7 > 0
is sufficiently small, then ¥, (z) = z + 7p, v,(¥,(z)) = v(z) and p - v(z) < O for each
z € (CNAN)\ N, for some HY~1- measurable set N, whose HN~'-measure is less than
7. Since b(u*) € L*(0,T; Hy(Q)*), it follows that

r |
lim sup/(; /annc Vb(ut o ¥,) - pdtdHN~! > 0,

740
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which deduces

dtdHV ! 1
/ ./a(nnC) ( )) V§ (3 0)
< U, dtdHN 1.

h:ns;(l) / /z;nnc (ut o ¥,)-vEJ dH

Now by virtue of (H2) we have that for any ¢ > 0 there exist a constant C. > 0 and a
continuous function p : R* — R* with p(0) = 0, which is independent of ¢, such that

lo(r)| < p(e) + Ceb(r)2 forall reR.

Noting that b(u*)? € L'(0,T;Wp*(Q)), we see that the right hand of (3.11) can be
estimated from above by

Cp(e) +‘ C. /OT /an b(u*)?dtdHN ! = Cp(e).
Letting € — 0, we obtain from (3.9),(3.10) and (3.11) that for any ¢ € Cg°([0,T) x C)t,
J, FrA(Tb(u) = 6() - V€ ~ gt fhdde < [ gFe@)dz. (311

Now let {C;}5, be bounded open cylinders such that @ ¢ U%,C;, Co C Q and for
12> 1,C;NoN is a part of the graph of a Lipschitz function. Let {p;}¥_, be a partition of
umty subordinate to the covering {C;}. Let ¢ € CP([0,T) x Q)* and let & = €p;. Since
& € C5°([0,T) x Cs)*, it then holds that (3.12) is valid for ¢; instead of £. By adding the
resultant inequalities with respect to 7 we obtain the desired inequality (3.5).

Similarly we obtain (3.6). O

We are now in the position to prove our main theorem.

Proof of Theorem 2.1. By virtue of [8, Lemma 5] and Lemma 3.2 above it sufficies to
prove (1.1) and (1. 2) for every (s,€) € R* x C([0,T) x Q)* such that b(s) € E, where
E = {r € R(b) : b"'(r)is not a singleton}. From now on we fir such s and £ and let
b~ 0 b(s) = [my,mo]. We shall follow the same argument as in the proof of Lemma 3.2.
As was remarked there, (3.8) also holds for every £ € C([0,T) x Q)* provided m; > 0.
However, we always have that mg > 0. On the other hand, by taking account of Lemma
3.8 we have

JL B = mE{VB() - V€ = ($(u) - glmi)) - VE
— (g(u) — g(m{))¢ — f¢}dtda
< / (90 — g(mi))*dz
for some Hy(u—m{) € H(u —m}).

Thanks to these znequalztzes, the proof is the same as that of Lemma 3.2 except that m,

and H, are replaced by m{ and H+, respectively. Consequently, we obtain (1.1) for any
(s,8) € RY x C([0,T) x Q)*.
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Similarly, (1.2) can be proved for any such s and £.Thus the proof of the main result is
complete.
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