oooooooooo 12870 20020 75-89

75

Long time averaged reflection force
and homogenization of oscillating
Neumann boundary conditions.

ALK EHRBFEDT HE EHT (Mariko Arisawa)

Graduate School of Informations Sciences,
- Tohoku University.

1 Introduction

We are interested in solving the homogenization of osdlla.ting Neumann boundary con-
ditions, by using the ergodic type problem on the boundary, narely the existence and
uniqueness of the long time averaged reflection force.

Let us begin with the ergodic problem on the boundary. Our claim is that there exists
a unique number d such that the following problem is solvable in the framework of the
viscosity solution.

F(z,Vu, V) =0 in Q, o " (1)
d+ < Vu,y(z) > —g(z) =0 on 09, (2)

where () is a domain in R", F' is a fully nonlinear uniformly elliptic Hamilton-Jacobi-
Bellman (HJB in short) operator:

(3)

F(z, Vu, Vu)—sup{ Z 6 83: Zb"‘
J

3,j=1 i=1

satisfying the conditions below. A is a set of controls, and by denotmg nxXn matnces
A% = (agi(x))i; (@ € A), there exist n x m matrices 0 such that '

A%(z) = 0°(0")'(x) amy z€Q, acA,
M SA@) <M any z€Q, ach, @
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where 0 < A; < A, positive constants, / the n X n identity matrix. There exists a positive
constant L > 0 such that

lagi(z) —af(y)| < Llz—y| any 1<i,j<n, z€Q, a€A,
bi(z) —b5(y)| < Llz—yl any 1<i<n, z€Q, acA (5)

There also exists a positive constant -y, such that for the outward unit normal vector n(z)
(z € 00), v(z) satisfies

<v(z),n(x) > >4 >0 any z € 0Q. - (6)
The domain 2 is assumed to be either one of the following:
Bounded open domain in R" with C*!' boundary, (7)
or

Half space in R™, periodic in the first n — 1 variables with C3! boundary

: {(«’,z,)| periodicin z' = (z,..,2,_1) € (R/Z)*"}, =z, > fi(z)},

where f; € C*((R/Z)"1)). (8)
- (In the latter case (8), a supplement boundary condition at z, = oo will be added to

(1)-(2).)
- The following example implies the qualitative meaning of the number d.

Example 1.1. Let Q be a domain in (7), and g(z) be a Lipschitz continuous function
on ON). Assume that there erists a number d such that the following problem has a viscosity

solution.
—Au=0 in Q,

d+ < Vu,n(z) > —g(z) =0 on ON.
Then,

d= Ia:;_z—l /;n g(z)dsS.

Proof of Exzample 1.1. In the Green’s first identity: .

/ﬂAuvd:L' + /QVu - Vvdz = [)ﬁ-v%ﬂgds,

we put v = 1, and get d|0Q| = [ g(z)dS.
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Thus, d is a kind of the averaged quantity on 0. For general Hamiltonians F’, the way
to construct the number d and u(z) in (1)-(2) is the following. Here we assume that (7)
holds. (The case (8) is more comphcated and will be treated in Section 3 below.) For any
A > 0, consider ‘

F(z,Vu,, V2u,\) =0 in Q, (9)

Muy+ < Vu,y(z) > —g(z) =0 on 09Q. (10)
The regularity of uy (A € (0,1)) which will be shown in § 2 yields, for any fixed z, €

liﬁ)l Mup(r) =d  uniformly in Q, (11)

and by taking a subsequence X’ | 0,

}\%rl%(u,\: () —un(z0)) =u(z)  uniformly ié Q. (12)

The limit number d is unique in the sense that with which (1)-(2) has a viscosity solution.
The above limit function u(z) is one of such solutions. (The solution of (1)-(2) is not
unique, for u + C (C constant) is also a solution.) We shall show in § 2 these facts. Now,
the meaning of the number d can be stated by using (11). For any fixed measurable function
a(t) : [0,00) — A (control process), let (Xg, A?) be the stochastic process defined by

3 1 t
X¢ = z+ /O o*(XE)AW, + [ b*(X2)ds — /0 Y(X¥)dA,  £>0,
0 _
AY = / loa(X$)dAs is continuous, non decreasing in ¢ > 0, (13)
0

where b = (bf');, 1sa(-) a characteristic function on 8Q, W; (¢t > 0) an m—dimensional
Brownian motion. The study of the existence and the uniqueness of (X, A%) is called
the Skorokhod problem, and its solvability is known under the preceding assumptions. We
refer the readers to P.-L. Lions and A.S. Sznitman (29|, P.-L. Lions, J.M. Menaldi and A.S.
Sznitman [27], and P.-L. Lions [26]. Let

Jo(z) = E, /0 e g(X ) 1on(X2)dA,,

and define |
ur(z) = ilgf) J5(x) in (14)

where the infimum is taken over all possible control processes. It is known that uy is the
unique solution of (9)-(10). (See, P.-L. Lions and N.S. Trudinger [30], and M.I. Freidlin
and A.D. Wentzell [20].) Thus,

d=lminf AL, [~ e Ng(X7)on(X7)dA (19)
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if the right hand side of (11) exists, which represents the fact that the number d is the
long time averaged reflection force on the boundary. (Each time the tragectory reaches
to 0, it gains the force g(z) and is pushed back in the direction of —vy(z).) We remark
the similarity of the convergence (11) to the so-called ergodic problem for HJB equations.
That is, by considering,

up(z) + F(z, Vuy, VZuy) =0 in Q,
< Vup(z),7(z) >=0 on 09,
it is known that an unique number d’ exists such that
],\.ill%l Mup(z) =d"  uniformlyin Q.

We refer the readers to M. Arisawa and P.-L. Lions [7], M. Arisawa (1], [2], A. Bensoussan
[11] for the various types (operators and boundary conditions) of ergodic problems. As the
above ergodic problem ”in the domain”, the existence of d in (2) ”"on the boundary” relates
to the ergodicity of the stochastic process (13). '

Next, we turn our interests to the homogenization. The unique existence of d in (1)-
(2) plays an essential role to study the homogenization of oscillating Neumann boundary
conditions. The simplest example is as follows.

Example 1.2. Let c, g, fi(z,£1) be functions defined in (z,&;) € R2 x R\Z (periodic
in & with period 1). Assume that fi > 0, and that there exists a constant ¢y > 0 such that
c>cog>0. Foranye >0, let

xT
Q. = {(z1,22)|" efilz, ?1) <z3<b, |zi| <a},

T, = {(z1,22)| 2= efilz, %)} N ox.
Let u.(x) (€ > 0) be the solution of |

—Au.=0 in Q. (16)
< V() ne() > +e@, “Jue = g(z,~)  on T, (17)
| wu=0 on ON\L., (18)

where ne(x) is the outward unit normal td [.. Then, ase | O, u,5 converges to a unique
functiont u(z) uniformly in Qo, which is the solution of

—-Au=0 in o,

< Vu(z),v(z) > +L(z,u,Vu) =0  on Iy, (19)
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u=0 on 0\,

where v is the outward unit normal to T'y , and L is defined as follows

Let O(z) = {(§&, &)l & > fi(z,&), & € R\Z}. Then, for any fized (z,r,p)€ 2 xR x
R?, there ezists a unique number d(z,r,p) such that

s 20

B =—(zg +5 2) in O(z),

d(z,r,p)+ < Vev,v(€) > —(\/1 + ( 2) \/1 +( )2 —‘ 1?—?) =0 on 00(z),

where y(£§) = (85 , _‘1.), € € 80(z)), and

L(z,r,p) = —d(z,,p). | , ~ (20)

In A. Friedman, B. Hu, and Y. Liu [21], a similar problem to the above example (linear,
three scales case) was treated by the variational approach. We shall extend the result
(including Example 1.2.) to nonlinear problems by using the existence of the long time
averaged reflection number d in (1)-(2). As Example 1.2 indicates, the effective limit
boundary condition (19) is defined by using the long time averaged number in (20). Our
present approach was inspired by the classical method of formal asymptotic expansions of
A. Bensoussin, J.L. Lions, and G. Papanicolaou [12]. This approach is closely related to
the ergodic problem for HJB equations described in the preceding part of this introduction.
For the application of the ergodic problem ( [7], [1], [2]) to obtain the effective P.D.E. in
the domain, we refer the readers to M. Arisawa [3], [4], M. Arisawa and Y. Giga [6], L.C.
Evans [17], [18], and P.-L. Lions, G, Papanicolaou, and S.R.S. Varadhan [28]. - As far as
we know, there is no existing reference which treats the homogenization of the oscﬂlatmg
Neumann boundary conditions from the view point of the ergodic problem.

We consider the solvability of PDEs in the framework of viscosity solutions. (See M.G.
Crandall and P.-L. Lions [15], M.G. Crandall, H. Ishii and P.-L. Lions [14], and W.H.
Fleming and H.M. Soner [19].) We use the notation B(z,r) (z € Q, r > 0) for the open
ball centered at x with radius r > 0.

2 Existence and uniqueness of the long time aver-
aged reflection in the bounded domain.

In this section, the existence and uniqueness of the number d in (1)-(2) is shown in
the case that () satisfies (7). The Hamiltonian F(z,Vu, V2u), given in (3), positively
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homogeneous in degree one, is assumed to satisfy (4) and (5); the vector field v on 02
is assumed to satisfy (6). For the existence, we further assume that

|ag;,

|Vagl, |V2a§’;-|, 2], V2|, V3¢ < K any z€, 1<i,j<n, a€A, (21)

where K > 0 is a constant, and that 7, g can be extendable in a neighborhood U of 052 to
twice continuously differentiable functions so that

VA1, V2], |V?l, |V’ <K in U, (22)

where K > 0 is the constant in (21). For the existence of d, we approximate (1)-(2) by
(9)-(10) (X € (0,1)) and examine the regularity of u,, uniformly in X. In order to have
(11)-(12), we need the following estimates.

Theorem 2.1. Assume that Q is (7), and that (4), (6), (21) and (22) hold. Then there
ezists a unique solution uy € CY(Q) N C*A(Q) of (9)-(10), where 3 > 0 depends on n
and A1/)1. Moreover for any fired o € Q, there erists a constant C > 0 such that the
following estimates hold.

lux — uaA(Z0)| L) < C any )€ (0,1), (23)
Virlem SC  amy A€ (0,1), (24)
Vihg<C ey A€ (1), (25)

Remark 2.1 One can replace the conditions (21)-(22) to other conditions ,for example
those in [23], to have

Iu/\(z) - u,\(y)l S Clx - ylo any I,y € ﬁa A€ (0, 1),

where C > 0, 8 € (0,1) are independent on A > 0. The proof of this inequality can be done
in a similar way to [23], but by taking account of the Neumann type boundary conditions,
and also by using the estimate (23).

Proof of Theorem 2.1. For each A > 0, the existence and uniqueness of uy € C*}(Q) N
C%P(Q) is established in P.-L. Lions and N.S. Trudinger [30]. We are to show the uniform (in
A € (0,1)) regularity (23)-(25). The estimates (24)-(25) follow from (23) by using a similar
argument in [30]. ([16], [24], [25].) Here, we only prove (23), and refer [5] for further details.

Proof of (23) We prove by a contradiction argument. Let zo € Q be fixed. Assume, as
A>0goesto0

‘uk - UA(IONLm(’ﬁ) — 0O0.
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Ex = |ur — m(mo)lzio(ﬁ) A e (0,1),
and let vy = ex(ux — ux(2o)). Then,
[oAlL@ =1, vA(mo) =0  any A€ (0,1).

From (3), v, satisfies F'(z, Vv, VZv)) = 0in ©, and from (4) the Krylov-Safonov inequality
(see [13] for instance) leads: for any compact set V CC Q, there exists a constant My > 0
such that

IVurlpw@y S My any A€ (0,1). (26)
We denote o
v*(z) = limsupva(y), vi(z)=liminfv,(y).
A0, y—z Al0,y—z

Then, since vx(zo) = 0 (VA € (0,1)), from (26) we have
v*(20) = vs(z0) =0, (27)

[v*|pw@y =1, or Vsl po iy = 1- (28)

From (2), vy satisfies
< Vuy,v(z) >= €29 — A(va + exua(zo)),
and by the comparison result for (9)-(10)
| Mur(2o) oy <€ any A€ (0,1),
where C > 0 is a constant. By letting A | 0, v* and v, a.ré viscosity solutions of
<Vv*,y(z) ><0 on 89, (29)
< Vu,,y(z) >>0 on .01, (30)
and v(z) = v*(z) = vi(z) (z € Q) satisfies
F(z,Vvu,V)=0 in Q. (10)’

(We refer the readers to [14] and G. Barles and B. Perthame [10] for this stability result.)

Now we employ the strong maximum principle of M. Bardi and F. Da-Lio [8]. Remark
that F(z,p, R) given in (3), satisfying (4) and (21) enjoys the following two properties of
(31) and (32).

(Scaling property) For any zo € €, for any n > 0, there exists a function ¢: (0,1) —
(0, 00) such that

F(z,£p,&R) 2 ¢()F(z,p,R)  any £€(0,1), (31)
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holds for any = € B(zg,7),0 < |p| <1, |R| < 7.
(Nondegeneracy property) For any zy € (2, for any small vector v # 0, there exists a
positive number rq such that ‘ \
F(zo,v, —tv®v)>0 any 7> . (32)

We cite the following result for our present and later purposes.

Lemma A. ([8]) (Strong mazimum priciple) Let @ C R™ be an open set and let u be
an upper semicontinuous viscosity subsolution of

F(z,Vu,V3u) =0 in Q,

which attains a mazimum in ). Assume that F satisfies (31), (32), and

Jor any zo € 2 there exists py > 0 such that for any v € B(0, po)\{0}, (82) holds
for some T4 > 0. (33)

Then, u is a constant.

We go back to the proof of (23). Assume that [v*|,e ) = 1 holds in (28). (The another
case of |v,| @ = 1 can be treated similarly.) Thus from (27), v* is not constant, and
from (10)’ and the strong maximum principle (Lemma A), v* attains its maximum at a
point z; € O

v*(z1) >v*(z) any z €.

Since Q2 is C*!, the interior sphere condition (see D. Gilbarg and N.S. Trudinger [22)) is
satisfied : there exists y € Q such that for R = |z; — y|

B(y,R) € Q, z; € 0B(y, R).

Let
d(z) = e~R _ gmcle—yl? z €9,

where ¢ > 0 is a constant large enough so that
F(z1, Vo(a1), V*§(e1)) = F(z1, 2e(z: — e, 2009019 (] — 20(z, — y) @ (21 —))

= 2ce™ VW P(g, 2y —y, T — 2c(z1 —y) ® (z1—y)) >0

holds. (Here, we used (3), (32) and (33).) By the lower semicontinuity of F in z, there
exists r € B(0, R) and C’ > 0 such that

F(z,V¢(z), V2p(z)) > C'>0 in B(zy,r)NG. (34)
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We claim that ‘ : ; R L
v*(z) — v (z1) — @d(x) <O in B(z,r)NQ. (35)
In fact, if z € B(y, R)%, ¢(z) > 0 and (35) holds. Assume that for ' € B(z1,7) N B(y, R)
(35) does not hold, and ’

v(2) = vt (@) — () = | max  v*(z) —v'(z1) - §(z).

B(ml ,T)nB(y,R)

Then by the definition of the viscosity solution,
F(2',Vé(z'), Vip(z)) <0,

which contradicts to (34). Therefore, (35) holds. By remarking that ¢(z:) = 0, (35)
indicates that v* — ¢ takes its maximum at z; € 9f). Since v* satisfies (29) in the sense of

viscosity solutions, either
< (]S(l'l), ’Y(xl) >< 07
or

F(xlav¢($l)7v2¢(x1)) <0

must be satisfied. However from the definition of ¢, (6) and (34), both of the above are
not satisfied. We got a contradiction, and proved (23).

Theorem 2.2. Assume that Q is (7), and that (4), (6), (21 ) and (22) hold. Then
there ezists a number d and a functzon u(z) € C 1(Q) NC%*(Q) (o e (0 1)) which satzsij

(1)-(2).

Proof of Theorem 2.2. From (23)-(25) and the Evans-Krylov estimate, we can extract a
subsequence X | 0 such that there exist a number d and u(z) € C*'(Q)NC?*#(Q), and

%\1’11% Nuy(z) = d, }\i,rl%(ux — ux)(zo) = u(z) uniformly on 2. ~(36)
From the usual stability result ([14]), it is clear that the pair (d,u) satisfies (1)-(2).

As for the uniqueness of the number d, we give the following theorem in which we consider
(1)-(2) in the framework of viscosity solutions.

Theorem 2.3. Assume that Q is (7), and that (4), (5), (6) and (22) hold. Then, the
number d such that (1)-(2) has a viscosity solution u is unique.

Proof of Theorem 2.3. We argue by contradiction. Let (d;,u;) and (dg,us) be two
pairs satisfying (1)-(2) in the sense of viscosity solutions. We assume d; > d;. We need

the following Lemma, the proof of which is done by a contracdition argument, which we
abbreviate. (See [5].)
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Lemma 2.4. Let v = u; — ug. Then, v satisfies

— M+ (V) + inf {- Z gv <0 m Q (37)
<Vv,y><dy—d; <0 on 0}, (38)

where
MY (X)= sup Tr(AX) XeS" (39)

MI<ALSA T

By admitting the above Lemma, the proof of Theorem 2.3 is immediate. From the strong
maximum principle (Lemma A), v, which is not constant, attains its maximum at some
point x; € 9Q

v(z1) > v(z) any z €.

However, as we have seen in the proof of (23) in Theorem 2.1, this is not compatible with
< Vv,v >< dy — d, on 99, in the sense of viscosity solutions. Thus, we have proved that
d; = ds must be hold.

3 Long time averaged reflection force in half spaces.

In this section, the existence and uniqueness of the number d in (1)-(2) is shown in the
case that (2 satisfies (8), with a supplement boundary condition at =, = co. We denote

Q={(2",z.)| 222> f(&'), = €(®R/Z)"},

Lo =80 = {(«,2,)| .= f(a'), z'€(R/Z)*},
where f(z’) is periodic in ' € (R/Z)"*! and is C3!. Our goal is to find a unique number
d which admits a viscosity solution u of (1)-(2) such that
u  is bounded. (40)

We list our results in the following without their proofs, which are in [5]. The first one is
the uniqueness of d.

Theorem 3.1. Assume that Q is (8), and that (4), (5), (6) and (22) hold. Moreover,
assume that
bo(z) <0 any €, acA. (41)

Then, the number d such that (1)-(2) and (40) has a viscosity solution u is unique.
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Remark 3.1. (Counter example.) If we do not assume the boundary condition at
infinity (40), d is not unique in general. For example, consider

—Au=0 in {z, >0} CR", (42)
d+ <Vu,n(z) >=0 on {z,=0}CR" (43)

where n is the outward unit normal, and the solution u is periodic in z'= (z, ..., Zp_1).
Then, for any ¢, d € R, u = —dz, + ¢ is the solution of (42)-(43). Thus, the number d in
(43) is not unique. (Green’s first identity does not hold in the half space.)

Next, for the existence of d we approximate (1)-(2) and (40) by
Fz, Vul, Vi) =0 in Qp={(«,z.)] f(z') <z, <R}
<Vuf,n(z) >=0 on Tp={(2,z.)| z.= R}, (44)
Mt < Vu y(z) > —g(z) =0  on. 8Q=Ty = {z, = f(z)},

where R > 0 is large enough so that I'p and I'y do not intersect, say R > Ry. As in § 2
(Theorem 2.1), we examine the regularity of uf uniformly in A € (0,1) and R > Ry. By
combining this and the former uniqueness, we obtain the following.

Theorem 3.3. Assume that 2 is (8), and that (4), (6), (21) and (22) hold. Then, there
exists a unique number d such that (1)-(2) and (40) has a viscosity solution u.

4 Homogenization of oscillating Neumann type bound-
ary condltlons.

In this section, we study the following homogenization problem.

82u5 2 Bue

(45)

G(z, Vue, V*u,) = sup{— Z ag; Zba( )
acA ij=
in Q={(z1,22)] —a<zi<a, folr1)+efi(z, ?) < zy < b} C R?,
< Vug,n, > +e(r, 2 ue = glan, =) (46)
on [e={(z1,72)] —a<zi<a, == folz:1)+efi(z, %)},
u, =0 on OQ\I,, 47)

where € > 0, afj(z), bf(z) are Lipschitz in z satisfying (5), n(z) is the outward unit normal
to .,

¢, 9, fi(z1,&1) aredefinedin Q. xR, periodicin & € R\Z, (48)



0< filx,€), 0<C<eclz,&) in Q xR\Z, (49)
where C > 0 is a constant,
) =0, ZLka ) = (50)
denoting Ag = (a5())1<i j<n:
M <A <A\ any a € A. (51)

We are interested in the limit of u, of (45)-(47) as € goes to 0. Remark that Example
1.2 is a special case of the above. For our nonlinear problem, we need further assumptions
listed in the following.

b=0, b§=a},fy any a€A, e, (52)

{0?1(1 + f(?) - 20?2f6 + 032}2 > 4(011022 - 0(1122) foral a€ A, z€Q,, (53)

and for

O(z1) = {(61,&)| & > fi(z1,&), periodicin &},

00(z;) is C. (54)

These assumptions come from the following formal asymptotic expansion of u.:
= u(z) + eu(D, 20y 4 o(r) (55)
T2— f0($1)

where we are assuming that "the corrector” v depends only on §; = % and §; =
(&1, &2 are rescaled variables.) By introducing the formal derivatives of u. into (45)- (46)
we get the so-called cell problem for v, which is nothing less than the ergodic problem on
the boundary, studied in §2,3. Let (z,r,p) € Q@ xR xR2 (p = (p;, p2)) be arbitrarily fixed,
and define the following operators.

:z:r,p( 'U(£1, 62)) = (56)

= —[aua_g +2(at, - anf(;)m +{afy(fo)? - 2a%,fo + ‘122}'56—%] in O(z1),
and
ET,P(D?U(§11£2)) = Sup{ z,r,p(ng(gl’£2)} in O(“Tl)' (57)
We denote the outward unit normal to the bounda.ry of @ = {(z1,22)] —a <z <

a, z2> fo(z1)} as

- (), -1).
’ 1+(fa)2(° )
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(fo+ 42 ger, —{Jo(fo + agl) +1})

(51,52) - m

and for (z,r,p) € 2 x R x R2

w 0E), (6

T.T ‘:__‘_1______ ! _a._f‘_l_.z T r— 6f1
H(z, vp,ﬁ) m{ \/1+(f0+8€1)(c( 151) g) pla€

By using these notations, our cell problem obtained ‘from> (45)-(46) is: for any fixed

(59)

(z,r,p) € 2 x RxR", find a unique number d(z, p, ) such that the following problem has
a viscosity solution (corrector) v(£1,&2).

Pm,r,p(ng(fla £2)) =0 in O(zy), ’ ;
d(z,r,p)+ < Vev,y > —H(z,1,p,{) =0 on 00(z1),
v is bounded in O(z,). N (60)

In fact, from Theorem 3.3, we know that d(z,r,p) exists. Now, our main result is the
following. ‘

Theorem 5.1. Assume that (48)-(54) hold. Then, there ezxists a unique function u(zx)
such that ‘
liH)1 ue(z) = u(z) locally uniformly in Q,

which is the unique solution of

" Bu.
su by =0 n S, 61
aeg{ Uz:l ij 3138.’1:, Z_; i O, n , (61)
< Vu,v>+L(z,u,Vu) =0 on Iy, | | (62)

and (47), where d(z,r,p) is defined in (60).

The rigorous proof of the above theorem is done by the perturbed test functlon method,
based on the maximum principle. (See [18], [5].)
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