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Motion of a graph by R-curvature

IR BEHAR  =F  #k (Toshio Mikami)
Department of Mathematics
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1. Introduction.

In this talk we introduce our recent result:

H. Ishii and T. Mikami, Motion of a graph by R-vurvature, Hokkaido math-

ematical preprint series, No. 340.
Let us first introduce two definitions.

Definition 1 (R-cufvature) LetR € LY(R?: [0,00),dz). Forue C(R?:
R), we define the R-curvature of u as the finite Borel measure w(R,u, dx)

on R4 given by

= d
w(R,u, A) = /U g RW)d Jorall Borel ACRL. (0.1

Definition 2 (Motion by R-curvature) The graph of u € C([0,00) X
R? : R) is called the motion by R-curvature if the following holds: for any
p €Co,(RY:R) and any t >0,
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foo@utni- [ o@u0nd (09
= [as [ o@u(B,u(s, ), dz).

By the continuum limit of a class of infinite particle systems, we first
show the existence of the motion by R-curvature, and then the uniqueness
by the comparison theorem. We also show that the motion by R-curvature

is a viscosity solution to

(PDE)  0u(t, z)/0t = x(u, Du(t, z),t, z)Dety(D?u(t, )) R(Du(t, z)),

where Du(t, z) = (Qu(t, x)/0x:)2,, Dzu(t,‘x) = (0%u(t, x)/0x;02;)¢

3,j=01)

1 if pedu(t, ),

0  otherwise,

x(u,p,t,z) = {

du(t, z) denotes the subdifferential of the function 2 — u(t, z), and for a real

d x d-symmetric matrix X,

DetX  if X is nonnegative definite,
Det.,.X =
0 otherwise.

We introduce the definition of the viscosity solution to (PDE).
Definition 3 (Viscosity solution) (Viscosity subsolution)u € C((0,00)x

R? : R) is a viscosity subsolution of (PDE) if whenever o € C?((0, oo) X R4 :
R) and u— ¢ < (u — ¢)(to, T,),
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0p(to, £)/0t < X(t, DP(tor To), oy o) Deti (D*p(to, ) R(D(to, To))-

(Viscosity supersolution) u € C((0,00) x R? : R) is a viscosity supersolution
of (PDE) if whenever ¢ € C?((0,00) X R?: R) and u — ¢ > (u— ¢)(ts, 2o),

0¢(to, To) /0t 2 X~ (4, Dp(to, Zo), to, Zo) Detr (D*p(to, o)) R(Dip(to, 2o))-

Here x~(v,p,t,x) =1 if

v(t,y) > vt z)+<py—-z>  (y#2)

and if there exists € > 0 such that for all (s,y) € (0,00) x R? satisfying

ly| > 7! and |s — t| <,

v(s,y) >p-y+elyl,

and x~(v,p,t,z) = 0, otherwise.

Remark 1 If x~(v,p,t,z) = 1 and s is close to t, then p € Ov(s,y) for

some y.

Finally we discuss under what condition the viscosity solution to (PDE)
is the motion by R-curvature.
2. Infinite particle systems and the motion by R-curvature.

In this section we construct the motion by R-curvature by the continuum

limit of infinite particle systems.
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Fix ¢, | 0 as n — o0, and put
(A.1). |[R||zr = Jre R(y)dy >0, R> 0, h € C(R*: R),
(A.2). |OR(R?)(= Uyeredh(z))| > 0,

S = {v:Z%n—R| ¥ (0(2) — h(2)) < o0,

z€Z4/n

(v(2) — h(2))/en € NU {0} for all z € Z%/n}.

Let {Ya(k,-)}o<k be a Markov chain on S, such that Y,(0,-) = h(-), and that

P(Ya(k +1,-) = vy, |Ya(k,-) = v) = w(R, v, {2})/w(R, ¥,(0,-),RY),

where

v(z)+e, ifz=z,
Un(Z) = { o
v(z) if z € (Z%/n)\{z}.

Let p(t) be a Poisson process, with parameter née;'w(R, ¥,(0, -), R%), which
is independent of Y,,. Put

Zn(t,2) = Ya(pa(?), 2),

Xn(t, ) = max(Z,(t, z), h(z)).
For f and g € C(R?: R), we put - _
dC(Rd:R) (f’ g) = Zle P min(sup|z[5m |f($) - g(x)li 1) |

Then we show that X,,(t, ) converges to the motion by R-curvature under

the following additional conditions.



(A.3). The closure of the set {z € R?: h(z) < h(z)} does not contain any
line which is unbounded in two different directions.

(A.4). For any p ¢ Oh(R?) and C € R,

/Rd max(< p,z > +C — h(z),0)dz = .

Theorem 1 Suppose that (A.1) and (A.3)-(A.4) hold. Then there ezists a
unique continuous solution u to (1.2) with u(0,-) = h. Suppose in addition

that (A.2) holds. Then the following holds: for any~y >0 and T > 0,

lim P(sup domer)(Xn(t,"),ult,-)) 2 7) =0.
0<t<T
Remark 2 (A.3) holds when d = 1. If h is convez, then (A.4) holds.
We give the properties of the motion by R-curvature.

Theorem 2 Suppose that (A.1) holds. Let u € C([0,00) x R? : R) be the
solution to (1.2) with u(0,-) = h. Then:
(a) t — u(t,z) is nondecreasing.
(b) u = max(4, h)
(c) u(t, z)—1i(t,z) < h(z)—h(z). In particular, if h(z) = h(z), then u(t, z) =
i(t, x).
Suppose in addition that (A.4) holds. Then:
(d) For any t > 0, du(t,R%) = 8h(RY).

/R (u(t,2) — h())dz = t - w(R, b, RY).
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(e) Letw € C([0,00) x R? : R) be the solution to (1.2) with u(0,-) = h. -If
u(s,-) — i(s,) # h— h for some s € (0,00), then u(t, ) —1(t,-) # 0 for all
t>s.

According to the abdve theorem, (a) ahy graph moiles upward by R-
curvature, (b) those pointé on any graph moving by’ R-curvature do not‘move
as far as they stay in its cavities, (c) the height between any graph moving
by R-curvature and its convex envelope is nonincreasing as it evolves, (d)
any graph moving by R-curvature sweeps in time ¢t > 0 a region with volume
given by ¢ - w(R,h,R%), and (e) for the motion of a graph by R-curvature,
taking its convex envelope at time t>0 and evolving up to tifne t starting
with the convex envelope of the initial graph give different graphs in general,
if the initial graph is not convex.

3. Motion by R-curvature and the viscosity solution.

In this section we discuss the relation between the motion by R-curvature
and the viscosity solution to (PDE).
(A.5). Re C(R%: [0,00)).

Theorem 3 Suppose that (A.1) and (A.5) hold. Then a continuous solu-
tion u to (1.2) with w(0,-) = h is a viscosity solution to (PDE).

Theorem 3 means that the motion by R-curvature is the viséOSity sblution
to (PDE). To discuss under what condition the reverse is true, we discuss
the uniqueness of the viscosity solution to (PDE).

(A.6). R(z) > R(rz) for any r > 1 and z € R°.
(A.7). inf 4, h(x)/|z| > 0. | |
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(A.8). There exists a constant C' > 0 such that h(z+y)+h(z—y)—2h(z) < C
for all (z,y) € R? x U;(0), where U,(0) = {y € R?: |y| < 1}.

Theorem 4 Suppose that (A.1) and (A.3)-(A.8) hold. Then there exists a
unique continuous viscosity solution u to (PDE) with u(0,-) = h in the space

of continuous functions v for which

sup{|v(t,z) — h(z)| : (t,x) € [0,T] x R%} < 00 for all T > 0.
u is also a unique continuous solution to (1.2) with u(0,-) = h.

We restrict our attention to Gauss curvature flow and give a finer result.

For ACR?and v: A~ R, put

epi(v) = {(z,y) : z € A, y > v(x)}.

For r > 0, put

W (z) = inf{y € R| Ux((z,¥)) Cepi(h)} (z € R?).

Under the following condition, we give the comparison theorem for the
continuous viscosity solution to (PDE).
(A.1). R(y) = (1 +|y|>)~@+)/2 and h € C(R?: R).
(A2).

11151l ilnf{lim inf [lfrln inf(h(0x) — A" ()]} > O,
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fm( sup (@) — h(6))} =0.
zERJ

Theorem 5 Suppose that (A.1)-(A.2)’ hold. Then for any viscosity sub-
solution u and supersolution v, of (PDE) in the space C([0,00) x R : R),
such that u(0,-) < h <v(0,-), u <w. '

Remark 3 (A.2)’ holds if there exists a convex function hg : R® — R such

that ho(z) — oo as |z| — oo and that

lim [h(@) — ho(2)] =0.

In fact, the following holds:

Illim [A(6z) — K" (z)] =00 for all@ > 1,r > 0,

lim{ sup [h(z) — h(6z)]} = 0.
01 "zeRd

The following corollary is better than Theorem 4 in that we can consider

the viscosity solution in the entire space C(R?: R).

Corollary 1 Suppose that (A.1)-(A.2)’ and (A.3)-(A.4) hold. Then there
exists a unique continuous viscosity solution u to (PDE) with u(0,-) = h. u

is also a unique continuous solution to (1.2) with u(0,-) = h.
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