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ABSTRACT
Aflexible beam model with bonded piez0-patches is taken as the study object. In order to
suppress the disturbance vibration of the beam, the imposed voltage to the bonded
piezoelectric elements is controlled. After the theoretical analysis for piezoelectric patches
and beam structure, abilinear form of the state space equation is derived. In this
electromechanically coupled model, the imposed voltage control is related to the beam
deformation state. Therefore, it is possible to realize the proposed semi-active control
through alow cost approach. The concept of semi-active control comes from the fact of
that only the gain of the imposed voltage is adjusted and the voltage direction is reverse to
the deformation sensing. As aresult, the control voltage is controlled only in tw0-phase
planes. Here, nonlinear $H_{rightarrow}$ state feedback control theory is applied to design acontroller
and the proposed control approach is testified by numerical simulation.

Keywords: Piezoelectricity, bilinear model, H-control. semi-active control

1. INTRODUCTION

Advanced mechanical structures are required to have
abilities to sense their own states, and furthermore to
adjust themselves into optimal states. Therefore, it is
imperative that there is aconverter to transform structural
states into accessible information, and also to convert a
series of instruction into active driving forces exerted on
structures to adjust their states. Piezoelectric elements
are very suitable for such purposes, since they can
generate electric charges, while experience deformation,
and produce deformation in response to an active
exciting voltage. In the past decade, there has been
tremendous interest in the use of piezoelectric sensors
and actuators for structural control applications.
Piezoelectric elements have been successfully used in the
active damping control and passive damping control for a
variety of smart structures. In the active damping control
mode, piezoelectric patches are attached to the surface of
astructure at aposition where ahigh level of strain is
produced. Flexure, like bending, induces avoltage in the
piez0-patches. The voltage is fed back to acontroller for
control calculation and then the calculated result signal is
amplified to drive the piez0-patches. Hereafter, the
piezo patches translate the imposed voltage to produce
deformation of anti-vibration which cancels the original
disturbance. In the passive damping control mode, it
requires no power amplifier. The piez0-patches detect
vibration and convert it to avoltage that is sent to a
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resistive shunt circuit where it is dissipated by heat. In
the active mode, the costly voltage amplifier is of high
ffequency response performance and the multi-mode
vibration control can be realized. While in the passive
$\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}5’ 61$, asimple circuit is needed but only the vibration
of low ffequency mode, e.g. $1^{\mathrm{u}}$ mode, could be
controlled by the optimized circuit parameter. Here in
this Paper, anew approach in the vibration control by
piez0-patches is proposed. The proposed method is a
semi-active control mode for piez0-actuator damping,
where an operational amplifier that inverts sensing
voltage $18\mathrm{t}\mathrm{P}$ out of its phase is used and its amplification
ratio can be controlled. In the following, the contents are
composed of the theoretic analysis, state space bilinear
modeling for cantilever beam bonded with piez0-patches
and nonlinear $H_{\vee}$ state feedback control design as well
as numerical testification.

2. THEORETICAL BASIS FOR PIEZOELECTRIC
PATCHS AND BEAM STRUCTURE

The piez0-actuator is apart of structure and the stress or
strain signal determined in the actuator can be processed
in acontrol algorithm and then be fed to the actuator to
control unwanted vibration in the structure.
The strain, electric field and electric displacement within
apiezoelectric material can be fully described by asingle
pair of electromechanical equations and the best choice
of equations depends on the problem. In the notation of
IEEE Standard 176-1987, the following pair of equations
is the equivalent statement of the electr0-mechanical
relationship. For the thin piez0-patches, the stresses of $y$

and $\mathrm{z}$ directions are ignored and only electric parameters
$D_{\mathit{3}}$ and E3 are considered. If the poling direction of
piezoelectric patches is perpendicular to the surface of
the patches, the constitutive relations of the patches are

$\{\begin{array}{l}\mathcal{E}^{p}=d_{13}E_{3}+\sigma^{p}/\mathrm{Y}^{p}D_{3}=d_{13}\mathrm{Y}^{p}\epsilon^{p}+(\mathrm{a}_{33}-d_{13}^{2}\mathrm{Y}^{p})E_{3}\end{array}$ (1)
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where $\sigma^{p}$ and $\epsilon^{p}$ are the stress and strain normal to the
poling direction and parallel to the direction of x-axis
shown in Fig. 1, $D_{3}$ and E3 represent the electrical
displacement and the electric field in the poling direction,
and d13, $\mathrm{Y}^{p}$ and $3_{33}$ designate the piezoelectric strain
constant, Young’s modulus, and the electric permittivity
respectively. Certainly, the effect of the accumulation of
electric charges on the piezoelectric capacitance can be
calculated by integrating the electric displacement over
the area of the patches. As shown in Fig. 1, two
piezoelectric patches are bonded to the upper and lower
surfaces of abeam. According to the constitutive
relations (1) and the theoretic assumption of Bernoulli-
Euler beams, the deformation compatibility, which
requires the deformations of piezoelectric patches and the
beam at their interface to be consistent, leads to

$\{$

$\Lambda_{u}+\frac{F_{u}}{\mathrm{Y}^{p}h^{p}}=-\frac{(h^{s}+h^{p})}{4}\frac{(F_{u}-F_{l})h^{s}}{\mathrm{Y}^{s}I^{s}}$

$\Lambda_{l}+\frac{F_{l}}{\mathrm{Y}^{p}h^{p}}=\frac{(h^{s}+h^{p})}{4}\frac{(F_{u}-F_{l})h^{s}}{\mathrm{Y}^{s}I^{s}}$

(2)

where,

$\{|F_{l}|=|F_{u}|=|F_{\prime}=|F_{u}^{p}|=|F_{l}^{s}|=|F_{u}^{s}|\Lambda_{u}=d_{13}E_{3}-\frac{\mathrm{l}}{P|22\mathrm{l}}()\cdot(\epsilon_{3}+\epsilon_{2})\Lambda_{/}=d_{13}E_{3}+\frac,()\cdot(\epsilon_{3}+\epsilon_{2})$ (3)

$\mathrm{Y}^{s}I^{s}$ is the bending stiffness of the beam, $\epsilon_{3}$ and $\epsilon_{2}$

are the strains of the beam at their edges (the strain of the
upper and lower piezoelectric patches are equal but in
reverse sign). The superscripts $s$ and $p$ denote the
substrate beam and the piezoelectric actuator

$\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{y},\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{e}$ the subscripts $u$ and 1designate the
upper and lower patches. Since the strains of the beam
and piezoelectric patches at the interface are equal for
ideally bonded patches, the active interaction forces $F_{u}$

and $F_{l}(\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{c}\mathrm{e}/\mathrm{w}\mathrm{i}\mathrm{d}\mathrm{t}\mathrm{h})$ , as shown in Fig.1, are supposed
existing only at both ends of the patches. It should be
especially emphasized that $\epsilon_{3}$ and $\epsilon_{2}$ will be affected
by external loads, the boundary conditions of the beam,
the placement, dimensions, and properties of the
piezoelectric patches, and even the active interaction
forces; consequently, obtaining an explicit expression for
them is not easy. However it is clear that they describe
the strain of the beam, which need to be sensed and
controlled.
The active interaction forces are related to the beam
strain state $\epsilon_{2}$ and $\epsilon_{3}$ with the following expression.

$\{\begin{array}{l}\frac{F_{u}}{\mathrm{Y}^{s}h^{s}}=\frac{1}{2(\psi+\alpha)}(\epsilon_{3}+\epsilon_{2})\frac{F_{l}}{\mathrm{Y}^{s}h^{s}}=-\frac{\mathrm{l}}{2(\psi+a)}(\epsilon_{3}+\epsilon_{2})\end{array}$ (4)

(9)

where

$\psi$ $= \frac{\mathrm{Y}^{s}h^{s}}{\mathrm{Y}^{p}h^{p}}$ $\alpha=t^{1}$ $+ \frac{h^{p}}{h^{s}})$ . (5)

To the pure bending beam, now we confine the
discussion to the upper piezoelectric patch because the
lower patch has the same formula except opposite sign.
Then the definition of electrical capacitance is given out
as:

$C^{p}=Q/V_{s}$ (6)

where $Q$ is the electric charge accumulated on the piezo
patches and $V_{s}$ is the static circuit voltage imposed on the
patches. The capacitance is composed of three parts, i.e.,
$c^{p}=c^{c}+C^{b}+C^{V}$ . The first part is the capacitance of
patch without deformation;

$C’= \frac{s^{p}}{h^{p}}(3_{33}-d_{13}^{2}\mathrm{Y}^{p})$ (7)

The second part is the capacitance of the patch relaxed
by its bonding to the elastic beam;

$C^{b}= \frac{S^{p}d_{13}^{2}\mathrm{Y}^{p}}{h^{p}}(1-\frac{\psi}{\psi+\alpha})$ (8)

And the third part of the capacitance is that induced by
the strain state of the beam;

$\mathrm{C}^{\gamma}=\frac{S^{p}d_{13}^{2}\mathrm{Y}^{P}}{h^{p}}(\frac{\psi}{\psi+\alpha}(1+\frac{h^{p}}{h^{s}})\cdot\frac{\epsilon h^{p}}{d_{13}V_{s}})$

Here, if the imposed voltage is specified, the variation of
the capacitance demonstrates the change of the strain
states. Therefore, the strain of the beam for the patched
area can be sensed via measurement of the electrical
capacitance. For the purely bending beam, the strain of
patched area is written as

$\epsilon=\frac{V_{s}}{S^{p}d_{13}\mathrm{Y}^{p}}(\frac{\psi+\alpha}{\psi(1+h^{p}/h^{s})})\cdot c^{V}$ , (10)

where, $V_{s}$ , $C^{V}$ and $\epsilon$ can express the upper and lower
beam variables only with reverse sign.
To obtain the part of the electrical capacitance only
related to structural deformation, one should filter out the
parts of Eq. (7), and (8). Thus, the self-sensing actuator
technique based on abridge circuit could be applied. As
described above, it is clear that the interaction force can
be controlled by an electric field while structural
deformation can be sensed ffom the variation of the
capacitance. In reference to Fig. 1and 2, according to
geometry deformation relationship, asimplified strain
expression of the purely bent beam for the patched area
can be written as

$\epsilon=\frac{h^{s}}{2(l_{3}-l_{2})}(\mathrm{t}\mathrm{g}\delta_{3}-\mathrm{t}\mathrm{g}\delta_{2})\overline{\sim}\frac{h^{s}}{2(l_{3}-l_{2})}(\delta_{3}-\delta_{2})$ . (11)

Combing with Eq. (10), an asymptotic relation between
the beam deformation state and induced voltage is
established as
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In order to control the bending vibration modes, imposed
voltage $\mathrm{V}(\mathrm{t})$ is varied according to the control instruction
calculated ffom the bending state J. In the following
step, the relationship between piez0-patch area
deformation of $\delta_{3}^{V}$ and $\delta_{2}^{V}$ which are caused by control
voltage $V(t)$ and the actual beam bending state

$\delta_{j}$ , $(i=1,\cdots,5)$ is derived.
From Eq. (12) and (14), there are

$\epsilon=\frac{h^{s}}{2(l_{3}-l_{2})}(\delta_{3}-\delta_{2})=\frac{V_{s}}{S’d_{13}\mathrm{Y}^{p}}(\frac{\psi+\alpha}{\psi(1+h^{p}/h^{l})})\cdot C^{\gamma}$ .

(12)
Therefore, it is natural to understand that the deformation
state of the bending beam can be controlled by imposing
voltage reverse to the sensed voltage.

3. DYNAMIC MODELING FOR BEAM BONDED
WITH PIEZO-PATCHES

The beam parameters in Fig. 1are shown in Table 1and
Table 2. The modal parameters in Table 1are referred to
the result of modal experiment identification by
Eigensystem Realization Algorithm. In the dynamic
analysis for the piez0-patch bonded beam, 5discrete
modes are considered for the elastic beam. Hence, an
explicit dynamic beam model for the discrete beam
model with 5modes is demonstrated in Fig. 2. The strain
states caused by piezoelectric interaction (supposed acted
at the patch edges) of $M_{2}$ and $M_{J}$ are written as

$\delta_{2}^{\gamma}=\frac{M_{2}l_{2}}{\mathrm{Y}^{s}I^{s}}$, $\delta_{3}^{\gamma}=\frac{M_{3}l_{3}}{\mathrm{Y}^{s}l^{s}}$ (13)

Because of $M_{2}=-M_{3}$ , then

$\delta_{2}^{\gamma}l_{3}=-\delta_{3}^{V}l_{2}$ (14)

$\frac{h^{s}}{2(l_{3}-l_{2})}(1+\frac{l_{2}}{l_{3}})\delta_{3}^{\gamma}=\frac{V(t)}{S^{p}d_{13}\mathrm{Y}^{p}}(\frac{\psi+\alpha}{\psi(1+h^{p}/h^{s})})\cdot C^{\gamma}(15)$

and

$- \frac{h^{s}}{2(l_{3}-l_{2})}(1+\frac{l_{3}}{l_{-}},$ $) \delta_{2}^{\gamma}=\frac{V(t)}{S^{p}d_{13}\mathrm{Y}^{p}}(\frac{\psi+\alpha}{\psi(1+h^{p}/h^{s})})\cdot C^{V}$

(16)
By substituting Eq. (10) and (11) into (IS) and (16), the
following expressions can be obtained

$\frac{h^{s}}{2(l_{3}-l_{2})}(1+\frac{l_{2}}{l_{3}})\delta^{\nu},=\epsilon\frac{V(t)C^{\gamma}}{V_{s}C^{\gamma}}.=\frac{h^{s}}{2}\frac{c^{\gamma}}{V_{s}C^{\gamma}}$. $(\delta_{3}-\delta_{2})V(\iota)$

(17)

Then there exist,

$\{$

$\delta^{\nu},=.\frac{C^{\nu}l_{3}(l,-l_{2})}{C^{\gamma}V_{\mathrm{J}}(l_{3}+l_{2})}(\delta_{3}-\delta_{2}\mathrm{y}_{(t)}$

$\delta_{2}^{\gamma}=-.\frac{C^{\gamma}l_{2}(l_{3}-l_{2})}{C^{v}V_{s}(l_{3}+l_{2})}(\delta_{3}-\delta_{2}\mathrm{y}_{(t)}$

(18)

Therefore, by writing discrete dynamic equations of the
beam bending vibration:

$\{$

$J_{1}\ddot{\delta}_{1}+c_{1}l_{1}+k_{1}\delta_{1}+c_{2}(\dot{\delta}_{1}-\dot{\delta}_{2})+k_{2}(\delta_{1}-\delta_{2})=0$

$J_{2}\ddot{\delta}_{2}-c_{2}(\dot{\delta}_{1}-\dot{\delta}_{2})-k_{2}(\delta_{1}-\delta_{2})$

$+c_{3}(\dot{\delta}_{2}-\dot{\delta}_{3})+k_{3}(\delta_{2}-\delta_{3})+M_{2}=0$

$J_{3}\ddot{\delta}_{3}-c_{3}(\dot{\delta}_{2}-\dot{\delta}_{3})-k_{3}(\delta_{2}-\delta_{3})$

$+c_{4}(\dot{\delta}_{3}-\dot{\delta}_{4})+k_{4}(\delta_{3}-\delta_{4})-M_{3}=0$

$J_{4}\ddot{\delta}_{4}-c_{4}(\dot{\delta}_{3}-\dot{\delta}_{4})-k_{4}(\delta_{3}-\delta_{4})$

$+c_{S}(S_{4}-S_{s})+k_{S}(\delta_{4}-\delta_{5})=0$

$J_{5}\ddot{\delta}_{5}-c_{5}(S_{4}-S_{5})-k_{5}(\delta_{4}-\delta_{5})+w=0$

(19)

From Eq. (18), the external action to the beam is related
to the beam deformation state $\delta_{i}$ and control input $V(t)$ ,

i.e.,

110



Hence, the bilinear form of the state space equations for
the beam model with bonded piez0-patches are expressed
as

$\{$

$\dot{x}_{g}=A_{\mathit{8}}x_{\zeta}+B_{w}w+B_{\gamma}x_{l}u$

$y=\mathrm{C}_{g}x_{g}$

(22)

here
$x_{g}=[\delta_{1} \delta_{2} \delta_{3} \delta_{4} \delta_{5} \dot{\delta}_{1} \dot{\delta}_{2} \dot{\delta}_{3} \dot{\delta}_{4} \dot{\delta}_{5}]^{T}$ ,

$A_{g}=\{\begin{array}{ll}0_{5\cross 5} I_{5\mathrm{x}5}-KK/JJ -cc/JJ\end{array}\}$

$B_{w}=\{\begin{array}{l}0_{5\mathrm{x}1}b_{w}\end{array}\}$ $B_{V}=\{\begin{array}{ll}0_{5\mathrm{x}5} 0_{5\mathrm{x}5}b_{\gamma} 0_{5\mathrm{x}5}\end{array}\}$

$C_{g}=[c_{\mathit{9}}$ $0_{1\cross 5}1$ and $u$ $\mathrm{V}(\mathrm{t})$

$JJ=diag[J_{1} J_{2} J_{3} J_{4} J_{5}]$ ,

$KK=\{\begin{array}{lllll}k_{1}+k_{2} -k_{2} 0 0 0-k_{2} k_{2}+k_{3} -k_{3} 0 00 -k_{3} k_{3}+k_{4} -k_{4} 00 0 -k_{4} k_{4}+k_{5} -k_{5}0 0 0 -k_{5} k_{5}\end{array}\}$,

$CC$ $=\{\begin{array}{lllll}c_{1}+c_{2} -c_{2} 0 0 0-c_{2} c_{2}+c_{3} -c_{3} 0 00 -c_{3} c_{3}+c_{4} -c_{4} 00 0 -c_{4} c_{4}+c_{5} -c_{5}0 0 0 -c_{5} c_{5}\end{array}\}$,

$b_{V}=\{\begin{array}{lllll}0 0 0 0 00 \xi -\xi 0 00 -\xi \xi 0 00 0 0 0 00 0 0 0 0\end{array}\}$ $b_{w}=c_{g}=\{00-\kappa\kappa 00000]-\mathrm{l}]^{T}$

The above bilinear system $(\mathrm{B}\mathrm{L}\mathrm{S})^{[7]}$ is not controllable at
origin $X_{g}=0$ . However, once the state $X_{g}$ leaves the

origin, system becomes controllable. For the purpose of
disturbance vibration control, it does not matter since
$X_{g}=0$ means that the object has no displacement and
velocity; that is to say, the object is not in vibration and
need not to control either. Next, we will make use of
nonlinear $H_{\infty}$ state feedback control law to design a
controller for the above bilinear beam model.

4. CONTROLLER DESIGN WITH SEMI-ACTIVE
ACTUCATION

Control voltage is stimulated by the beam strain state and
its magnitude is proportionally changed with the strain
state, i.e., $V(t)\propto\delta$ . In order to pursue alow cost control
method, here we are attempting to implement the control
by adjusting the gain of voltage IC amplifier. In this way,
because the control input voltage can only be produced in

the accordance of strain state and the variant range is
confined to the 2nd and 4th phase plane, this leads to the
concept of semi-active control.

4.1 Generalized plant
To the bilinear system in Eq. (22), its generalized plant
for control design is written as

$\{$

$\dot{\mathrm{x}}=Ax$ \dagger $B_{1}w\dagger B_{2}xu$

$z$ $=\{\begin{array}{l}z_{1}z_{2}\end{array}\}$ $=\{\begin{array}{l}N_{1}(x)C_{11}N_{2}(x)C_{12}\end{array}\}$ $x+\{\begin{array}{l}0N_{2}(x)I\end{array}\}$ $u$

(23)

where $x\neq\nearrow_{S},$ $\mathrm{f}$ , $\mathrm{d}\Gamma\in \mathrm{f}\mathrm{f}$ and $w$ $\in \mathrm{R}^{m}$
$z$

$\in \mathrm{R}^{p}$

$(z_{1}\in \mathrm{R}^{p1}, z_{2}\in \mathrm{R}^{p2})$ $A,B_{1}$ , $B_{2}C_{11}$ , $C_{12}$ are constant
matrices. In Fig. 3, $W_{1}(x)$ and $W_{2}(x)$ are proper robust
weighting functions; and $N_{1}(x)$ and N2(x) are the
nonlinear weighting functions. Because of the inclusion
of nonlinear weighting functions, the evaluation output $z$

becomes nonlinear. In this case, the control performance
can be evaluated by $L_{2}$ gain other than $H_{\infty}$ norm. At
origin $X$ $=0$ , the bilinear system (23) is uncontrollable
and its $L_{2}$ gain can not be improved. However, once the
state $X$ leaves the origin, system becomes controllable and
the control input $u$ can actively tighten the control
performance index under the meaning of $L_{2}$ gain. This is
very useful in taking the advantages of the properties of
nonlinear actuator.

4.2 Nonlinear $H_{\infty}$ state feedback control
Asufficient condition for nonlinear $H_{\infty}$ state feedback
control design is given as the following theorem.
Theorem 1; Given apossible small positive number $\gamma$

for the generalized plant (23). If there exists apositive
definite matrix $\mathrm{P}_{1}$ which satisfies the following Algebraic
Riccati Inequality(ARI),

$\mathrm{P}A+A^{T}\mathrm{P}+\frac{1}{\gamma^{2}}\mathrm{P}B_{1}B_{1}^{T}\mathrm{P}+c_{11}^{T}c_{11}+c_{12}^{T}c_{12}<0$ (24)

and the nonlinear weighting functions $\Re_{\triangleleft\theta\hslash}^{r}$,and W2 (x)
satisfy the following condition

$( \frac{1}{N_{2}^{2}(x)}-1)x^{T}\mathrm{P}B_{2}x(B_{2}x)^{T}\mathrm{P}x+(1-N_{1}^{2}(x))x^{T}C_{11}^{T}C_{11}x\geq 0$

(23)
then astate feedback controller

$u(x)$ $=-( \frac{1}{N_{2}^{2}(x)}(B_{2}x)^{T}\mathrm{P}+C_{12})x$ (23)

can stabilize the system (23) with $L_{2}$ gain constraint
$||z\mathrm{N}_{2}\leq\gamma\Uparrow 1\eta_{2}$ . $\mathrm{O}$

In general, nonlinear weighting function $N_{1}(x)$ is
designed for state $X$ and $N_{2}(x)$ is for control input $u$ . The
systematic design method for $N_{1}(x)\ N_{2}(x)$ is given in
theorem 2.
Theorem 2: For the generalized plant (23), the nonlinear
weighting functions $N_{1}(x)$ and $N_{2}(x)$ that satisfy
condition (25) are chosen as the followings
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$N_{1(X)=}\sqrt{1+N_{0}(x)x^{T}\mathrm{P}B_{2}x(B_{2}x)^{T}\mathrm{P}x}$ (27)

$N_{2}(x)$
$= \frac{1}{\sqrt{1+N_{0}(x)x^{T}C_{11}^{T}C_{11}x}}$ (28)

Here $\mathrm{P}$ is the solution of ARI (24) and $N_{0}(x)$ is selected
as apositive scalar function $\mathrm{o}\mathrm{f}x$. $\mathrm{O}$

Then the nonlinear $H_{\infty}$ state feedback controller is
expressed as

$u(x)$ $=-(1+N_{0}(x)x^{T}C_{11}^{T}C_{11}x(B_{2}x)^{T}\mathrm{P}+C_{12})x$ . (29)

The discussion for the advantages of nonlinear $H_{\infty}$

control application is referred to reference [8].

4.3 Semi-active control discipline and concept
implementation
In the proposed control approach, the control input is
produced by the amplification of the deformation
feedback signal of piezoelectricity and only the control
input (imposed voltage to piezoelectric patches)
magnitude is adjusted according to deformation. Hence,
it is obvious that the sensing voltage against the
deformation strain is located in the first and third phase
planes, while the control voltage is ranged in the second
and fourth phase planes in order to recover the
deformation (see Fig. 4). Then based on the above facts,
the proposed methodology arises as, namely,
piezoelectric semi-active damping (only two quarters of
control input are available).

The control concept is going to be implemented as the
sketch in Fig. 5. The semi-active control law is
downloaded to DSP chip where the correspondent
control voltage is calculated according to the deformation
sensing voltage then the ratio of amplification is decided
through adjusting related resistance $R_{1}$ . In the practical
design, the parameters in Fig. 5should satisfy some
conditions. Otherwise, the sensing voltage no longer
represents the deformation strain rate but is contaminated
by the control input voltage.
The relation between sensed voltage $E_{i}$ and piezo
imposed voltage $E_{o}$ is expressed as

$E_{a}=-E_{j}\underline{R_{1}(t)/R_{2}}K_{r}$ . (30)

$K_{a}$

where $K_{a}$ is controllable amplification ratio and $K_{r}$ is
amplification constant.

5. NUMERICAL TESTIFICATION

In order to demonstrate the proposed semi-active control
approach, anumerical study is performed. The discrete
beam model is taken as the 5modes and its mode
frequency and damping ratio are assumed as those values
in table 1. In considering the control design, the
augmented plant (Ref. Fig. 3) is that in Eq. (23). We
select the weighting functions Wx (s) and $W_{2}(s)$ based on
the robust control design principle and they are notified
in Eq. (31) and (32).

Fig. 3Generalized control plant

Fig.4 Semi-active control discipline

$W_{1}(s):\{$

$\dot{x}_{1}=A_{w1}x_{1}+B_{w1}y$

$z_{1}’=C_{w1}x_{1}+D_{w1}y$
(31)

$W_{2}(s):\{$

$\dot{x}_{2}=A_{w2}x_{2}+B_{w2}u$

$z_{2}’=C_{w2}x_{2}+D_{w2}u$
(32)

Here the matrix components are listed as those in (33)
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(33)

$A=\{\begin{array}{lll}A_{g} 0 0B_{|\not\in 1}C_{\mathit{9}} A_{w1} 00 0 A_{||^{\prime 2}}\end{array}\}$,

$B_{1}=[^{B_{w1}D}c_{11}=D_{w1}C_{g}|l]B_{\mathrm{b}}0$

’
$c_{w1}\mathrm{o}]c_{12}=B_{2}x=[B_{u}0]B_{w2}x_{g}$

$0$ $c_{w2}$ ]
By applying the provided parameters in table 2and table
3, then combining with the nonlinear $H_{\infty}$ controller
calculated by Eq. (29), the simulation environment is
completed. Thus, the controlled voltage is limited as the
saturation bound $K_{a}\in[1.0,120]$ and operational
amplification constant $K_{r}=3$ With an impulse
disturbance input to the free end of the beam, the control
voltage, shown in in Fig. 6, is located in the $2^{\mathrm{n}\mathrm{d}}$ and $4^{\iota \mathrm{h}}$

phases in relation with beam deformation, see, Fig. 7.
The control result for the charge variance of the piez0-
patch is shown in Fig. 8. Moreover, the control result for
arandom disturbance to the beam ffee end is shown in
Fig.9. The charge variance expresses the beam
deformation variance based on the theoretic formula.
Therefore, the semi-active control for abeam bonded
with piez0-patches is effective. In this simulation study,
the deformation state of the discrete beam model is given
out when the state feedback control algorithm is being
calculated. For an actual control implementation, the
systematic control layout can be the controller combined
with an observer which is used to estimate the necessary
state variables.

$\hat{\frac{s\mathrm{o}\mathrm{g}}{\circ 3\circ}\vee}$

$\not\in(\mathrm{J}\mathrm{a}\mathrm{o}\mathrm{o}\mathrm{e}\supset$

Time (sec)

Fig. 8PZT Semi-active control (impulse disturbance)

Time (sec)

Fig. 9PZT Semi-active control (random disturbance)
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6. CONCLUSIONS

The semi-active control approach for piez0-patch bonded
beam is proposed and the feasibility is testified by
simulation study. This control method can achieve
almost the same effect as full active control system does
but the system cost is lower at attempting to use an IC
operational amplifier. The nonlinear $H_{\infty}$ state feedback
control is applied in order to pursue anonlinear control
output for the imposing voltage. Though the nonlinear

$H_{\infty}$ control is used in this study, the further
investigation for control effectiveness with different
control laws is expected in the near future and the future
work will also be focused on the experimental
testification and practical applications.
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