LABELED CONFIGURATION SPACES AND GROUP-COMPLETION

岡山大学理学部数学科 島川 和久 (Kazuhisa Shimakawa)
Department of Mathematics, Okayama University

1. STATEMENT OF THE RESULTS

In [7] we assigned to any pointed space Y and any topological abelian monoid M the configuration space $C^M(Y)$ of finite subsets of Y with labels in M. As a set $C^M(Y)$ consists of those pairs (S, σ) , where S is a finite subset of the complement of the basepoint in Y and σ is a map $S \to M$. But (S, σ) is identified with (S', σ') if $S \subset S'$, $\sigma'|S = \sigma$, and $\sigma'(x) = 0$ when $x \notin S$. The topology of $C^M(Y)$ depends not only on the topology of Y and M but also on the partial monoid structure of M.

Take $\mathbf{R}^{\infty} \ltimes X = \mathbf{R}^{\infty} \times X/\mathbf{R}^{\infty} \times *$ as Y and let $C^{M}(\mathbf{R}^{\infty}, X)$ be the subspace of $C^{M}(\mathbf{R}^{\infty} \ltimes X)$ consisting of those (S, σ) such that S can be embedded into \mathbf{R}^{∞} by the projection $\mathbf{R}^{\infty} \ltimes X \to \mathbf{R}^{\infty}$. In other words,

$$C^M(\mathbf{R}^{\infty}, X) = C^{X \wedge M}(\mathbf{R}^{\infty}),$$

where $X \wedge M$ is endowed with the partial monoid structure such that the sum of non-zero elements $(x_1, a_1), \dots, (x_k, a_k)$ exists in $X \wedge M$ if and only if $x_1 = \dots = x_k$ and the sum $a_1 + \dots + a_k$ exists in M.

Let us write $E^M(X) = \Omega C^M(\mathbf{R}^{\infty}, \Sigma X)$. Then the results of [7] imply the following.

- (1) The inclusion $C^M(\mathbf{R}^{\infty}, X) \to C^M(\mathbf{R}^{\infty} \ltimes X)$ is a homotopy equivalence if X is a euclidean neighborhood retract.
- (2) The natural map $C^M(\mathbf{R}^{\infty}, X) \to E^M(X)$ is a group-completion, that is, induces an isomorphism of Pontrjagin ring

$$H_{\bullet}(C^M(\mathbf{R}^{\infty},X))[\pi^{-1}] \cong H_{\bullet}(E^M(X))$$

where $\pi = \pi_0 C^M(\mathbf{R}^{\infty}, X) \subset H_{\bullet}(C^M(\mathbf{R}^{\infty}, X))$.

(3) $E^M(X)$ is an infinite loop space, and the correspondence $X \to \pi_{\bullet} E^M(X)$ defines a generalized homology theory.

Among examples, we have

(1) If $M = \mathbb{N}$ is the set of positive integers then $C^M(\mathbb{R}^{\infty}, X)$ is equivalent to the free abelian monoid generated by X modulo the relation * = 0. In this case we have $\pi_{\bullet}E^M(X) = H_{\bullet}(X)$ by the Dold-Thom theorem [2].

More generally, if M is a topological abelian group M then

$$\pi_{\bullet}E^{M}(X) = \bigoplus_{i} H_{\bullet+i}(X, \pi_{i}M)$$

is the homology theory defined by the generalized Eilenberg-Mac Lane spectrum $\bigvee K(\pi_i M, i)$.

- (2) If M is the subset $\{1\}$ in the additive group \mathbb{Z} then $\pi_{\bullet}E^{M}(X) = \pi_{\bullet}^{S}X$ is the stable homotopy of X. This is a consequence of the Barratt-Priddy-Quillen theorem.
- (3) Let $M = \operatorname{Gr}(\mathbf{R}^{\infty})$ be the Grassmannian of finite dimensional subspaces of \mathbf{R}^{∞} , regarded as a partial monoid such that $V_1 + \cdots + V_k$ exists if and only if $V_i \perp V_j$ holds for $i \neq j$. Then $\pi_{\bullet}E^M(X) = ko_{\bullet}(X)$ is the connective homology theory associated to the real K-theory KO_{\bullet} . (See [6].)

In this note we give an alternative construction of group-completion by using the combinatorial structure of $C^M(\mathbf{R}^{\infty}, X)$. More precisely, we will see that the partial monoid structure of $C^M(\mathbf{R}^{\infty}, X)$ enables us to define an analogue of the classifying space (for topological monoids) which gives rise to a group-completion that, unlike $E^M(X) = \Omega C^M(\mathbf{R}^{\infty}, \Sigma X)$, depends only on $C^M(\mathbf{R}^{\infty}, X)$.

For each $k \geq 0$, let $BC^M(\mathbf{R}^{\infty}, X)_k$ be the subspace of $C^M(\mathbf{R}^{\infty}, X)^k$ consisting of those k-tuples $((S_1, \sigma_1), \ldots, (S_k, \sigma_k))$ such that for every $J \subset \{1, \ldots, k\}$ and $v \in \bigcup_{j \in J} S_j$ the sum $\sum_{j \in \Lambda(v)} \sigma_j(v)$ exists in $X \wedge M$, where $\Lambda(v) = \{j \mid v \in S_j\}$. Such a k-tuple will be called admissible. With respect to the evident face and degeneracy operators $BC^M(\mathbf{R}^{\infty}, X)_{\bullet}$ is a simplicial space, whose realization is denoted by $BC^M(\mathbf{R}^{\infty}, X)$.

Similarly, let $EC^M(\mathbf{R}^{\infty}, X)$ be the realization of the simplicial space $EC^M(\mathbf{R}^{\infty}, X)_{\bullet}$ such that

$$EC^M(\mathbf{R}^{\infty},X)_k \subset C^M(\mathbf{R}^{\infty},X)^k \times C^M(\mathbf{R}^{\infty},X)$$

is the set of admissible (k+1)-tuples, and that the projection $EC^M(\mathbf{R}^{\infty}, X)_k \to BC^M(\mathbf{R}^{\infty}, X)_k$ is compatible with face and degeneracy maps. Then the fiber of the induced map $EC^M(\mathbf{R}^{\infty}, X) \to BC^M(\mathbf{R}^{\infty}, X)$ at the basepoint is $C^M(\mathbf{R}^{\infty}, X)$. As $EC^M(\mathbf{R}^{\infty}, X)$ is contractible, we obtain a natural map

$$C^M(\mathbf{R}^\infty, X) \to \Omega B C^M(\mathbf{R}^\infty, X).$$

The main result of this note is the following two theorems.

Theorem 1. For any topological partial monoid M, the natural map

$$C^{M}(\mathbf{R}^{\infty}, X) \to \Omega B C^{M}(\mathbf{R}^{\infty}, X)$$

is a group-completion.

Theorem 2. Let M be a subset of a topological abelian group A and let $\pm M = M \cup -M \subset A$. Then the natural map

$$C^M(\mathbf{R}^\infty, X) \to C^{\pm M}(\mathbf{R}^\infty, X),$$

induced by the inclusion $M \subset \pm M$, is a group-completion.

In particular, if $M = \{1\} \in \mathbf{Z}$ then $C^{\pm M}(\mathbf{R}^{\infty}, X)$ is nothing but the space of positive and negative particles $C^{\pm}(\mathbf{R}^{\infty}, X)$ introduced by Mcduff [3]. Thus we have Corollary 3 (Caruso [1]). For any pointed space X the space $C^{\pm}(\mathbf{R}^{\infty}, X)$ is weakly equivalent to $\Omega^{\infty}\Sigma^{\infty}X$.

2. Proofs

Theorem 1 follows from Proposition 1.5 of [5], because the correspondence $\mathbf{k} \mapsto BC^M(\mathbf{R}^{\infty}, X)_k$ is a Γ -space such that the maps

$$BC^{M}(\mathbf{R}^{\infty}, X)_{k} \to BC^{M}(\mathbf{R}^{\infty}, X)^{k}$$

induced by the projections $p_s: \mathbf{k} \to \mathbf{1}$ are homotopy equivalences.

To prove Theorem 2, let $C^{\pm M}(\mathbf{R}^{\infty}, X)_{C^{M}(\mathbf{R}^{\infty}, X)}$ be the realization of the simplicial space E_{\bullet} such that $E_{k} \subset C^{M}(\mathbf{R}^{\infty}, X)^{k} \times C^{\pm M}(\mathbf{R}^{\infty}, X)$ is the subset of admissible (k+1)-tuples. Let

$$\xi \colon C^{\pm M}(\mathbf{R}^{\infty}, X)_{C^{M}(\mathbf{R}^{\infty}, X)} \to BC^{M}(\mathbf{R}^{\infty}, X)$$

be the map induced by the projection $\xi_{\bullet} \colon E_{\bullet} \to BC^{M}(\mathbf{R}^{\infty}, X)_{\bullet}$. Then each ξ_{k} is a homology fibration since it is equivalent to the projection

$$C^M(\mathbf{R}^{\infty}, X)^k \times C^{\pm M}(\mathbf{R}^{\infty}, X) \to C^M(\mathbf{R}^{\infty}, X)^k$$
.

As $C^M(\mathbf{R}^{\infty}, X)$ acts on $C^{\pm M}(\mathbf{R}^{\infty}, X)$ through homology equivalences, we see from [4, Proposition 4] that ξ is a homology fibration with fiber $C^{\pm M}(\mathbf{R}^{\infty}, X)$.

Assume that $C^{\pm M}(\mathbf{R}^{\infty}, X)_{C^{M}(\mathbf{R}^{\infty}, X)}$ is contractible. Then $C^{\pm M}(\mathbf{R}^{\infty}, X)$ is weakly equivalent to $\Omega BC^{M}(\mathbf{R}^{\infty}, X)$, and Theorem 2 follows from the commutative diagram

$$C^{M}(\mathbf{R}^{\infty}, X) \longrightarrow EC^{M}(\mathbf{R}^{\infty}, X) \longrightarrow BC^{M}(\mathbf{R}^{\infty}, X)$$

$$\downarrow \qquad \qquad \qquad \parallel$$

$$C^{\pm M}(\mathbf{R}^{\infty}, X) \longrightarrow C^{\pm M}(\mathbf{R}^{\infty}, X)_{C^{M}(\mathbf{R}^{\infty}, X)} \longrightarrow BC^{M}(\mathbf{R}^{\infty}, X)$$

together with Theorem 1.

Thus, to prove Theorem 2 we need only show

Lemma 4. $C^{\pm M}(\mathbf{R}^{\infty}, X)_{C^{M}(\mathbf{R}^{\infty}, X)}$ is contractible.

(My proof of this lemma is rather complicated, and is omitted here.)

REFERENCES

- 1. J. Caruso, A simpler approximation to QX, Trans. Amer. Math. Soc. 265 (1981), 163-167.
- 2. A. Dold and R. Thom, Quasifaserungen und unendliche symmetrische produkte, Ann. Math. 67 (1958), 239–281.
- 3. D. Mcduff, Configuration spaces of positive and negative particles, Topology 14 (1975), 91-107.
- 4. D. Mcduff and G. Segal, Homology fibrations and the "group-completion" theorem, Invent. Math. 31 (1976), 279-284.
- 5. G. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312.
- 6. ____, K-homology theory and algebraic K-theory, K-Theory and Operator Algebras (A. Dold and B. Eckmann, eds.), Lecture Notes in Math., vol. 575, Springer-Verlag, 1977, pp. 113-127.
- 7. K. Shimakawa, Configuration spaces with partially summable labels and homology theories, Math. J. Okayama Univ. 43 (2001), (in press).