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LABELED CONFIGURATION SPACES AND
GROUP-COMPLETION

LR FELEHEFER Bl Fo/A (Kazuhisa Shimakawa)
Department of Mathematics, Okayama University

1. STATEMENT OF THE RESULTS

In [7] we assigned to any pointed space Y and any topological abelian monoid M
the configuration space CM(Y) of finite subsets of Y with labels in M. As a set
CM(Y) consists of those pairs (S, ), where S is a finite subset of the complement
of the basepoint in Y and ¢ is a map S — M. But (S, o) is identified with (S’, ¢’) if
S c 8, 0'|S=o0,and o'(z) =0 when z ¢ S. The topology of CM(Y) depends not
only on the topology of Y and M but also on the partial monoid structure of M.

Take R® x X = R® x X/R® x % as Y and let CM(R*, X) be the subspace of
CM(R> x X) consisting of those (S, o) such that S can be embedded into R® by
the projection R® x X — R*. In other words,

CM(ROO,X) — CX/\M(ROO),

where X A M is endowed with the partial monoid structure such that the sum of
non-zero elements (z1,a;), ---, (zx,ax) exists in X AM ifand only if £, = --- = x4
and the sum a; + - - - + ax exists in M.

Let us write EM(X) = QCM(R*, £X). Then the results of 7] imply the following.

(1) The inclusion C¥(R*, X) - CM(R™® x X) is a homotopy equlvalence if X
is a euclidean neighborhood retract. : :
(2) The natural map CM(R>,X) —» EM(X) is a group-completion, that is,
" induces an isomorphism of Pontrjagln ring

H,(CM(R™, X))[r~!] = H,(E™(X))

where 7 = mCM (R, X) C H,(CM(R>, X)).
{3) EM(X) is an infinite loop space, and the correspondence X — 7, EM(X)
defines a generalized homology theory. ‘
Among examples, we have
(1) If M = N is the set of positive integers then CM(R>, X) is equivalent to the

free abelian monoid generated by X modulo the relation * = 0. In this case
we have 7, EM(X) = H,(X) by the Dold-Thom theorem [2].
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More generally, if M is a topological abelian group M then
T EM(X) = D; Heii( X, m M)

is the homology theory defined by the generalized Eilenberg-Mac Lane spec-
trum \/ K(mM,1).

(2) If M is the subset {1} in the additive group Z then m,EM(X) = 75X is the
stable homotopy of X. This is a consequence of the Barratt-Priddy-Quillen
theorem.

(3) Let M = Gr(R™) be the Grassmannian of finite dimensional subspaces of
R, regarded as a partial monoid such that V) + --- + V; exists if and only
if V; L V; holds for i # j. Then n,EM(X) = ko.(X) is the connective
homology theory associated to the real K-theory KO,. (See [6].)

In this note we give an alternative construction of group-completion by using the
combinatorial structure of CM(R>, X). More precisely, we will see that the partial
monoid structure of C™ (R, X) enables us to define an analogue of the classifying
space (for topological monoids) which gives rise to a group-completion that, unlike
EM(X) = QCM(R*®,£X), depends only on CM(R*, X).

For each k > 0, let BCM(R™, X); be the subspace of CM(R>, X)* consist-
ing of those k-tuples ((S1,01),. .., (Sk,0k)) such that for every J C {1,...,k} and
v € Ujes Sj thesum 7,0y 05(v) exists in X AM, where A(v) = {j | v € S;}. Such
a k-tuple will be called admissible. With respect to the evident face and degener-
acy operators BCM(R®, X)), is a simplicial space, whose realization is denoted by
BCM(R>, X). |

Similarly, let ECM(R>, X) be the realization of the simplicial space ECM(R*, X),
such that |

| ECM(R>, X), c C¥(R™®, X)* x C¥(R™, X)
is the set of admissible (k + 1)-tuples, and that the projection ECM(R>, X); —
BCM(R*>, X)y is compatible with face and degeneracy maps. Then the fiber of the
induced map ECM(R*, X) — BCM(R>, X) at the basepoint is CM(R*®, X). As
ECM(R*>, X) is contractible, we obtain a natural map |

CM(R*, X) —» QBCM(R™, X).

The main result of this note is the following two theorems.

Theorem 1. For any topological partial monoid M, the natural map
CM(R>®, X) - QBCM(R™, X)

s a group-completion.
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Theorem 2. Let M be a subset of a topological abelian group A and let +M =
MU —M C A. Then the natural map

CM(R*®, X) - CFM(R™, X),

induced by the inclusion M C =M, is a group-completion.
In particular, if M = {1} € Z then C*¥(R*, X) is nothing but the space of
positive and negative particles C*(R*, X) introduced by Mcduff [3]. Thus we have

Corollary 3 (Caruso (1]). For any pointed space X the space C*(R*, X) is weakly
equivalent to Q°L*X.

2. PROOFS

Theorem 1 follows from Proposition 1.5 of [5], because the correspondence k
BCM(R™, X)y is a I'-space such that the maps

BCM(R®, X); — BCM(R*®, X)*

induced by the projections p,: k — 1 are homotopy equivalences.

To prove Theorem 2, let C*¥(R*, X )cmm= x) be the realization of the simplicial
space E, such that Ey C CM(R®, X)F x C*M(R™, X) is the subset of admissible
(k +1)-tuples. Let

£: C*M(R®, X)ommre x) = BCY(R™, X)
be the map induced by the projection £. E, - BCM(R*®, X),. Then each & is a
homology fibration since it is equivalent to the prOJectlon
CM(R>, X)¥ x C*M(R®, X) —» CM(R™, X)*.

As CM(R>, X) acts on C*M(R*>, X) through homology equivalences, we see from
[4, Proposition 4] that ¢ is a homology fibration with fiber C*M(R>, X).

Assume that C*M(R%, X)cm(r=,x) is contractible. Then C*M(R>, X) is weakly

equivalent to QBCM(R>, X), and Theorem 2 follows from the commutative diagram

CM(R>®,X) — EC"M(R‘”,X) — BC’M(R°° X)
C:I:M(Rco X) _— C:}:M(R X)CM(R“’ X) _— BCM Roo ) ‘

together with Theorem 1.
Thus, to prove Theorem 2 we need only show

Lemma 4. C*M (R, X)cmre x) 5 contractible.

(My proof of this lemma is rather complicated, and is omitted here.)
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