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§1. Introduction and statement of the result

Let Lg(M) denote the group of equivariant Lipschitz homeomorphisms of a
G-manifold M which are isotopic to the identity through equivariant Lipschitz
homeomorphisms with compact supports. In the previous papers [AF3],[AF4],
we treated the subgroup Hyrpc(M) of Lg(M) whose elements are isotopic to
the identity with respect to the compact open Lipschitz topology, and proved
that Hprpe(M) is perfect when M is a principal G-manifold or M is a smooth
G-manifold for a finite group G.

In this paper we consider the case of the complex plain C with canonical
U(1)-action. We shall prove that the group Ly(;)(C) is not perfect by calculat-
ing the the first homology group Hy(Ly(1)(C)) which is defined as the quotient
of Ly(1)(C) by its commutator subgroup.

Let C(R) be the set of real valued functions f on (0,1] such that there
exists a positive number M satisfying

f@ - f < Sw-2) for0<z<ys<l.

Then C(R) is a vector space over R. Let Co(R) denote the subspace of those
f € C(R) with f bounded on (0,1]. Then we shall prove the following.



Theorem 1

Hy(Ly()(C)) = C(R)/Co(R).

Here the isomorphism is induced from the map assigning each h € Ly;)(C) a
function @, € C(R) which stand for the degree of rotation of h as the point tend
to zero (see §2). We note that the group C(R)/Co(R) is fairly large group since
it contains linearly independent family of elements parameterized by (0, 1].

The situation is quite different in smooth category. Let Dy;y(C) denote
the group of equivariant diffeomorphism group of C which are equivariantly
diffeomorphic to the identity through compact supports. By [AF2], Theorem
3.2, we have that there exists an isomorphism Hi(Dy1)(C)) = R x U(1)
induced from the map assigning each A € Dy(;)(C) the differential of h at
0. Then it follows from Theorem 1 that the group Dy()(C) is contained in
the commutator subgroup of Ly1)(D), which implies that the first homology
group of Dy(1)(C) detect absolutely different geometric property.

§2. Orbit preserving equivariant Lipschitz homeomorphisms

Let D denote the unit disc in C' and Lyq)(D) denote the group of U(1)-
equivariant Lipschitz homeomorphisms of D which are isotopic to the identity
through U (1)-equivariant homeomorphisms with identity on the boundary dD.
Since U(1) acts freely except for the origin, by combining Theorem 5.1 with
Corollary 5.5 in [AF3], the group Hy(Ly(1)(C)) is isomorphic to Hy(Ly(1)(D)).

Let L([0,1]) denote the group of Lipschitz homeomorphisms of the unit
interval [0, 1] which are isotopic to the identity through Lipschitz homeomor-
phisms. Then we have a group homomorphism P : Ly)(D) — L([0,1]) given
by ‘

P(h)(z) = |h(z)| for h € Lyu)(D), = € [0,1].

There exists a right inverse ¥ : L([0,1]) = Ly()(D) of P defined by
U(f)(zz) = f(z)z for f € L([0,1]), z €[0,1], z € U(1).

Note that the kernel KerP of P coincides with the set of those h € Ly)(D)
which are orbit preserving. Next we shall investigate the relation between the
groups KerP and C(R). ‘

For h € KerP, let ay, : (0,1] » U(1) be the map satisfying

"h(z2) = zzan(z) for =z € (0,1], z € U(1).
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Now we investigate the properties of those maps a,. For a map a: (0,1] —
U(1) C C, we define maps &: [0,1] = D and F,: D — D as follows.

o za(z) 0<z<1).
a(w)={0() osesh

Fy(z2) = za(z) (0 S <1, z€ U(l)).

Lemma 2 The following conditions (1), (2) and (3) are equwalent
(1) There exists a ‘positive number K such that
a(@) ~ aly)l < Sy —z) for 0<z<y<l
(2) a is a Lipschitz map.
(3) F, is a Lipschitz map. A | :
Proof.  First assume the condition (1). Then, for 0 < z <y < 1, we have
la(z) - a(y)| < zla(e) — a(y)l + la@)|lz —y| < (K +1)|z - yl.
Since |a@(z)| < z for 0 < z < 1, the condition (2) is satisfied.

Secondly assume the condltlon (2). Then,for0 <z <y <1, 2,2 G U(1),

|Falaz) — Falyz)] < |a(@(e) - ()| + (21 — 22)a(y)]
< M(lz —yl+ |aly — 2) + (212 — 229)])
< 3M|zz; — yzq,

where M is a LlpSChltZ constant of &. Since |Fy (zz)| < M|zz|, the condltlon
(3) is satisfied.
Finally assume the condition (3). Then, for 0 < z < y < 1, we have

la(z) —aly)] < %(Iwa(w) —ya(y)l +(y — 2)a(y)))

= (R - R+l -=) < 7 (- ),

where L is a Lipschitz constant of Fj,. Thus the condition (1) is satisfied and
Lemma 2 follows. S

Let £ : R — U(1) denote the exponential map giveny by E(x) = VT2,

Let h € KerP. Since h is identity on 8D, a,(1) = 1. Let 45 : (0,1] = R be
the lifting of aj, for £ with G,(1) = 0. Then E o0 4 = ap.
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Lemma 3 4 is contained in C(R). Conversely if & € C(R), then E o &
satisfies the condition (1) in Lemma 2.

Proof By Lemma 2, there exists a positive number K such that
. ;
lan(z) — an(y)| < ;—(y —z) for 0<z< y < 1.

Note that, for each z,y € (0, 1] with = < y, the restriction a; |[x,y] is Lipschitz.
Then we can choose an increasing series of points t = zo < z; < *++ < Tp_y <
Z, = y such that

|ah(x,-_1) - ah(xi)l S \/§ (l = 1, ,n)

It follows that
27

lan(ziz1) — @n(zi)| < 5 (:=1,..,n).
Then we have
jan(zic1) — an(@)| = |eYTTHED) _ o/ Tole)
= 2 |sin an(2iz1) — an(z:)
2 )

S (ah(-xiﬂ;_ Gn{zi)) |an(zi-1) — an(z:)l,

for some 0 < 6 < 1. Thus
(g102) = an()] < 2 lan(0io1) — an(2)] < 2 foics il
Therefore we have
| Jan(e) = a0 < 30 e = i < - 2,

and then we have that a, € C(R).
Since

|E(z) — E(y)| = |6V —eV" 3| < (y—z) for 0<z<y<l,

it is clear that, for each & € C(R), E o & satisfies the condition (1) in Lemma
2. This completes the proof of Lemma 3.
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§3. Basic homomorphisms
By Lemma 3 we can define a homomorphism
T: KerP — C(R)/Co(R), T(h) = a, mod Co(R).
Now we have a map
O: LQ(I)(D) — L([0,1]) x C/Co

defined by
O(h) = (P(h), T(¥(P(h))™" o h)).

Proposition 4 © is an onto group homomorphism.

Proof.  First we prove that © is a group homomorphism. For each h €
Lyay(D), we set h = W(P(h))™ o h. Let h; € Lyn)(D) (: = 1,2). Since P
is a group homomorphism, in order to prove © a group homomorphism it is
sufficient to prove that

am = ag, + aj, mod CO(R).

Ifo<z <1, ze U(1), then
hi(zz) = P(h;)(z) za5, (z)™' (i =1,2),
and
(h1 o ho)(zz) = P(hy o hy)(z) zam(w)_l.
On the other hand we have '

(h1 0 hy)(22) = P(hy 0 ho)(z) za;lz(:v)'la;ll(P(hg)(:c))‘l..

Then
A = (aj, o P(h3)) - az,.
Thus '

&N =d~

hiohz hy ° P(hg) + &’.12



Let M and M’ be Lipschitz constants of P(hz) and P(h;)™!, respectively.
Let x € (0,1]. For the case ¢ < P(hy)(z), by Lemma 3 there exists a positive
number K such that

5, (P(h2)(@)) ~ i3, (2)] < = |P(hs)(z) — 2| < K(M +1).

By definition £ < M’ P(h3)(z). Then, for the case P(h;)(z) < z, we have

K

183, (P(ha)(2) = &, ()| < oy

|P(hs)(2) — 2| < K(1+ M),

Then we have :
&I'n o P(hy) — &,;1 € Co(R).
Thus

a——— = &fu + &,'12 mod CO(R)

Therefore © is a group homomorphism.
Let f € L([0,1]), & € C(R). Comblmng Lemma 2 with Lemma 3, we have
that Fr.s € KerP. Set

h(zz) = f(z)Fpoa(zz) for 0<z<1, z€ U(1).

Then we see that A € Ly (D) and O(h) = (f, & mod Co(R)). Thus O is
onto. This completes the proof of Proposition 4. :

§4 Proof of main theorem

Proposition 5  Ker © is contained in the commutator subgroup of Ly(1y(D).

Proof. Ifh € Ker O, then h € KerP and a;, € Co(R). Thus, for any positive

au(z) <efor0<z<1and
n

number &, there exists an integer n such that |

an(z)  anly)

S-e—(y—.'v) for 0<z<y<l
z

Note that a, = E(nay) = E(d,)". Then, for a sufficiently small positive
number &, we can assume that |d,(z)| < efor 0 <z <1 and

|lan(z) — an(y)] < g(y— z) for 0<z<y<1
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Let v be a real valued smooth monotone increasing function on (0,1] such

that loge (0<<1/2)
ogzr <z < ,
”(“’)z{og (3/4<z<1).

Then it is easy to see v € C(R). Let f be a real valued function on [0,1]
defined by (
ze®@) (0 <z <1),
f(z) = { (z =0).

Note that f(1) = 1 We shall prove that f € L([0,1]) for sufﬁc1ently small e.
If 0 < r <y <1, then we have

@) -»-G@-a1

Iy — x)(ea"(y) -1+ :v(e“"(y) - e“"(’))l

(y — z)|e®O Z 1] + z|an(y) = an(z)| @@ H)-8n(2)
(e =1)+ 663‘)(y —2), SR

for some 0 < 0 < 1. Here we take the pos1t1ve number ¢ satisfying

VAN VAN

(e —1)+ee* < 1.

Then it :follows' from [AF3], Lemma 4:1 that the function f is a'Lipschitz
homeomorphism of [0,1] which is isotopic to the identity through Lipschitz
homeomorphisms.

Ifo<z< 21 then we have

v(f(z)) - v(a:) = log(xe&"(z)) - logz = &h(w).

215, z € U(l) we have
(Fgay © ¥(f)™" 0 Fgg, 0 ‘I’(f))(m) = (Fgo, 0 ¥(f)7F 0 Fgg,)(f(2)2)

(Fiaw © U(£)™1)(f(2)zeV=T2UED)
Fzl (zze/ WG

— xze\/jv(f(x))e—\/—_l‘u(x)
h(zz)

Then, for 0 <z <

Set :
=hoW(f) " o Fgl, 0 U(f)o Fgey.
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g(zz) = zz for OS.’CSQ}—,ZGU(I).
65

Thus the support of g is contained in D\{0}. From [AF3], Theorem 5.1, g is
contained in the commutator subgroup of Ly(1)(D). Hence h is also contained
in the commutator subgroup. This completes the proof of Proposition 5.

Proof of Theorem 1. Let ¢+: Ker® — Lyq)(D) denote the inclusion. By
Proposition 4 we have the following exact sequence.

Ker@/[Ker@,LU(l)(D)] = HI(LU(I)(‘D))
2% Hy(L([0,1]) X C(R)/Co(R)) = 1.

Since ¢, = 0 by Proposition 5, @, is isomorphic. By [TS], [AF4], the group
L([0,1]) is perfect. Thus we have

Hi(Ly()(D)) = C(R)/Co(R).

Remark. Let v, (0 < ¢ <1) be real valued smooth functions on (0,1] such
et (~loga) ( /2)
_ —logz)® (0<z<1/2),
ve(2) = { 0 (3/4<z<1).

Then v, € C(R). Thus the group C(R)/Co(R) contains linearly independent
families {v. mod Cp ; 0 < ¢ < 1}.
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