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NONSOLVABLE GENERAL LINEAR GROUPS ARE GAP GROUPS

TOSHIO SUMI

1. Introduction

In the theory of transformation groups, for a given smooth manifold, it is a problem what a
subspace is obtained as a fixed point set of a smooth action on the manifold. If the smooth manifold
is a disk or a euclidean space, Oliver [02] has completely decided. The problem in the case when
the smooth manifold is a sphere is studied by many person. A finite group G is an Oliver group,
if G has no series of subgroups of the form P <« H <« G where |n(P)| < 1, [7(G/H)| < 1 and H/K is
cyclic. Here 7(G) 1s the set of primes dividing the order of G. Recall each nonsolvable group is an
Oliver group and an Oliver group acts on a disk without fixed points. Laitinen and Morimoto has
shown that a finite group G is a Oliver group if and only if G acts on a sphere with one fixed point.
They gave a proof by using the equivariant surgery theory ([LM]). The equivariant surgery theory
has been developed only on G-manifolds satisfying the weak gap condition (cf. [P], [PR], [M],
[LiiMa]). If a finite group is a gap group defined as below, we can apply the equivariant surgery
theory and discuss whether a given subspace is realized as a fixed point sets of some smooth action
on a sphere.

Let G be a finite group. Let P(G) be the set of all subgroups of prime power order (p0551b1y 1)
and set

DG)={(PLH)|P<H<Gand P P(G)}.

For a prime p, let O”(G) be the smallest normal subgroup of G such that the index [G : O"(G)] is
a power of p, namely

0°(G) = ﬂ {H|H 2 Gand[G: H] is apowerof p}.
H

If the order |G| of G is not divisible by p then O?(G) coincides with G. Let £(G) be the set of all
subgroups of G which includes O?(G) for some prime p. A real (resp. complex) G-module should
be understood to be a finite dimensional real (resp. complex) G-representation space. Let V be a
G-module. We say that V is L(G)-free, if V' = 0 for all H € L(G). An L(G)-free G-module V'is
called a gap G-module if dim V* > 2 dim V¥ for all (P, H) € D(G). A finite group G not of prime
power order is called a gap group if there is a gap G-module. Note that complexification of a gap
real module is a gap complex module and realization of a gap complex module is also a gap real
module. Any nonsolvalble perfect group is a gap group. However the symmetric group X5 is not
a gap group ([MY]). Doverman and Herzog [DH] has shown that symmetric groups X, for n > 5
are all gap groups. In [MSY], we studied basic property which is useful to construct a gap module
and in [Sul] we completely decided whether a product of symmetric groups is a gap group or not.
The purpose of the paper is to decide whether general linear groups GL(n, g) and projective linear
groups PGL(n, q) are gap groups. The result is as follows.
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Theorem. Let n > 1 be an integer and q be a power of a prime. The general linear group GL(n, q)
is a gap group if and only if (n,q) # (2,2),(2,3). The projective general linear group PGL(n, q)
is a gap group if and only if eithern >2o0rn=2,q # 2,3,5,7,9,17.

2. Modules and conjugacy classes

Let G be a finite group not of prime power order. We construct an .£L(G)-free gap G-module W
to show the main theorem by using modules as below.
We set
: D(G) = (P,H) € D(G) | [H : P] = [HO*(G) : PO*(G)] =2 and
- POY(G) = G for all odd primes g}

and define a function dy : D(G) — Z by
dy(P,H) = dim V* - 2dim V"

,for a G-module V. In the proof by Laitinen and Morimoto [LM] that a finite group G has a one
fixed point smooth action on a sphere S (thatis, S ¢ = {x}) if and only if G is an Oliver group, they
used a G-module

V(G) = (RIG] - R) - P ®iG) -rR)>@
pen(G) ‘
to apply an equlvanant surgery theory ([LM]). Morimoto [M] generalized this result. The module
has a property that dyg)(P, H) > 0 for any (P, H) € D(G) and dy)(P, H) > 0 for any (P, H) €
D(G) \ D*(G) with P ¢ L(G). We define an L(G)-free G-module Vg, from G-module V by

Viey=(V -V - P - v,

pen(G)

For distinct primes p and q’,‘OP(G)O‘i (G) = G implies VO N VPO = YG. Then the direct sum is
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a G-submodule of ¥ — VC. In other words, regarding ¥ as a G-submodule of mR[G] for sufficient -

large integer m, the module V sy coincides with V' N mV(G). Clearly R[G] ) = V(G). For a
subgroup K of G, we set

V(K; G) = (IndS(RIK] - R)) . .

Given a gap subgroup K of G, we denote by W(K;G) the induction Ind%.X for arbitrary gap
K-module X. We should remark that the choice of X does not influence a construction of gap
G-modules W to show the main theorem. By [MSY, Lemma 1.7], it holds dw.c)(P, H) > 0 for
any (P, H) € D(G) and dyk.c)(P, H) > 0 if a conjugacy class of some element of H outside of P
intersects with K.

If £(G)NP(G) + @, taking P an element of L(G) N P(G), the group G is not a gap group
since dy(P, G) = 0 for any £(G)-free module V. Hence PGL(2,2) = GL(2,2) = D¢ 1s not a gap
group. (Remark that any dihedral group D,, is not a gap group ([Sul]).) If there is an £(G)-free
G-module V such that d,(P, H) > 0 for any (P,H) € D*(G), then ¥V & (dim ¥V + 1)¥(G) is an
L(G)-free gap G-module and thus we may construct such a module V. Let (P, H) € D*(G). Then
H acts on P\G/K via (h, PgK) — PhgK. By [MSY, Lemma 2.1], we have '

dyo/(P, H) = |(P\G/K)| - [(C*(GP\G/K)"|.
We estimate the number of elements of the fixed point set (P\G/K)".
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Lemma 2.1. Let K be a subgroup of G and L be a subgroup such that K < L < Ng(K). If (P, H)
is an element of D*(G) with (H ~ P)N K # @, then it holds

|LI|IK N P|

H
I(P\G/K)"| 2 KILA P

Proof. By the proof of [MSY, Lemma 2.2}, it holds

|L|
ILN PK|’
Since an assignment (L N P) x K — L N PK which (p, k) sends to pk is surjective, we obtain
IL N PlK]
KNP

which concludes the proof. O

(P\G/K)"| >

=|L N PK]

We review quite briefly about conjugacy classes of elements in GL(n, g). Schur [Sc] and Jordan
[7] studied independently the character of GL(2,q). Let x, be an element of order ¢g*> — 1 of
GL(2,q). Let GF(n) be a finite field consisting of n elements. GF(q?) is a two dimensional vector
space over GF(q). Since the multiplicative group GF(¢q?)* is a cyclic group of order ¢* — 1, let
o be a generator of it. As viewing GL(2, q) as GL(GF(g?)), we define a map x, from GF(g*) to
itself by x;(y) = oy. Then it is easy to see that the order of x; is ¢> — 1 and x,7*! lies in the

center Z(GL(2, q)). Furthermore x; is conjugate to ( 0 ) in GL(2,¢?). It is also known that

o
0 o7
NGL@2.g)({x2)) is of order 2(q> — 1). Let p = 09*! be a primitive element of GF(g).

Conjugacy classes of linear groups has been studied (cf. [D, St]). Any element of GL(2,q) is
conjugate to one of the following elements in GL(2, q):

% 0 p? 0 : pb O) d
@, = als a = als < = ey X
( P) 3 (1 P) 7 (0 A
where0<a<qg-1,0<b<c<g-landl <d<qg*-1withd 20 mod g + 1. Note that x,°
and x,° are conjugate if and only if 5 = ga mod ¢ - 1.-

Let n be an integer, T a primitive element of GF(g¢") and x, an element of GL(n, q) of order
q" — 1 conjugate to the diagonal matrix

diag(t, 7,77, ,77)
in GL(2, ¢"). Any element of GL(3, q) is conjugate to one of the following elements in GL(3, q):

a, 0 a, 0 ., 0 , 0 Yap O
0 p‘a, 0 pb9 pa, 0 pb7 O pc,

o0 P 0 0
( O X b) ’ x3a9 Kqg = 1 pa O
2 0 1 pa

Any element of GL(4, q) is conjugate to one of the following twenty-two types in GL(4, g):
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a, O a, O a, O a, 0
(o a0 @) \0 8,) {0 ﬁb)(o yab) (o nc)
(5" s (6 ) (6 °)( )(’3” )
0 Yed “\O Yab 10 Yb.c 0 ﬁa 0 ﬁb ’

Yap 0) [aa O ; O x°
0 xf’\0 xzb "\ 0 be 0 be ’
P 0 0 O
p? 0) (p® 0) [p* O 0 a 1 p2 0 0
0 x)’\0 w/ {0 2/ {1, 70 ™ Jo 1 p* 0
0 0 1 p°
In general each element of GL(n, q) is conjugate to one of the following types (cf. [D, G, Sc]):

diag(X,,X,,--- ,X,) (r 2 1), where 1,, € GL(d,, q) is the identity matrix and

Xd; ai

ldi xd,""

X =

14, xg,
We denote by ¢: GL(n,q) — PGL(n, q) the canonical projection.

Proposition 2.2. If either n > 1 is odd or q is even, then nonsolvable general linear groups
GL(n, q) and nonsolvable projective linear groups PGL(n, q) are gap groups.

Proof. The nonsolvable group PS L(n, g) is a simple group and so is a gap group as O*(PS L(n, q))
is whole PS L(n, q). Since [PGL(n,q) : PSL(n,q)] = GCM(n,q — 1) is odd, the group PGL(n, q)
is a gap group by [MSY, Lemma 1.7] and so is GL(n, ) by [Sul, Theorem 5.2]. o

Recall that PS L(n, q) is a simple group unless (n, q) = (2,2),(2,3) if n > 1. In the case where
n = 1, the group GL(1, 9) is a cyclic group of order g — 1 and PGL(1, q) is the trivial group. Thus
GL(1,q) is a gap group if and only if the number ¢q — 1 is divisible by three distinct primes (cf.
[MSY, Theorem 0.2]).

We close this section after we define some notation. For a partition (n,,--- ,n,) of n, that is
ny+---+n, = n, we denote by GL(n,, - - - , n,; q) the canonical subgroup GL(n,q)x- - - X GL(n,, q)
of GL(n, q). For a positive integer n, we denote by ;) the largest number, which is a power of 2
and divides n. Let n?) = n/npy.

3. PGL(2,q) for g = 3,5,7,9,17 and GL(2, 3)

In this section, PGL(2,q) for g = 3,5,7,9,17 and GL(2, 3) are not gap groups. The characters
of these groups are wellknown. For a subgroup K of G, the dimension of the fixed point set VX is
able to get from a character of ¥ (cf. [MY]) and thus for (P, H) € D*(G), the number dy(P, H) is
obtainable from the character of ¥ as follows (cf [Sull):

dy(P,H) = xv(h).

|P| heH\P
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Here the symbol y, is a character of V. Let D be a dimension matrix over D*(G), namely an
entry of D is dy(P, H) where elements (P, H) of D*(G) and £(G)-free irreducible modules V are
corresponding to columns and rows respectively. By [Sul], G is not a gap group, if there is an
nonzero vector y > 0 such that ‘yD = 0.

Consider G = GL(2, 3) of order 48. Any element of GL(2, q) is conjugate to one of the following

elements:
p* 0 0 °
0 pb ’ 1 pa ’ 2>

where 1 < a < b <gand1 < ¢ < g% The element x, is conjugate to (g o(-)") in GL(2,¢*) and

thus x, and x,7 are conjugate in G, where o is a primitive element of GL(¢?). The character table
of GL(2,3) is as follows (cf. [St]):

@) (@) (m,n) (k)
X1 Xg Xg+1 Xg-1
pa 0 2ia(g+1) 2ia(g+1) (m+n)a(g+1) eka(qﬂ)
0 pf € qe (g + e (g-1
P 0 2ia(g+1) (m+n)a(gq+1) ekalg+l) |
1 g € 0 € -
pa 0 i(a+b)(g+1) i(a+b)(g+1) (ma+nb)(g+1) (mb+na)(g+1)
0 ot € € q € 7D+ € A 0
o 0 ic(g+1) ic(g+1) ch chq |
0 o< € —€ 0 —€° -

Herel <a,b<q,a# b, 1<c<q’withc/(g+1)¢Z,1<i<q 1<i<j<ql<k<qg’-1
with k/(g + 1) ¢ Z, and €7~ = 1. Irreducible modules X(li) are not L(G)-free but the others are.
Let H be a Sylow 2-subgroup of G and set P = H N SL(2, 3). Then (P, H) belongs to D*(G) and
dy(P, H) is zero for any L(G)-free irreducible modules. Therefore GL(2, 3) is not a gap group.

Next consider G = PGL(2,q) forq = 3,5,7,9,17. As PGL(2, 3) is isomorphic to the symmetric
group X4 on 4 letters, the group PGL(2,3) is not a gap group. Any element of PGL(2,q) 1s
conjugate to one of the following elements:

o5 ) ol 9) ocun

where0 <a<g—-1and1 < b < g+ 1. Inthe case when a = b = 1 these elements are of order
q — 1, g, and g + 1 respectively. The character table of PGL(2, q) is known (cf. [St]):

xi| X (xa| X Xor1 X2,
1 0
¢ (O 1) 1 1 q q q+1 q-1
¢ (i (1)) 1] 1 ]ol| o 1 -1
¢ (% (1)) 1 (_ l )a 1 (__ 1 )a €ia(q+l) + 6—ia(q+|) 0
¢(x2b) 1 (—l)b -1 (_1)b+l 0 —eita-1 _ g—jblg-1)
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Herel<a<g-1,1<b<qg+1,1<i<(g-1)/2,1<j<(qg+1)/2,and e’ " = 1. Irreducible
modules y; and y are not £(G)-free but the others are. Let g = 3,5,7,9,17. Note each (g — 1)/2
and (g + 1)/2 is a power of a prime or 1. Setting H = C,3; and P = H N PSL(2, g), it holds

(dxq(RH),dx,'](P’f{%dX(q]:l(P?H)""’d (9.5_‘)(‘P,H)) = (Il,il,o," ‘ ’0)7

q-1
respectively. Therefore
dy(Ca, Corr) +dy (Cat, Cprr) = 0
for any L(PGL(2, g))-free module V. This implies that PGL(2, q) is not a gap group.

The question stated in [MSY] is false. There are many counterexamples. For example the group
PGL(2,7) is as O*(PGL(2,7)) = PSL(2,7) is isomorphic to the alternating group Alts.

4. GL(2,q9) forg > 5 odd

The group G = GL(2, q) is of order g(g — 1)(¢> — 1). Suppose g > 5 is odd and we show that
G = GL(2,q) is a gap group. In the next section we show that PGL(2,q) forq # 3,5,7,9,17isa
gap group. By this, GL(2, q) is automatically a gap group forg # 3,5,7,9, 17 since GL(2,9) has a
gap group PGL(2, q) as a quotient group (cf. [Sul]). However we can construct an £(G)-free gap
G-module all together.

Let K be the normal subgroup generated by elements of Z(G) and S L(2 q). Then K has a
quotient group PSL(2,q) and is a gap group for g > 4, since PSL(2,q) is simple. Let K; be

0 1 0
. Then the order of K and K; are ((¢ — 1)*)z; and (¢* — 1)z

(@-1H? 1 0
the subgroup generated by two elements (p O) and ( p“"”m)’ and K, be a cyclic group

generated by an element ¢(x;)@ "

respectively. Set

W =2V(K; G) e V(K,;; G) @ 4W(K; G).
We clalm that V Wea(dim W+ 1)V (G) is a gap module. It is sufficient to show that d (P, H) > 0
for any (P, H) € D*(G). Let (P, H) € D*(G). 1t holds dwx.)(P, H) is nonnegative and in particular
positive if (H \ P) N gKg~! is not empty for some g € G. Since |(PO*(G)\G/K;)"| = 1, we have
dy..c)(P, H) 2 -1 in general and

IL{IK; N g"‘PgI
doBH) 2 o ~ b
v B D 2 e ]

for some subgroup L; if (H \ P) N gK,g™' # @ by Lemma 2.1. In particular, dyx,.,(P, H) > 0
yields dy(P, H) > 0. In the case when (H\ P)NK # @, we obtaindy(P,H) > -2-1+4 > 0. We
consider in the case when (H \ P) N K = @.- Any elements of G of order 2 is conjugate to either

-1 g-1

h = (p:)T (1)) orh; = (poz (g)_l] € K. Set L} = Ng(K,) and let L, be the subgroup Ng(K3) of
p 2

order 2(¢* — 1). If (g — 1)) # ¢ — 1, that is, ¢ — 1 is not a power of 2, then P is not a 2-group and

there is an elements of H \ P of order 2. Since

IL K, N g™ Pgl |L,|IK; ng"Pgl
z % >2(q - Dpyg + 1) 2 12,
IK\lILi N g~ Pgl KL ng P > 29~ Dalg+D
it holds either dyx,.)(P, H) 2 1 or dy(x,,6)(P, H) > 11. which yields dy(P, H) > 0. In any cases,

we have dy(P, H) > 0. Therefore if (9 — 1)1 > 1, then H \ P has an element of order 2 and thus
dw(P, H) > 0 for any element (P, H) of D*(G) which implies W is a gap module.
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Now let g — 1 be a power of 2. The element 4, is an element of K as
71

p 0}°
h e SL(2, qg).

Let (P,H) € D*(G). Recall dy(P,H) > 0 if the order of P is odd. Suppose P is a (nontrivial)
2-group. Note that L, is a 2-Sylow subgroup of G, and a Sylow 2-subgroup of L, is a cyclic group
of order 2(g — 1). Take an element g € G such that g~' Hg < L,. Recall that any element of G of 2
power order is conjugate to some element of either K; or K5. It holds

IL K1 ng™'Pgl _ 2IK) ng™' Pgl
IK\lIL, N g~ Pgl lg'Pgl

This number equals to 2 if g'Pg = K, N g"'Pg. Assume that g '(H\ P)gn K; # @. If
g 'Pg = K, Nng™'Pg, then dy,x,.6) > 0 and thus dy(P, H) > 0. We claim that g"'Pg > K1 ng™' Pg
implies A"'(H \ P)h N K, # @ for some h € G. Suppose K| N g"! Pg # g' Pg. Take an element
aof g'Pg\ K;and an element 4 € g"'(H \ P)g N K,. Then ha € g"'(H \ P)gnN (L, \ K;) and
thus it is conjugate to an element of K. In the case where k™! (H \ P)kN K, # @ for some k € G,
it holds

+1
dviky6) (P, H) 2 qT’ dw(PH) > -2 +*1—-1=21—,

Hence W is a gap module for ¢ > 5. Finally we must consider in the case when g = 5. Assume
that g '\(H\P)gnNK, #+@,L,Nng'Pg# K,Nng 'Pgforsomege Gand K '(H\ P)kNK, =

for any k € G. Then H be a Sylow 2-subgroup of L, generated by ((1) 'g) and P = HNn K up to

conjugate. It follows that (P\G/K,)" consists of 6 elements

PeKz,P(1 ﬁz)Kz,P(ﬁz gz)Kz, p(g I)Kz, P(’l’ pz)Kz, P(ﬁz pz)Kz-

Thus it holds dy,.)(P, H) = 5. Therefore we also conclude that dw(P, H) > 0 in all cases.

5. PGL(2,q) forqg 2 3

Recall if g is even, a nonsolvable general projective linear group PGL(n, q) is a gap group. Let
q # 1,3,5,7,9,17 be a power of an odd prime. We show that PGL(2,q) is a gap group. An
element of PGL(2, q) outside of PS L(2, q) isoforderg—1, g org+ 1. Either(g—1)/2or (¢ +1)/2
1s not a power of a prime.

Lemma5s.1. (1) 3*>2*24+1fork>2.
(2) 3% =2"241 mod 23 fork > 1.
(3) The equation 2" + 1 = 3™ implies (n,m) = (1,1), (3,2).
(4) 2"-1=3"onlyif (n,m) = (1,0), (2,1).

Proof. (1) If k > 2, then 2% > k + 3 implies 32° > 3*3 > 2.2K2 5> 202 4 1 Ifk = 2,
37 =81>2¢+1=17.

(2) We show the assertion by induction. It is clear that 32 = 2* + 1 in the case when k = 1.
Assuming 3% = 2¢*3x+252 41 for some integer x > 0, it holds 32" = 3%')2 = (2*?(2x+1)+1)? =
2%+402x + 12 +2M32x+ D)+ 1 =23 + 1 mod 2k+4,



38

B)Ilf m = 1,then2" = 2 andthusn = 1. Letm > 1. Since 3" -1 = 2+1)"-1 =
2(m+2 37, mC; - 2/72), m is divisible by 2. Let a; = 3 - 2" — 2 (k > 1). It holds that a; = 1 and
ageq = 2a; + 2. Take £ > 1 such that 2% divides m but 29! does not. Set m = 2%¢£. We obtain
3m_1= (3 -1 = (2%Bx+2% 2 4 1) — 1 = Q% 22x+ 1)+ 1) — 1 = £-29+2(2x + 1) + 22+4y,.
If y is positive, 2%*2 divides ¢ and thus 2% divides m, which is contradiction. Thusy = 0, £ = 1,
m = 2% Ifa, > 1,then2x + 1 > 1 is odd and thus 3” — 1 1s not 2 power. Thena, = 1,k =1,
m=2andn = 3. _

@3 +1=Q2+1)"+1=2(1+m)+4z,wherez= ¥, ,C;- 27> Ifz=0,thenm =0 or 1,
and q = 2 or 22 respectively. Suppose z > 0. Since 4 divides 3™ + 1 (Note 3" + 1 > 4), m is odd,
setm =20+ 1(£>0). Itimpliesthat 3™ +1 = (2+ 1)23+ 1)’ +1 = 4 # 0 mod 23, which is
contradiction. o

Proposition 5.2 (cf. [OP)). (1) Let g be a power of 2. If g — 1 and q + 1 are prtme power,

possibly 1, then q = 2,4, 8.

-1 +1
(2) Let g > 1 be odd prime power. If 7 and 4 are prime power, possibly 1, then

2
q=3,57,917.

Proof. First note that g(¢*> — 1) is divisible by 6 and GCM(qg — 1,4 + 1) < 2.

(1) Let ¢ = 2. We show the assertion by dividing 2 cases. The first case is ¢ — 1 = 3¢ and
g+1=p(p#2,3). By Lemma 5.1 (4), it holds & = 1,2 and thus ¢ = 2,4. In the case where
g-1=p°andg+1 =3%(p # 2,3),itholds b = 1,3 and thus ¢ = 2,8 by Lemma 5.1 (3).
Therefore g = 2,4, 8 only occurs.

(2) Since g is odd, eitherg — 1 org + 1 is lelSlble by 4. We use Lemma 5.1 in each case. If
g-1=2%qg=3%g+1=2p°, wehaveq=3,9.1f g~ 1=2% ¢ = pb, g+ 1 = 2.3, it holds that
27'y1=3andc=1,2,g=5,17.1fg-1=2-3% g =p® q+1=2° we obtain 3% + 1 = 2¢!
anda=0,1,¢g=3,7.1fg-1=2-p%°qg=3%qg+1=2then3®+1=2°b=0,1 and thus
q = 1,3. Therefore ¢ = 3,5,7,9,17. , O

Take subgroups
pa 0 _ (q+1)
k=6 ) K = (s,

0 0 L
N_ =Dyy-y = < ¢(8 1), ¢(1 0) > N, = Dygsy.

Then the order of Kz, Nz is (g ¥ 1)2), 2(q¢ ¥ 1) respectively. Any elements of G of 2 power
order is conjugate to some element of either of K_ or K,. Set W_ = 2V(K_; G) ® V(K,;G) and
W, = V(K_;G)® 2V(K,; G). We show either ¥, or W_ is a gap module. Note that any element

0
0 1
h: € PSL(2,q) and h. ¢ PSL(2,q), if ¢ ¥ 1 is divisible by 4 respectively. Let (P, H) € D*(G).
Since |[(PO*(G)\G/K.)"| = 1, we have dy,.c\(P, H) > -1 and

INLIK. ng'Pg]
IK.IIN. N g~ Pg

if (H\ P)NgK.,g™! # @ for some g € G. If there exist elements @ € (N_ \ K.) N g"'Pg and
B € g \(H\ P)gnK_, then the element af € g'(H \ P)gN (N_ \ K_) is conjugate to the element

of G of order 2 is conjugate to either A = ¢ (p ) orh, = ¢(x2)1+Tl. Furthermore note that

-1>0.

dyk,0(P H) 2
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of K, of order 2. Similarly, if (N, \ K,) N g 'Pgand g"'(H \ P)g N K, are nonempty sets, then
there exists an element g~'(H \ P)g N (N- \ K_) of order 2 which is conjugate to the element of
K. Consider separating three cases.

The first case is where ¢ ¥ 1 > 10 is a power of 2. We claim dy, (P, H) > 0. Suppose g ' (H\
P)gnNK, # @. Recall that (g+ 1)) = (g+1)/2 is a composite odd integer. If P is of odd order, then
dyk..c)(P, H) > 6—1 = 5 and if P is of 2 power order, then dy(x, )(P, H) = 15— 1 > 5. Therefore
it holds dw_(P, H) > =2 + 5 > 0. Next suppose g '(H \ P)g N K5 # @. Then P is a 2-group, since
supposing P is of odd order, there exists an element of g~'(H \ P)g N K of order 2 which belongs
to PSL(2, q), contradiction. If L; N g”'Pg = Kz N g~ Pg, then it holds dy(x..c)(P. H) 22 -1 =1
and dy_(P,H) > 2 - 1 > 0. By the above fact, L, N g"'Pg > K. N g ' Pg does not occur and
L.Nng'Pg>K Ng'Pgyieldsdy (P,H)>20+5>0.

The second case is where ¢ ¥ 1 = 4k such that k > 3 is not a power of 2 and (g + 1)/2 is a power
of an odd prime. We show dy, (P, H) > 0. First suppose g”'(H\P)gNK; # @. If P is of odd order,
then it holds dy(x,.6)(P, H) = 2~1 = 1 and if Pis of even order, then dy(x, ) (P, H) > (9 + DHE-1 >
6 — 1 > 1. Therefore it holds dy, (P, H) > 2 — 1 > 0. Next suppose g ' (H\ P)gnK; # @. Then
Pis a 2-group. If L N g"'Pg = K. N g"' Pg, then it holds dyk, (P, H) 2 2 ¥ I -1 25
and dy,(PH) 2 5-2> 0. If L_ng'Pg > K_n g ' Pg, then it holds dyx_ (P, H) = 0 and
dw,(P,H) > 0 +2 > 0 and it is impossible that L, N g~'Pg > K. ng™' Pg.

The third case is where g¥1 = 4k such that k > 3 is not a power of 2 and (g +1)/2 is a composite
odd integer. We show dy._(P, H) > 0 in this case. Supposing g"'(H \ P)gN K, # @, if P is of
odd order then it holds dy,.c)(P, H) > 6 — 1 = 5 and if P is of even order, then dyx,.c)(P, H) >
(g1 -1 > 15-1 > 5. Therefore it holds d, (P, H) > 5-2 > 0. Suppose g"'(H\P)gNK; # @.
Then Pis a 2-group. If L, Ng~'Pg = K, Nng™'Pg, then it holds dy(x,.c)(P, H) > 2(gF 1)1 -1 2> 5
and dy,(P,H) > 10-1 > 0. If L_ng'Pg > K_ N g 'Pg, then it holds dyk_cy(P.H) 2 0
and dy,(P,H) > 0 + 10 > 0 and it is impossible that L, N g"'Pg > K, N g"'Pg. (Similarly,
dw,(P,H) > 0 holds.)

Putting all together, this completes the proof.

6. PGL(n,q) forn > 4 even and ¢ > 5 odd

We show that PGL(4, q) is a gap group for g # 3,5,7,9, 17. Recall PGL(3, q) and PGL(2, q) are
gap groups and then so are PGL(3, 1; q) = GL(3,q) and PGL(2,2;q). Let (P, H) € D*(PGL(4, 9)).
Consider any element z of H outside of P of 2-power order. If z is not conjugate to an element of
(x4), a conjugacy class of z intersects with a set PGL(2,2; q) U PGL(3, 1; q). Set

Ki = (g« ).
Note that dy,.c)(P, H) > 2 — 1 > 0, if the conjugacy class of z intersects with (x,). Therefore
V(K; G)® 2W(PGL(2,2;q); G) ® 2W(PGL(3, 1; q); G) ® 2V(G)

is a gap module.
Next we show that PGL(4, q) is a gap group for ¢ = 3,5,7,9,17. Let G = PGL(4,q). The
group PGL(3, 1; q) is also a gap group. Note that [PGL(4,q) : PSL(4,9)] = 2. Let

(o o)

Any element of PGL(4,q) of order a power of 2 which is not conjugate to an element of ei-
ther PGL(3, 1; q) or PSL(4,g) is conjugate to an element of K, or K;. The order of Ng(K3)/ K3,



No(Ky)/K is divisible by 4, 4 ((¢* - 1)/(q - 1)) (= 4) respectively. Thus the module
V(K G)® V(Ky; G) ® 3W(PGL(3, 1; ); G) ® 3V(G)

1s a gap module.

Now we show that G = PGL(n,q) is a gap group by induction on n > 4. We have already
shown it for n = 4. Suppose n > 6 and that PGL(r,q) is a gap group for 3 < r < n. Note that
PGL(j,n- j;q)1sagap group for 1 < j < n/2 as PGL(ny; q) is a gap group. Consider an element
z of G outside of PS L(n,q) of order a power of 2. If the conjugacy class of z does not intersect
with PGL(j,n — j) for any 1 < j < n/2, then z is conjugate to an element of (x,"~™). Therefore
the module

V(o) Gy o (D) 2W(PGLU:n - j:9): G) @ 2V (G).
15/<%
isa gap G-module. o

We can construct a gap module for GL(n, ) quite similarly. Also remark that GL(n, q) is a gap

group as it has a quotient gap group PGL(n, q).

Proposition 6.1. Letd > 2, k > 2, and q a power of an odd prime. Let y; be an element of order
q* — 1 of GL(k,q) and

Yk
1
a=|* € PGL(kd, g).
‘ Loy
The group Mk, d) generated by ¢$(A) is a gap group. Furthermore, if g + 1 is not a power of 2,
then M[2,d] is also a gap group. O

Proof. A cyclic group is a gap group if and only if'its order is divisible by distinct two odd primes.
Since the (2, 1)-entry of A" is v, the order of ¢(A4) is divisible by g(¢* — 1)/(g — 1). Suppose
% is a power of 2. the number k is even, say 2m, as (¢* - 1)/(g - 1) =¢*"' +g* 2 +---+ 1 =4k
mod 2. Let(¢"—1)/(g-1)=2%and ¢" +1 = 2°. Then2° -2 =2%(g— 1) and thusa = 0, m = 1,
k = 2,and q = 2° — 1 which is a contradiction. Hence (g* — 1)/(g — 1) is divisible by an odd prime
and g(g* — 1)/(g - 1) is divisible by distinct two odd primes. ‘ O

7. Direct product with PGL(n, q)

We write a result with respect to direct groups with PGL(n, q) without a proof. Recall that
PGL(2,2) is a dihedral group and PGL(2,3) and PGL(2,5) are isomorphic to symmetric groups
24 and Zs respectively. Direct product groups of these groups are considered in [MSY, Sul].

Let p > 1 and g > 1 be both powers of an odd prime, The group PGL(2,q) x C, is not a gap
group if and only if ¢ = 2,3. Under p < g, the group PGL(2, p) x PGL(2, q) is not a gap group
if and only if (p,q) = (2,2),(2,3),(2,5),(2,7),(2,9),(2,17),(3, 3). All direct product groups of
GL(2,3)’s are not gap groups. It is also known when a direct product group of projective linear
groups is a gap group. More general it is considered in [Su2] for G, X G, with [G, : O*(G))] =
[G,: O*(Go)] = 2.
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