A SURVEY ON CHARACTERIZATION OF NUCLEAR C*-ALGEBRAS

NARUTAKA OZAWA (小沢 登高)

1. Nuclearity and Injectivity

We assume the reader to have basic knowledge on tensor products of C^* -algebras. For this, the appendix T of [We] is readable. See also [Ta1].

A C^* -algebra A is said to be nuclear if one has $A \otimes_{\max} B = A \otimes_{\min} B$ for any B. Here, by $A \otimes_{\max} B = A \otimes_{\min} B$, we mean that the canonical quotient map Q from $A \otimes_{\max} B$ onto $A \otimes_{\min} B$ is *-isomorphic. (I am not sure whether it can happen that $A \otimes_{\max} B$ and $A \otimes_{\min} B$ are *-isomorphic without Q being injective.) If $\varphi \colon A_1 \to A_2$ is a cp (completely positive) contraction, then the map $\varphi \otimes \mathrm{id}_B \colon A_1 \otimes_{\mathsf{alg}} B \to A_2 \otimes_{\mathsf{alg}} B$ extends to a cp contractions $\varphi \otimes_{\min} \mathrm{id}_B \colon A_1 \otimes_{\min} B \to A_2 \otimes_{\min} B \text{ and } \varphi \otimes_{\max} \mathrm{id}_B \colon A_1 \otimes_{\max} B \to A_2 \otimes_{\min} B$ $A_2 \otimes_{\max} B$. This fact follows from the Stinespring representation theorem. We usually omit the subscript of $\varphi \otimes id_B$. The second dual A^{**} of a C^* -algebra A is a von Neumann algebra. A von Neumann algebra $M \subset \mathbb{B}(\mathcal{H})$ is said to be injective if there is a cp projection φ from $\mathbb{B}(\mathcal{H})$ onto M. This property does not depends on a choice of faithful normal representations of M. A cp projection is often called a $conditional\ expectation$ because of the following fact. Let A be a C^* -subalgebra of B and φ be a cp contraction from B into $\mathbb{B}(\mathcal{H})$. If $\varphi|_A$ is multiplicative, then φ is automatically an A-bimodule map, i.e., $\varphi(axb) = \varphi(a)\varphi(x)\varphi(b)$ for $a,b \in A$ and $x \in B$. This follows from the Stinespring representation theorem; $\varphi(xy) - \varphi(x)\varphi(y) =$ $[V^*\pi(x)(1-VV^*)^{1/2}][(1-VV^*)^{1/2}\pi(y)V] = XY \text{ and } XX^* = \varphi(xx^*) - \varphi(x)\varphi(x)^*,$ etc. See [Ch] for the detail. A C*-algebra A is said to have the CPAP (completely positive approximation property) if there is a net of finite rank cp contractions θ_i on A which converges to id_A pointwisely, i.e., $\lim_i ||a - \theta_i(a)|| = 0$ for all $a \in A$. We often require that θ_i factors through a full matrix algebra, i.e., there are $n=n(i)\in\mathbb{N}$ and cp contractions $\sigma_i : A \to \mathbb{M}_n$ and $\rho_i : \mathbb{M}_n \to A$ such that $\rho_i \sigma_i = \theta_i$. These two CPAP's are equivalent as we will see in Theorem 1. The corresponding notion for von Neumann algebras is semidiscreteness. A von Neumann algebra M is said to be semidiscreteif there is a net of normal finite rank ucp (unital completely positive) maps θ_i on A which converges to id_M in the point- σ -weak topology, i.e., σ -weak- $\mathrm{lim}_i\,\theta_i(a)=a$ for all $a \in M$. We often require that θ_i factors through a full matrix algebra. Since these properties which we will deal with are all stable under unitization, we will assume that all C^* -algebras are unital from now on.

The following theorem is fundamental in the study of nuclear C^* -algebras. The part $(i)\Rightarrow(ii)$ is due to [EL] and the converse $(ii)\Rightarrow(i)$ is due to [CE1]. The part $(i)\Leftrightarrow(iii)$ is due to [CE2] and [Ki1]. We will only prove $(i)\Rightarrow(ii)\Rightarrow(iii)\Rightarrow(i)$. Direct proofs of $(i)\Rightarrow(iii)$ are found in [CE2] and [Ki1], the latter of which is almost same as the proof of $(ii)\Rightarrow(iii)$ in Theorem 2. The implication $(iv)\Rightarrow(ii)$ is due to [Co2] and [BP]. The converse implication $(i)\Rightarrow(iv)$ is a deep result of Haagerup [Ha1] which uses Connes' celebrated theorem [Co1] (Theorem 2 below). We will prove later a poor man's version of this implication.

Theorem 1. For a C^* -algebra A, the following are equivalent.

- (i). The C^* -algebra A is nuclear.
- (ii). The second dual A** is injective.
- (iii). The C*-algebra A has the CPAP.
- (iv). The Banach algebra A is amenable.

Proof. (i) \Rightarrow (ii). We follow [La] for the proof. Let $A^{**} \subset \mathbb{B}(\mathcal{H})$ be a faithful normal representation. Since A is nuclear, the representation

$$\pi \colon A \otimes_{\min} A' \ni \sum_{k} a_{k} \otimes x_{k} \longmapsto \sum_{k} a_{k} x_{k} \in \mathbb{B}(\mathcal{H})$$

is continuous. Let $\Phi: A \otimes_{\min} \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ be a ucp extension of π and let $\varphi: \mathbb{B}(\mathcal{H}) \ni x \mapsto \Phi(1 \otimes x) \in \mathbb{B}(\mathcal{H})$. Since Φ is an $(A \otimes_{\min} A')$ -bimodule map, φ is a conditional expectation from $\mathbb{B}(\mathcal{H})$ onto A'. This shows A', and a fortiori $A'' = A^{**}$, is injective.

(ii) \Rightarrow (iii). It follows from Theorem 2 below that injectivity is equivalent to semidiscreteness. We will prove that A has the CPAP provided that A^{**} is semidiscrete.

By semidiscreteness, the identity map $\mathrm{id}_{A^{**}}$ on A^{**} is approximated, in the point-weak* topology, by finite rank ucp maps which factor through full matrix algebras. Since a ucp map from a full matrix algebra \mathbb{M}_n into A^{**} is approximated, in the point-weak* topology, by a ucp map from \mathbb{M}_n into A (observe that a map φ from \mathbb{M}_n into a C^* -algebra B is cp if and only if $[\varphi(e_{ij})]_{i,j} \in \mathbb{M}_n(B)$ is positive), the identity map id_A on A is approximated, in the point-weak topology, by finite rank ucp maps which factor through full matrix algebras. Since the point-weak closure of a convex set of bounded linear maps on a Banach space coincides with the point-norm closure, this completes the proof.

(iii) \Rightarrow (i). Let $\{\varphi_i\}_i$ be a net of finite rank ucp maps on A which converges to id_A pointwisely. Let B be a C^* -algebra, $Q: A\otimes_{\max} B \to A\otimes_{\min} B$ be the canonical quotient and take $x \in \ker Q$. We have that $(\varphi_i \otimes_{\min} \mathrm{id}_B)Q = Q(\varphi_i \otimes_{\max} \mathrm{id}_B)$ since both maps are continuous and coincide on $A\otimes_{\mathrm{alg}} B$. This implies that $Q(\varphi_i \otimes_{\max} \mathrm{id}_B)(x) = 0$. Since φ_i is of finite rank, we have $(\varphi_i \otimes_{\max} \mathrm{id}_B)(x) \in A \otimes_{\mathrm{alg}} B$. It follows that $(\varphi_i \otimes_{\max} \mathrm{id}_B)(x) = 0$. Since the ucp maps $\varphi_i \otimes_{\max} \mathrm{id}_B$ converges to $\mathrm{id}_{A\otimes_{\max} B}$, we have x = 0. This shows $A\otimes_{\max} B = A\otimes_{\min} B$.

The following is a celebrated theorem of Connes [Co1]. The part $(iii) \Leftrightarrow (ii) \Rightarrow (i)$ is due to [EL]. We will only prove the equivalence among (i), (ii) and (iii). See [Ha2] and [Po] for simple proofs of $(i) \Rightarrow (iv)$.

Theorem 2. For a von Neumann algebra $M \subset \mathbb{B}(\mathcal{H})$, the following are equivalent.

- (i). The von Neumann algebra M is injective.
- (ii). The representation $\pi: M \otimes_{\min} M' \ni \sum a_k \otimes b_k \mapsto \sum a_k b_k \in \mathbb{B}(\mathcal{H})$ is continuous.
- (iii). The von Neumann algebra M is semidiscrete.
- (iv). The von Neumann algebra M is AFD.

Proof. (i) \Rightarrow (ii). We follow [Wa1] for the proof. We first assume that M is finite with a normal faithful tracial state τ and let ψ be a conditional expectation from $\mathbb{B}(\mathcal{H})$ onto M. To prove continuity of π , we may assume that $M \subset \mathbb{B}(\mathcal{H})$ is a standard representation. Then, continuity of π follows by applying Theorem 3 below to the hypertrace $\tau\psi$ for M. Now, it is not hard to show continuity of π for a semifinite injective von Neumann algebra. The general case then follows from the Takesaki duality theorem [Ta2]. See [Wa1] for the detail.

(ii) \Rightarrow (iii). We follow [Ki1] for the proof. Let Ω be the convex set of all (not necessarily contractive) cp maps θ on M of the form $\theta = \rho \sigma$ where σ is a ucp map from A into a full matrix algebra \mathbb{M}_n and ρ is a (not necessarily contractive) cp map from the full matrix algebra \mathbb{M}_n into M. It suffices to show that the identity map id_M is in the point- σ -weak closure of Ω since the point- σ -weak closure of a convex set coincides with the point- σ -strong closure (hence we can perturb them to unital ones). To prove it, we give ourselves normal states f_1, \ldots, f_n on $M, a_1, \ldots, a_n \in M$ and $\varepsilon > 0$. We have to find $\theta \in \Omega$ with $|f_k(a_k) - f_k(\theta(a_k))| < \varepsilon$ for all $k = 1, \ldots, n$. Let $f = n^{-1} \sum_k f_k$ and $(\pi_f, \mathcal{H}_f, \xi_f)$ be the GNS triplet. It follows that there are $x_1, \ldots, x_n \in \pi_f(M)'$ such that $f_k(a) = (\pi_f(a)x_k\xi_f, \xi_f)$ for $a \in M$. Let ω be a state on $M \otimes_{\min} \pi_f(M)'$ given by $\omega(a \otimes x) = (\pi_f(a)x\xi_f, \xi_f)$. This ω is well-defined by the assumption (ii). We approximate ω by a vector state from $\mathcal{H} \otimes \mathcal{H}_f$; $\exists \eta_1, \ldots, \eta_l \in \mathcal{H} \otimes_{\text{alg}} \pi_f(M)\xi_f$ with $|\omega(a_k \otimes x_k) - \sum_{j=1}^l ((a_k \otimes x_k)\eta_j, \eta_j)| < \varepsilon$ for all $k = 1, \ldots, n$ For each j, fix a representation $\eta_j = \sum_{p=1}^{m_j} \zeta_{j,p} \otimes \pi_f(b_{j,p})\xi_f$ with $\{\zeta_{j,p}\}_{p=1}^{m_j}$ orthonormal. It follows that the map $\sigma_j \colon M \to M_{m_j}$ defined by $\sigma_j(a) = [(a_{\zeta_j,q} \mid \zeta_{j,p})]_{p,q}$ is ucp and the map $\rho_j \colon M_{m_j} \to M$ defined by $\rho_j([\alpha_{pq}]_{p,q}) = \sum_{p,q} \alpha_{pq}b_{j,p}^*b_{j,q}$ is cp. Moreover, we see that $\theta = \sum_{j=1}^l \rho_j \sigma_j$ in Ω satisfies $(\pi_f(\theta(a))x\xi_f, \xi_f) = \sum_{j=1}^k ((a \otimes x)\eta_j, \eta_j)$ for any $a \in A$ and $x \in M'$. Therefore, we have

$$|f_k(a_k) - f_k(\theta(a_k))| = |\omega(a_k \otimes x_k) - \sum_{j=1}^k ((a_k \otimes x_k)\eta_j, \eta_j)| < \varepsilon$$

for all k = 1, ..., n and we are done.

- $(iii) \Rightarrow (ii)$. See the proof of $(iii) \Rightarrow (i)$ in Theorem 1.
- $(ii) \Rightarrow (i)$. See the proof of $(i) \Rightarrow (ii)$ in Theorem 1.

Let A be a C^* -subalgebra in $\mathbb{B}(\mathcal{H})$. A state φ on $\mathbb{B}(\mathcal{H})$ is called a hypertrace for A if it satisfies $\varphi(ax) = \varphi(xa)$ for any $a \in A$ and any $x \in \mathbb{B}(\mathcal{H})$. The following theorem of Kirchberg [Ki3] generalizes Connes' result [Co1] on II₁-factors.

Theorem 3. For a tracial state τ on a C^* -subalgebra A in $\mathbb{B}(\mathcal{H})$, TFAE.

- (i). The trace τ extends to a hypertrace φ on $\mathbb{B}(\mathcal{H})$.
- (ii). There is a net of ucp maps θ_i : $A \to \mathbb{M}_{n(i)}$ such that $\tau(a) = \lim_i \operatorname{tr}_{n(i)}(\theta_i(a))$ and $\lim_i \operatorname{tr}_{n(i)}(\theta_i(ab^*) \theta_i(a)\theta_i(b^*)) = 0$ for any a, b in A.
- (iii). The functional $\sigma: A \otimes_{\min} \overline{A} \ni \sum_{k} a_{k} \otimes \overline{b_{k}} \mapsto \tau(\sum_{k} a_{k} b_{k}^{*}) \in \mathbb{C}$ is continuous.
- (iv). The representation $\pi \colon A \otimes_{\min} \overline{A} \ni \sum_{k} a_{k} \otimes \overline{b_{k}} \mapsto \sum_{k} \pi_{\tau}(a_{k}) \pi_{\tau}^{c}(\overline{b_{k}}) \in \mathbb{B}(\mathcal{H}_{\tau})$ is continuous, where $(\pi_{\tau}, \mathcal{H}_{\tau}, \xi_{\tau})$ is the GNS-triplet for τ and the representation $\pi_{\tau}^{c} \colon \overline{A} \to \mathbb{B}(\mathcal{H})$ is given by $\pi_{\tau}^{c}(\overline{b})\pi_{\tau}(a)\xi_{\tau} = \pi_{\tau}(ab^{*})\xi_{\tau}$ for $a \in A$ and $\overline{b} \in \overline{A}$.

Proof. (i) \Rightarrow (ii). The following proof is taken from [Ha2]. To prove (ii), we give ourselves a finite set E of unitaries in A and $\varepsilon > 0$. We approximate φ by $\text{Tr}(h \cdot)$, where h is a positive trace class operator on \mathcal{H} with Tr(h) = 1. By a standard approximation argument, we may assume that we have $|\text{Tr}(hu) - \tau(u)| < \varepsilon$ and $||h - uhu^*||_{1,\text{Tr}} < \varepsilon$ for $u \in E$, and that h is of finite rank and has no irrational eigenvalues; let $p_1/q, \ldots, p_m/q$ $(p_1, \ldots, p_m, q \in \mathbb{N})$ be the non-zero eigenvalues of h with the corresponding eigenvectors $\zeta_1, \ldots, \zeta_m \in \mathcal{H}$.

We denote by \mathbb{C}^d the d-dimensional Hilbert space with a distinguished basis $\{\delta_i\}_{i=1}^d$. Put $p = \max\{p_1, \ldots, p_m\}$ and define isometries $V_k \colon \mathbb{C}^{p_k} \to \mathcal{H} \otimes \mathbb{C}^p$ by $V_k \delta_i = \zeta_k \otimes \delta_i$. Finally let $V \colon \bigoplus_{k=1}^m \mathbb{C}^{p_k} \to \mathcal{H} \otimes \mathbb{C}^p$ be the concatenation of V_k 's. Identifying \mathbb{M}_q with $\mathbb{B}(\bigoplus_{k=1}^m \mathbb{C}^{p_k})$, we define a ucp map $\theta \colon A \to \mathbb{M}_q$ by $\theta(a) = V^*(a \otimes 1)V$. It follows that we have $\operatorname{tr}_q(\theta(a)) = \operatorname{Tr}(ha)$ for any $a \in A$, and denoting $u_{k,l} = (u\zeta_l \mid \zeta_k)$, we have

$$\begin{split} \operatorname{tr}_{q}(\theta(uu^{*}) - \theta(u)\theta(u^{*})) &= \sum_{k,l} |u_{k,l}|^{2} (p_{k} - \min\{p_{k}, p_{l}\}) / q \\ &\leq \left(\sum_{k,l} |u_{k,l}|^{2} (p_{k}^{1/2} + p_{l}^{1/2})^{2} / q \right)^{1/2} \left(\sum_{k,l} |u_{k,l}|^{2} (p_{k}^{1/2} - p_{l}^{1/2})^{2} / q \right)^{1/2} \\ &= \|h^{1/2}u + uh^{1/2}\|_{2,\operatorname{Tr}} \|h^{1/2}u - uh^{1/2}\|_{2,\operatorname{Tr}} \\ &\leq 2\|hu - uh\|_{1,\operatorname{Tr}} < 2\varepsilon \end{split}$$

for $u \in E$, where we have used the Powers-Størmer inequality [PS] in the last line.

- (ii) \Rightarrow (iii). The net of states $\sigma_i : A \otimes_{\min} \overline{A} \ni \sum_k a_k \otimes \overline{b_k} \mapsto \operatorname{tr}_{n(i)}(\sum_k \theta_i(a_k)\theta_i(b_k^*)) \in \mathbb{C}$ is well-defined and converges to the functional σ .
- (iii) \Rightarrow (iv). This immediately follows from the fact that ξ_{τ} is cyclic for $\pi(A \otimes_{\text{alg}} A)$ and the corresponding vector state (which is σ) is continuous on $A \otimes_{\min} \overline{A}$.
- (iv) \Rightarrow (i). Let $\Psi \colon \mathbb{B}(\mathcal{H}) \otimes_{\min} \overline{A} \to \mathbb{B}(\mathcal{H}_{\tau})$ be a ucp extension of π and let $\psi \colon \mathbb{B}(\mathcal{H}) \ni x \mapsto \Psi(x \otimes 1) \in \mathbb{B}(\mathcal{H}_{\tau})$. Since Ψ is an $(A \otimes_{\min} \overline{A})$ -bimodule map, we have that $\psi|_{A} = \pi_{\tau}$ and $\psi(\mathbb{B}(\mathcal{H})) \subset \pi_{\tau}(A)''$. It follows that the desired hypertrace extension φ of τ is given by $\varphi(x) = (\psi(x)\xi_{\tau} \mid \xi_{\tau})$.

A POOR MAN'S 'NUCLEARITY⇔AMENABILITY'

We prove a version of 'nuclearity \Leftrightarrow amenability'. (Sadly, it is still complicated.) Let A be a C^* -algebra. The Haagerup norm for $T \in A \otimes_{\text{alg}} A$ is defined as

$$||T||_h = \inf\{||\sum a_k a_k^*||^{1/2}||\sum b_k^* b_k||^{1/2}: T = \sum_{k=1}^n a_k \otimes b_k\}$$

Regarding $\sum a_k b_k$ as a product of $[a_1, \ldots, a_n] \in \mathbb{M}_{1,n}(A)$ and $[b_1, \ldots, b_n]^T \in \mathbb{M}_{n,1}(A)$, we see that the product map $p \colon A \otimes_{\operatorname{alg}} A \ni \sum_k a_k \otimes b_k \mapsto \sum_k a_k b_k \in A$ is contractive w.r.t. the Haagerup norm. If $A \subset \mathbb{B}(\mathcal{H})$ and $T = \sum_k a_k \otimes b_k \in A \otimes_{\operatorname{alg}} A$, then we put $\Phi_T \colon \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ by $\Phi_T(x) = \sum_k a_k x b_k$. Again, it can be seen that $\|\Phi_T\|_{\operatorname{cb}} \leq \|T\|_h$. We say a unital C^* -algebra A is amenable w.r.t. the Haagerup tensor product if there is a net $\{T_i\}_{i \in I}$ in $A \otimes_{\operatorname{alg}} A$ satisfying that

- (i). $\sup_i ||T_i||_h < \infty$,
- (ii). $p(T_i) = 1$ for all $i \in I$,
- (iii). $\lim_{i} ||x \cdot T_i T_i \cdot x||_h = 0$ for all $x \in A$.

It is clear that amenability w.r.t. the Haagerup tensor product is formally weaker than the usual amenability. There are natural equivalent definitions of this concept via virtual diagonal and via cohomology. Consult [Ru] for this matter.

Theorem 4. A C^* -algebra is nuclear if and only if it is amenable w.r.t. the Haagerup tensor product.

Passing from this theorem to Theorem 1 seems require a serious tool such as non-commutative Grothendieck inequality. Consult [Ef] and [Ru].

We first show the 'if' part. The following proof is taken from [BP]. Take a faithful normal representation $A^{**} \subset \mathbb{B}(\mathcal{H})$ and let $\{T_i\}_{i\in I}$ in $A\otimes_{\operatorname{alg}} A$ be as above. Then, the point-weak* cluster point of the net $\{\Phi_{T_i}\}$ is a quasi-expectation from $\mathbb{B}(\mathcal{H})$ onto A'. It follows that A', and a fortiori $A'' = A^{**}$, is injective. See [BP] [Ru] for the proof.

For the proof of the 'only if' part, we need the following ingredients; a theorem of Kirchberg [Ki2] saying that a separable nuclear C^* -algebra is a subquotient of the CAR-algebra (see [Wa2] for a simple proof), and Kasparov's Stinespring theorem [Ka]. The following result, inspired from [KS], is sufficient for the 'only if' part.

Lemma 5. Let A be a unital nuclear C^* -algebra, F be a finite set of unitaries in A, which are in the connected component of the identity and let $\varepsilon > 0$. Then, there are $n \in \mathbb{N}$ and a finite subset G in $\mathbb{M}_{1,n}(A)$ such that $xx^* = 1$ for $x \in G$ and for any $u \in F$, there is a bijection f of G onto G with $||ux - f(x)|| < \varepsilon$ for $x \in G$.

Here, for $x = [x_1, \ldots, x_n] \in \mathbb{M}_{1,n}(A)$ and $u \in A$, we define $xx^* = \sum x_k x_k^*$ and $ux = [ux_1, \ldots, ux_n] \in \mathbb{M}_{1,n}(A)$.

Proof. We may assume that A is separable. By Kirchberg's theorem [Ki2], there is a ucp map φ from the CAR-algebra B onto A, whose restriction $\varphi|_{\tilde{A}}$ to some unital C^* -subalgebra \tilde{A} in B becomes a surjective *-homomorphism onto A.

We give ourselves a finite set F of unitaries in A, which are in the connected component of the identity, and $\varepsilon > 0$. Lifting each element in F, we find a finite set \tilde{F} of unitaries in \tilde{A} . Since B is AF, there is a finite set \tilde{G} of unitaries in B such that for any $\tilde{u} \in \tilde{F}$, there is a bijection \tilde{f} of \tilde{G} onto \tilde{G} with $\|\tilde{u}w - \tilde{f}(w)\| < \varepsilon/2$ for $w \in \tilde{G}$. By Kasparov's Stinespring theorem [Ka], there is a unital representation π of B on the Hilbert A-module $\mathcal{H}_A = \ell_2 \otimes A$ such that $\varphi(b) = \langle \zeta, \pi(b)\zeta \rangle$ for $b \in B$, where $\zeta = (1,0,0,\ldots) \in \mathcal{H}_A$. We observe that $\pi(\tilde{u}^*)\zeta = (u^*,0,0,\ldots) = \zeta u^*$ for $\tilde{u} \in \tilde{F}$ since $\varphi(\tilde{u}^*) = u^*$ is a unitary and $\|\pi(\tilde{u}^*)\| = 1$. For each $w \in \tilde{G}$, we define $w_1, w_2, \ldots \in A$ by $\pi(w^*)\zeta = (w_1^*, w_2^*, \ldots) \in \mathcal{H}_A$. It follows that $\pi((\tilde{u}w)^*)\zeta = ((uw_1)^*, (uw_2)^*, \ldots)$. Take $n \in \mathbb{N}$ to be large enough so that $\|\sum_{k \geq n} w_k w_k^*\| < \varepsilon/8$ for all $w \in \tilde{G}$ and put $\hat{w} = [w_1, \ldots, w_{n-1}, (\sum_{k \geq n} w_k w_k^*)^{1/2}] \in \mathbb{M}_{1,n}(A)$. The set $G = \{\hat{w} : w \in G\} \subset \mathbb{M}_{1,n}(A)$ and the bijection f on G induced from \tilde{f} are what we desired.

3. A non-operator algebraist's non-amenability of $\mathbb{B}(\ell_2)$

We present here a proof of the fact that $\mathbb{B}(\ell_2)$ (or any von Neumann algebra which is not subhomogeneous) is not amenable. This proof was suggested by G. Pisier.

Theorem 6. The Banach algebra $\mathbb{B}(\ell_2)$ is not amenable.

Actually we will show that there is no net $\{T_i\}_i$ in $\mathbb{B}(\ell_2) \otimes_{\text{alg}} \mathbb{B}(\ell_2)$ satisfying the condition (ii) and (iii) in Section 2. In stead of operator algebra theory, we need the following ingredients; Kazhdan's property (T) for, say, $SL(3,\mathbb{Z})$ and operator inequalities. A discrete group Γ is said to have Kazhdan's property (T) if for any finite subset E of generators in Γ , there are a constant $\kappa > 0$ and a decreasing function $f \colon \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{\varepsilon \to 0} f(\varepsilon) = 0$ such that the following is true: if π is a unitary representation on a Hilbert space \mathcal{H} and $\xi \in \mathcal{H}$ is a unit vector with $\varepsilon = \max_{s \in E} ||\pi(s)\xi - \xi|| < \kappa$, then there is a unit vector $\eta \in \mathcal{H}$ with $||\xi - \eta|| < f(\varepsilon)$ such that $\pi(s)\eta = \eta$ for all $s \in \Gamma$. It is well-known that the group $SL(3,\mathbb{Z})$ has Kazhdan's property (T). We refer the reader to [HV] for the information of Kazhdan's property (T). For any trace class operators h and k on a Hilbert space, the Powers-Størmer inequality [PS] says that $||h|^{1/2} - k^{1/2}||_2^2 \le ||h - k||_1$ and Kosaki's inequality [Ko] says that $||h| - |k|||_1 \le (2||h + k||_1||h - k||_1)^{1/2}$. The proof of these inequalities for matrices (which we will need) are rather elementary (cf. [Mc]).

Lemma 7. Let E be a finite set of generators of Γ . Then, there are a constant $\delta > 0$ and a decreasing function $c : (0, \delta) \to (0, 1)$ with $\lim_{\varepsilon \to 0} c(\varepsilon) = 0$ which satisfy the following property. If $\pi : \Gamma \to \mathbb{M}_n$ is an irreducible representation and

$$T = \sum_{i=1}^{r} a_i \otimes b_i \in \mathbb{M}_{n,\infty} \otimes \mathbb{M}_{\infty,n}$$

is such that $\sum_{i=1}^{r} a_i b_i = I_n$ and $\varepsilon = \max_{s \in E} ||\pi(s) \cdot T - T \cdot \pi(s)||_h < \delta$, then we have $r \geq (1 - c(\varepsilon))n$.

A SURVEY

Proof. Let $\{\delta_k\}_{k=1}^{\infty}$ be an orthonormal basis of ℓ_2 and $\{e_k\}$ be the corresponding orthogonal projections. Let $T(k) = \sum_{i=1}^{r} a_i e_k b_i \in \mathbb{M}_n$. Since $\sum_{i=1}^{r} a_i b_i = I_n$, we have that $\sum_{k=1}^{\infty} ||T(k)||_{1,\mathrm{Tr}} \geq n$. On the other hand, we claim that

$$\forall s \in E \quad \sum_{k=1}^{\infty} \|\pi(s)T(k)\pi(s)^* - T(k)\|_{1,\mathrm{Tr}} < \varepsilon n.$$

Indeed, this follows from a standard homogeneity trick and the following inequality; for $x \in \mathbb{M}_{n,\infty}$ and $y \in \mathbb{M}_{\infty,n}$, we have

$$\sum_{k=1}^{\infty} \|xe_k y\|_{1,\mathrm{Tr}} = \sum_{k=1}^{\infty} \|x\delta_k\|_{\ell_2} \|y^*\delta_k\|_{\ell_2}$$

$$\leq \frac{1}{2} \sum_{k=1}^{\infty} (\|x\delta_k\|_{\ell_2}^2 + \|y^*\delta_k\|_{\ell_2}^2) = \frac{1}{2} \mathrm{Tr}_n (xx^* + y^*y).$$

These inequalities implies the existence of $k_0 \in \mathbb{N}$ such that

$$\forall s \in E \quad \|\pi(s)T(k_0)\pi(s)^* - T(p_0)\|_{1,\mathrm{Tr}} < |E| \varepsilon \|T(k_0)\|_{1,\mathrm{Tr}}.$$

We put $h = T(k_0)/||T(k_0)||_{1,Tr}$. It follows from Kosaki's inequality that

$$\|\pi(s)|h|\pi(s)^* - |h|\|_{1,\mathrm{Tr}} \le (2\|\pi(s)h\pi(s)^* + h\|_{1,\mathrm{Tr}}\|\pi(s)h\pi(s)^* - h\|_{1,\mathrm{Tr}})^{1/2} < (4|E|\varepsilon)^{1/2}.$$

Combined with Powers-Størmer inequality, this implies

$$\forall s \in E \quad \|\pi(s)|h|^{1/2}\pi(s)^* - |h|^{1/2}\|_{2,\mathrm{Tr}} < (4|E|\varepsilon)^{1/4}.$$

If $\varepsilon > 0$ is small enough, then it follows Schur's lemma that for $c(\varepsilon) = f((4|E|\varepsilon)^{1/4})$ (here f is as in the above definition of Kazhdan's property (T)), we have

$$||h|^{1/2} - n^{-1/2}I_n||_{2, \mathrm{Tr}}^2 < c(\varepsilon)$$

since fixed vectors for the representation Ad π of Γ on the Hilbert-Schmidt class S_2 is a multiple of identity. Since rank $|h|^{1/2} = \operatorname{rank} h \leq r$, we have $r \geq (1 - c(\varepsilon))n$. This completes the proof.

Proof of Theorem 6. Let $\pi_k \colon SL(3,Z) \to \mathbb{M}_{n(k)}$ be a sequence of finite dimensional irreducible representations such that $n(k) \to \infty$ as $k \to \infty$. We identify ℓ_2 with $\bigoplus_{k=1}^{\infty} \ell_2^{n(k)}$ and denote by P_k the orthogonal projection from ℓ_2 onto $\ell_2^{n(k)}$. Let $\pi(s) = \bigoplus_{s=1}^{\infty} \pi_n(s) \in \mathbb{B}(\ell_2)$ for $s \in SL(3,\mathbb{Z})$ and let $\delta > 0$ be as in Lemma 7. To show $\mathbb{B}(\ell_2)$ is not amenable by reductio ad absurdum, suppose that there is $T = \sum_{i=1}^r a_i \otimes b_i \in \mathbb{B}(\ell_2) \otimes \mathbb{B}(\ell_2)$ such that $\sum_{i=1}^r a_i b_i = I_{\ell_2}$ and $\varepsilon = \max_{s \in E} \|\pi(s) \cdot T - T \cdot \pi(s)\|_h < \delta$. Applying Lemma 7 to $P_k \cdot T \cdot P_k \in \mathbb{M}_{n(k),\infty} \otimes \mathbb{M}_{\infty,n(k)}$, we obtain $r > (1 - c(\varepsilon))n(k)$ for all k. This is absurd.

4. Exactness

A C^* -algebra A is said to be exact if

$$0 \to A \otimes_{\min} J \to A \otimes_{\min} B \to A \otimes_{\min} B/J \to 0$$

is exact for any C^* -algebra B and any closed 2-sided ideal J in B. As we will see in the proof of Theorem 8, it suffices to check exactness of the above sequence only for either $J = \bigoplus_{n=1}^{\infty} \mathbb{M}_n \triangleleft B = \prod_{n=1}^{\infty} \mathbb{M}_n$ or $J = \mathbb{K}(\ell_2) \triangleleft B = \mathbb{B}(\ell_2)$. Kirchberg [Ki2] showed that exactness is characterized by the following property, known as nuclear embeddability.

Theorem 8. Let $A \subset \mathbb{B}(\mathcal{H})$ be an exact C^* -algebra and let $(P_n)_{n=1}^{\infty}$ be an increasing sequence of projections on \mathcal{H} , which converges strongly to the identity on \mathcal{H} . We denote by $\varphi_n \colon \mathbb{B}(\mathcal{H}) \to \mathbb{B}(P_n\mathcal{H})$ the compression. Then, there is a net of ucp maps $\theta_i \colon \mathbb{B}(P_{n(i)}\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ such that $\lim_i ||\theta_i \varphi_{n(i)}(a) - a|| = 0$ for all $a \in A$.

Proof. The following proof is taken from [Pi]. Given a finite dimensional subspace $E \subset A$ and $\varepsilon > 0$, we will find $n \in \mathbb{N}$ and a ucp map $\theta \colon \mathbb{B}(P_n\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ such that $\|\theta\varphi_n\|_E - \mathrm{id}_E\|_{\mathrm{cb}} < \varepsilon$. It is easy to see that $\varphi_n|_E$ is one-to-one for n large enough. We claim that $\lim_{n\to\infty} \|(\varphi_n|_E)^{-1} \colon \varphi_n(E) \to E\|_{\mathrm{cb}} = 1$. Since φ_n factors through φ_m when m > n, the sequence $\|(\varphi_n|_E)^{-1}\|_{\mathrm{cb}}$ is monotonically decreasing and the limit $c \geq 1$ exists. For each n, we take $x_n \in E \otimes \mathrm{M}_{k(n)}$ with $\|x_n\| = 1$ and $\|(\varphi_n \otimes \mathrm{id}_{k(n)})(x_n)\| \leq c^{-1} + n^{-1}$, and let $x = (x_n)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} (E \otimes \mathrm{M}_{k(n)}) = E \otimes M \subset A \otimes M$, where $M = \prod_{n=1}^{\infty} \mathrm{M}_{k(n)}$ is the ℓ_{∞} -direct product. (That $\prod_{n=1}^{\infty} (E \otimes \mathrm{M}_{k(n)}) = E \otimes M$ is because E is finite dimensional.) Let $J = \bigoplus_{n=1}^{\infty} \mathrm{M}_{k(n)}$ be the c_0 -direct product, which is an ideal in M. Since $\|x_n\| = 1$ for all n, we have $\|x + A \otimes J\|_{A \otimes M/A \otimes J} = 1$. On the other hand, if M/J is faithfully represented on K, then we have

$$\begin{aligned} \|(\mathrm{id}_{A}\otimes Q)(x)\|_{A\otimes M/J} &= \|(\mathrm{id}_{A}\otimes Q)(x)\|_{\mathbb{B}(\mathcal{H}\otimes\mathcal{K})} \\ &= \lim_{n\to\infty} \|(\varphi_{n}\otimes \mathrm{id}_{M/J})(\mathrm{id}_{A}\otimes Q)(x)\|_{\mathbb{B}(P_{n}\mathcal{H}\otimes\mathcal{K})} \\ &= \lim_{n\to\infty} \|(\mathrm{id}_{\mathbb{B}(P_{n}\mathcal{H})}\otimes Q)((\varphi_{n}\otimes \mathrm{id}_{M})(x))\|_{\mathbb{B}(P_{n}\mathcal{H}\otimes\mathcal{K})} \\ &\leq \lim_{n\to\infty} \limsup_{m\to\infty} \|(\varphi_{n}\otimes \mathrm{id}_{M_{k(m)}})(x_{m})\|_{\mathbb{B}(P_{n}\mathcal{H})\otimes M_{k(m)}} \\ &\leq \limsup_{m\to\infty} \|(\varphi_{m}\otimes \mathrm{id}_{M_{k(m)}})(x_{m})\|_{\mathbb{B}(P_{m}\mathcal{H})\otimes M_{k(m)}} \\ &\leq c^{-1} \end{aligned}$$

Hence, by the assumption on exactness, we have $1 \le c^{-1}$ and obtain the claim.

It follows that $\|(\varphi_n|_E)^{-1}\|_{cb} \leq 1 + \varepsilon$ for sufficiently large n. Using the injectivity of $\mathbb{B}(\mathcal{H})$, we extend $(\varphi_n|_E)^{-1}$ to a self-adjoint map $\psi \colon \mathbb{B}(P_n\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ with the same cb-norm. Since ψ is unital self-adjoint, we find a ucp $\theta \colon \mathbb{B}(P_n\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ with $\|\theta - \psi\|_{cb} < \varepsilon$ by Lemma 9 below. This completes the proof.

Lemma 9 (Kirchberg). If $\psi: A \to \mathbb{B}(\mathcal{H})$ is a unital self-adjoint map, then there is a ucp map $\theta: A \to \mathbb{B}(\mathcal{H})$ such that $\|\theta - \psi\|_{cb} \leq \|\psi\|_{cb} - 1$.

A SURVEY

Proof. Use Wittstock decomposition theorem or Stinespring theorem for cb maps, or consult Wassermann's monograph [Wa2].

The converse of the above theorem due to Wassermann states that

Theorem 10. Let $A \subset \mathbb{B}(\mathcal{H})$ be a separable C^* -algebra such that there is a sequence of finite rank maps $\varphi_n \colon A \to \mathbb{B}(\mathcal{H})$ such that

$$\lim_{n} \|(\varphi_n \otimes \mathrm{id}_{\mathbb{B}(\ell_2)})(x) - x\|_{\mathbb{B}(\mathcal{H}) \otimes \mathbb{B}(\ell_2)} = 0$$

for any $x \in A \otimes \mathbb{B}(\ell_2)$, (e.g. a sequence of finite rank ucp maps $\varphi_n \colon A \to \mathbb{B}(\mathcal{H})$ such that $\forall a \in A \lim_n ||\varphi_n(a) - a|| = 0$) then A is exact.

Proof. We give ourselves a C^* -algebra B, an ideal $J \triangleleft B$ and $x \in \ker(\mathrm{id}_A \otimes Q)$. We may assume that $B \subset \mathbb{B}(\ell_2)$. It follows that

$$(\mathrm{id}_{\mathbb{B}(\mathcal{H})} \otimes Q)(\varphi_n \otimes \mathrm{id}_{\mathbb{B}(\ell_2)})(x) = (\varphi_n \otimes \mathrm{id}_{\mathbb{B}(\ell_2)})(\mathrm{id}_A \otimes Q)(x) = 0.$$

Since φ_n is of finite rank, we have $(\varphi_n \otimes id_{\mathbb{B}(\ell_2)})(x) \in A \otimes J$. Taking limit, we have $x \in A \otimes J$. This completes the proof.

REFERENCES

- [BP] J. W. Bunce and W. L. Paschke, Quasi-expectations and amenable von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), no. 2, 232-236.
- [Ch] M-D. Choi, A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math. 18 (1974), 565-574.
- [CE1] M-D. Choi and E. G. Effros, Nuclear C*-algebras and injectivity: the general case, Indiana Univ. Math. J. 26 (1977), no. 3, 443-446.
- [CE2] _____, Nuclear C*-algebras and the approximation property, Amer. J. Math. 100 (1978), no. 1, 61-79.
- [Co1] A. Connes, Classification of injective factors. Cases II_1 , II_{∞} , III_{λ} , $\lambda \neq 1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115.
- [Co2] _____, On the cohomology of operator algebras, J. Functional Analysis 28 (1978), no. 2, 248-253.
- [Ef] E. G. Effros, Amenability and virtual diagonals for von Neumann algebras, J. Funct. Anal. 78 (1988), no. 1, 137-153.
- [EL] E. G. Effros and C. Lance, Tensor products of operator algebras, Adv. Math. 25 (1977), no. 1, 1-34.
- [Ha1] U. Haagerup, All nuclear C*-algebras are amenable, Invent. Math. 74 (1983), no. 2, 305-319.
- [Ha2] _____, A new proof of the equivalence of injectivity and hyperfiniteness for factors on a separable Hilbert space, J. Funct. Anal. 62 (1985), no. 2, 160-201.
- [HV] P. de la Harpe and A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts, With an appendix by M. Burger. Astérisque 175 (1989), 158 pp.
- [Ka] G. G. Kasparov, Hilbert C*-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), no. 1, 133-150.
- [Ki1] E. Kirchberg, C*-nuclearity implies CPAP, Math. Nachr. 76 (1977), 203-212.
- [Ki2] _____, On subalgebras of the CAR-algebra, J. Funct. Anal. 129 (1995), 35-63.
- [Ki3] _____, On non-semisplit extensions, tensor products and exactness of group C*-algebras, Invent. Math. 112 (1993), 449-489.

NARUTAKA OZAWA (小沢 登高)

- [KS] A. Kishimoto and S. Sakai, Homogeneity of the pure state space for the separable nuclear C*-algebras, Unpublished.
- [Ko] H. Kosaki, On the continuity of the map $\varphi \to |\varphi|$ from the predual of a W*-algebra, J. Funct. Anal. **59** (1984), no. 1, 123–131.
- [La] C. Lance, On nuclear C*-algebras, J. Functional Analysis 12 (1973), 157-176.
- [Mc] C. A. McCarthy, c_p , Israel J. Math. 5 1967 249–271.
- [Pi] G. Pisier, Exact operator spaces, in "Recent advances in operator algebras Orléans 1992", Astérisque Soc. Math. France 232 (1995), 159–186.
- [Po] S. Popa, A short proof of "injectivity implies hyperfiniteness" for finite von Neumann algebras,
 J. Operator Theory 16 (1986), no. 2, 261-272.
- [PS] R. Powers and E. Størmer, Free states of the canonical anticommutation relations, Comm. Math. Phys. 16 1970 1-33.
- [Ru] V. Runde, Lectures on amenability, Lecture Notes in Mathematics, 1774. Springer-Verlag, Berlin, 2002.
- [Ta1] M. Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979.
- [Ta2] _____, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249-310.
- [Wa1] S. Wassermann, *Injective W*-algebras*, Math. Proc. Cambridge Philos. Soc. **82** (1977), no. 1, 39–47.
- [Wa2] _____, Exact C*-algebras and related topics, Lecture Notes Series, 19. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994.
- [We] N. E. Wegge-Olsen, K-theory and C*-algebras, A friendly approach. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.

DEPARTMENT OF MATHEMATICAL SCIENCE, UNIVERSITY OF TOKYO, 153-8914, JAPAN E-mail address: narutaka@ms.u-tokyo.ac.jp