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A SURVEY ON CHARACTERIZATION
OF NUCLEAR C*-ALGEBRAS

NARUTAKA OZAWA (/MR %)

1. NUCLEARITY AND INJECTIVITY

We assume the reader to have basic knowledge on tensor products of C*-algebras.
For this, the appendix T of [We] is readable. See also [Tal].

A C*-algebra A is said to be nuclear if one has A®maxB = AQmin B for any B. Here,
by A®max B = A®min B, we mean that the canonical quotient map Q from A ®max B
onto A ®yin B is *-isomorphic. (I am not sure whether it can happen that A Qmax B
and A ®,, B are *-isomorphic without Q being injective.) If p: A; — Az is a cp
(completely positive) contraction, then the map ¢Qidp: A1®q1g B — A2®ag B extends
to a cp contractions ¢ ®minidp: A1 ®min B = A2 ®min B and ¢ @max idg: A1 ®maxB —
Ay ®max B. This fact follows from the Stinespring representation theorem. We usually
omit the subscript of ¢ ® idg. The second dual A** of a C*-algebra A is a von
Neumann algebra. A von Neumann algebra M C B(H) is said to be injective if
there is a cp projection ¢ from B(#) onto M. This property does not depends on
a choice of faithful normal representations of M. A cp projection is often called a
conditional ezpectation because of the following fact. Let A be a C*-subalgebra of
B and ¢ be a cp contraction from B into B(#). If |4 is multiplicative, then ¢
is automatically an A-bimodule map, i.e., p(azd) = @(a)p(z)p(b) for a,b € A and
£ € B. This follows from the Stinespring representation theorem; p(zy) — ¢(x)p(y) =
[Ver(z)(1 — VV)Y[(1 — VV*) 21 (y)V] = XY and XX* = p(zz*) - ¢(2)p(2)",
etc. See [Ch] for the detail. A C*-algebra A is said to have the CPAP (completely
positive approximation property) if there is a net of finite rank cp contractions 6; on
A which converges to id4 pointwisely, i.e., lim; ||a — 8;(a)|| = 0 for all a € A. We often
require that 6; factors through a full matrix algebra, i.e., there are n = n(i) € Nand cp
contractions o;: A — M, and p;: M,, = A such that p;0; = ;. These two CPAP’s are
equivalent as we will see in Theorem 1. The corresponding notion for von Neumann
algebras is semidiscreteness. A von Neumann algebra M is said to be semidiscrete
if there is a net of normal finite rank ucp (unital completely positive) maps 6; on A
which converges to idys in the point-o-weak topology, i.e., o-weak- lim; 6;(a) = a for
all a € M. We often require that 6; factors through a full matrix algebra. Since these
properties which we will deal with are all stable under unitization, we will assume
that all C*-algebras are unital from now on.
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The following theorem is fundamental in the study of nuclear C*-algebras. The
part (i)=>(ii) is due to [EL] and the converse (ii)=>(i) is due to [CE1]. The part
(i)« (iii) is due to [CE2] and [Kil]. We will only prove (i)=(ii)=-(iii)=>(i). Direct
proofs of (i)=>(iii) are found in [CE2] and [Kil], the latter of which is almost same as
the proof of (ii)=>(iii) in Theorem 2. The implication (iv)=>(ii) is due to [Co2] and
[BP]. The converse implication (i)=>(iv) is a deep result of Haagerup [Hal] which
uses Connes’ celebrated theorem [Col] (Theorem 2 below). We will prove later a
poor man’s version of this implication.

Theorem 1. For a C*-algebra A, the following are equivalent.

(i). The C*-algebra A is nuclear.

(ii). The second dual A** is injective.
(iii). The C*-algebra A has the CPAP.
(iv). The Banach algebra A is amenable.

Proof. (i)=(ii). We follow [La] for the proof. Let A* C B(%) be a faithful normal
representation. Since A is nuclear, the representation

7: A ®min A > Zak@)xk v——)Zakxk E]B(H)
' k k

is continuous. Let ®: AQmin B(#H) — B(#) be a ucp extension of 7 and let p: B(H) 3
z+— ®(1®z) € B(H). Since ® is an (A ®min A')-bimodule map, ¢ is a conditional
expectation from B(#) onto A’. This shows A’, and a fortiori A” = A**, is injective.

(il)=>(iii). It follows from Theorem 2 below that injectivity is equivalent to semidis-
creteness. We will prove that A has the CPAP provided that A** is semidiscrete.

By semidiscreteness, the identity map id4«- on A** is approximated, in the point-
weak* topology, by finite rank ucp maps which factor through full matrix algebras.
Since a ucp map from a full matrix algebra M,, into A** is approximated, in the
point-weak* topology, by a ucp map from M, into A (observe that a map ¢ from M,
into a C*-algebra B is cp if and only if [p(e;;)];; € Mp(B) is positive), the identity
map id4 on A is approximated, in the point-weak topology, by finite rank ucp maps
which factor through full matrix algebras. Since the point-weak closure of a convex
set of bounded linear maps on a Banach space coincides with the point-norm closure,
this completes the proof.

(iii)=>(i). Let {®:}: be a net of finite rank ucp maps on A which converges to id4
pointwisely. Let B be a C*-algebra, Q: AQmnaxB — A®min B be the canonical quotient
and take z € ker Q. We have that (¢; ®min idp)Q = Q(¥; ®max idp) since both maps
are continuous and coincide on A ®,j; B. This implies that Q(p; ®max ids)(z) = 0.
Since ¢; is of finite rank, we have (¢; ®max idp)(z) € A ®ag B. It follows that
(i ®max idp)(z) = 0. Since the ucp maps @; ®max idp converges to idsg,. 5, We have
z = 0. This shows A ®pax B = A ®min B. O
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The following is a celebrated theorem of Connes [Col]. The part (iii)<>(ii)=(i) is
due to [EL]. We will only prove the equivalence among (i), (ii) and (iii). See [Ha2]
and [Po] for simple proofs of (i)=>(iv).

Theorem 2. For a von Neumann algebra M C B(H), the following are equivalent.

(i). The von Neumann algebra M is injective.

(ii). The representation 7: M Qmumin M’ 3 5 ax @by — Y arby € B(H) is continuous.
(iii). The von Neumann algebra M is semidiscrete.
(iv). The von Neumann algebra M is AFD.

Proof. (i)=(ii). We follow [Wal] for the proof. We first assume that M is finite with
a normal faithful tracial state 7 and let ¢ be a conditional expectation from B(#)
onto M. To prove continuity of 7, we may assume that M C B(#) is a standard
representation. Then, continuity of 7 follows by applying Theorem 3 below to the
hypertrace 79 for M. Now, it is not hard to show continuity of = for a semifinite
injective von Neumann algebra. The general case then follows from the Takesaki
duality theorem [Ta2]. See [Wal] for the detail.

(ii)=>(iii). We follow [Kil] for the proof. Let £ be the convex set of all (not
necessarily contractive) cp maps § on M of the form 6 = po where ¢ is a ucp map from
A into a full matrix algebra M,, and pis a (not necessarily contractive) cp map from
the full matrix algebra M, into M. It suffices to show that the identity map idxs is in
the point-o-weak closure of {2 since the point-o-weak closure of a convex set coincides
with the point-o-strong closure (hence we can perturb them to unital ones). To prove
it, we give ourselves normal states fi,...,f, on M, ai,... ,a, € M and € > 0. We
have to find 8 € Q with | fr(ar)—fi(f(ax))| < eforallk=1,... ,n. Let f =n~1Y, fi
and (ms, Hy,&;) be the GNS triplet. It follows that there are zi,...,z, € ms(M)'
such that fr(a) = (m7(a)zi&s,&5) for a € M. Let w be a state on M Qmin ms(M)'
given by w(a ® z) = (ms(a)z;,&s). This w is well-defined by the assumption (ii).
We approximate w by a vector state from H ® Hy; In,... ,m € H Qag Tr(M)E;
with |w(ax ® zx) — E;-:l((ak ® zx)n;,M;)| < € for all k = 1,... ,n For each j, fix
a representation 7; = Y 07 (jp ® mr(bjp)Es With {;p}p2; orthonormal. It follows
that the map o;: M — M, defined by g;(a) = [(aljq | (jp)lpq is ucp and the map
pj: My, — M defined by p;([apglpq) = D, @pab]pbiq 18 CP. Moreover, we see that

6 = SL_, pjo; in  satisfies (r;(8(a))z€s,&;) = Y5, ((a ® )y, ;) for any a € A
and z € M’'. Therefore, we have

k
| fx(ar) = fu(B(ax))| = lw(ax ® ze) — Y (e ® Te)nj mj)| < &

7=1
forall k=1,...,n and we are done.

(iii)=>(ii). See the proof of (iii)=>(i) in Theorem 1. : :
(ii)=>(i). See the proof of (i)=(ii) in Theorem 1. “ P ' O
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Let A be a C*-subalgebra in B(#). A state ¢ on B(H) is called a hypertrace for A
if it satisfies p(ax) = p(za) for any a € A and any z € B(#). The following theorem
of Kirchberg [Ki3] generalizes Connes’ result [Col] on II;-factors.

Theorem 3. For a tracial state T on a C*-subalgebra A in B(H), TFAE.

(i). The trace T extends to a hypertrace ¢ on B(H).
(ii). There is a net of ucp maps 0;: A — My such that 7(a) = lim, try)(6i(a)) and
lim; trp;)(0i(ab*) — 6i(a)0i(b*)) = 0 for any a,b in A.
(iii). The functional 0: A @min A D Y, ax ® b = 7(3_, axb}) € C is continuous.
(iv). The representation m: A ®min A 3 3 ax ® b — X, 7, (ax)me(bk) € B(H,) is
continuous, where (m,;,H.,&;) is the GNS-triplet for T and the representation
7¢: A — B(H) is given by n2(b)m,(a)é, = m,(ab*)é, fora € A and b € A.

Proof. (i)=(ii). The following proof is taken from [Ha2]. To prove (ii), we give
ourselves a finite set E of unitaries in A and € > 0. We approximate ¢ by Tr(h-),
where h is a positive trace class operator on X with Tr(h) = 1. By a standard
approximation argument, we may assume that we have | Tr(hu) — 7(u)| < ¢ and
|h — uhu*|;x < € for u € E, and that h is of finite rank and has no irrational
eigenvalues; let p1/q,... ,pm/q (P1,... ,Pm,q € N) be the non-zero eigenvalues of h
with the corresponding eigenvectors (i,... ,(m € H.

We denote by C? the d-dimensional Hilbert space with a distinguished basis {6;}¢_;
Put p = max{p,... ,pm} and define isometries V;: C?* - H ® C? by Vi.6; = (; ® d;.
Finally let V: €., C?* = H®C? be the concatenation of Vi’s. Identifying M, with
B(P;-, CP*), we define a ucp map §: A = M, by 8(a) = V*(a®1)V. It follows that
we have tr,(6(a)) = Tr(ha) for any a € A, and denoting ux,; = (u{; | (&), we have

trq(O(uu‘) = 0(u)8(u’)) = Z“ |u,1* (e — min{pe, pi})/q

1/2
(Z Iu 1/2 1/2)2/q) (Z |uk l|2 1/2 1/2) /q)

= ||hY2u + uhY?|| || B ?u — uh ||y 1y
< 2l|hu — uhflm < 2

for u € E, where we have used the Powers-Stgrmer inequality [PS] in the last line.
(ii)=>(iii). The net of states 0;: A®minA D 3, ak®br — try(;) (3, 0i(ax)8;(b})) € C
is well-defined and converges to the functional o.
(iii)=(iv). This immediately follows from the fact that &, is cyclic for 7(A Qag A)
and the corresponding vector state (which is o) is continuous on A ®min A.
(iv)=(i). Let ¥: B(#) ®min A — B(H,) be a ucp extension of 7 and let y: B(H) >
z+— VU(z®1) € B(H,). Since ¥ is an (A ®min A)-bimodule map, we have that
Y|4 = 7, and Y(B(H)) C 7,(A)". It follows that the desired hypertrace extension ¢

of 7 is given by p(2) = (Y(2)&: | &). O
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2 A POOR MAN’'S ‘NUCLEARITY<>AMENABILITY’

We prove a version of ‘nuclearity<>amenability’. (Sadly, it is still complicated.)
Let A be a C*-algebra. The Haagerup norm for T € A ®aig A is defined as

1T = inf{|l 3 aragl 21 Y bibill/? : T =D ax ® bk}
k=1

Regarding 3" axby as a product of [a1, ... ,an] € M; »(A) and [by, ..., b]T € M,,1(A),
we see that the product map p: A ®ug A3 D, ax bx — >« akbr € A is contractive
w.r.t. the Haagerup norm. If A C B(H) and T = ), ax ® by € A ®ayg A, then we put
®7: B(H) — B(#H) by &r(z) = Y, axzby. Again, it can be seen that @7l < IT||A-
We say a unital C*-algebra A is amenable w.r.t. the Haagerup tensor product if there
is a net {7 }ier in A ®aig A satisfying that

(). sup; T3l < oo,

(ii). p(T;) =1for all i € I,
(iii). lim; ||z - T; — T; - z||s = 0 for all z € A.
It is clear that amenability w.r.t. the Haagerup tensor product is formally weaker
than the usual amenability. There are natural equivalent definitions of this concept
via virtual diagonal and via cohomology. Consult [Ru] for this matter.

Theorem 4. A C*-algebra is nuclear if and only if it is amenable w.r.t. the Haagerup
tensor product.

Passing from this theorem to Theorem 1 seems require a serious tool such as non-
commutative Grothendieck inequality. Consult [Ef] and [Ru].

We first show the ‘if’ part. The following proof is taken from [BP]. Take a faithful
normal representation A* C B(#) and let {T;}ics in A®a A be as above. Then, the
point-weak* cluster point of the net {®7;} is a quasi-expectation from B(#H) onto A'.
It follows that A’, and a fortiori A" = A**, is injective. See [BP] [Ru] for the proof.

For the proof of the ‘only if’ part, we need the following ingredients; a theorem
of Kirchberg [Ki2] saying that a separable nuclear C*-algebra is a subquotient of the
CAR-algebra (see [Wa2] for a simple proof), and Kasparov’s Stinespring theorem
[Ka]. The following result, inspired from [KS], is sufficient for the ‘only if’ part.

Lemma 5. Let A be a unital nuclear C*-algebra, F be a finite set of unitaries in A,
which are in the connected component of the identity and let € > 0. Then, there are
n € N and a finite subset G in M ,(A) such that zz* =1 for x € G and for any
u € F, there is a bijection f of G onto G with ||juz — f(z)|| <€ forz €G.

Here, for z = [z1,... ,Tn] € Mi,(A) and u € A, we define zz* = ) zxzf and
uz = [uZ1,... ,uZs] € M (A4).

Proof. We may assume that A is separable. By Kirchberg’s theorem [Ki2], there is
a ucp map ¢ fr(zm the CAR-algebra B onto A, whose restriction ¢|4 to some unital
C*-subalgebra A in B becomes a surjective x-homomorphism onto A.
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We give ourselves a finite set F' of unitaries in A, which are in the connected
component of the identity, and ¢ > 0. Lifting each element in F, we find a finite
set F of unitaries in A. Since B is AF, there is a finite set G of unitaries in B such
that for any @ € F, there is a bijection f of G onto G with ||dw — f(w)]|| < €/2 for
w € G. By Kasparov’s Stinespring theorem [Ka), there is a unital representation 7 of
B on the Hilbert A-module # 4 = ¢2 ® A such that ¢(b) = (¢, 7(b)() for b € B, where
¢ =(1,0,0,...) € H4. We observe that 7(#*)¢ = (u*,0,0,...) = (u* for & € F since
©(@*) = u* is a unitary and ||7(@*)|| = 1. For each w € G, we define w;,w,, ... € A by
m(w*)¢ = (w},w3,...) € Ha. It follows that 7((dw)*){ = ((uw,)*, (vws)*,...). Take
n € N to be large enough so that || 37, wewi|| < /8 for all w € G and put @ =
[wi,- o s Wn1, (Pokom wiwt)/?] € M, »,(A). The set G = {0 : w € G} C M;,(A) and

the bijection f on G induced from f are what we desired. O

3. A NON-OPERATOR ALGEBRAIST’S NON-AMENABILITY OF B(/
2

We present here a proof of the fact that B(¢;) (or any von Neumann algebra which
is not subhomogeneous) is not amenable. This proof was suggested by G. Pisier.

Theorem 6. The Banach algebra B({s) is not amenable.

Actually we will show that there is no net {T;}; in B(¢;) ®a; B(¢2) satisfying the
condition (i) and (iii) in Section 2. In stead of operator algebra theory, we need
the following ingredients; Kazhdan’s property (T) for, say, SL(3,Z) and operator
inequalities. A discrete group I' is said to have Kazhdan’s property (T) if for any
finite subset E of generators in I', there are a constant x > 0 and a decreasing
function f: R, — R, with lim._,o f(¢) = 0 such that the following is true: if =
is a unitary representation on a Hilbert space H and £ € H is a unit vector with
£ = maxeg ||7(8)€ — £|| < K, then there is a unit vector n € H with ||§ — || < f(e)
such that w(s)n = n for all s € I'. It is well-known that the group SL(3,Z) has
Kazhdan’s property (T). We refer the reader to [HV] for the information of Kazhdan’s
property (T). For any trace class operators h and k on a Hilbert space, the Powers-
Stgrmer inequality [PS] says that ||h}/2 — k'/2||3 < ||h — k||; and Kosaki’s inequality
[Ko] says that || |h| — |k| ||1 < 2|k + Ekll1||h — k|1 )1/2 The proof of these inequalities
for matrices (which we will need) are rather elementary (cf. [Mc]).

Lemma 7. Let E be a finite set of generators of I'. Then, there are a constant § > 0
and a decreasing function c: (0,0) — (0,1) with lim,_,oc(¢) = 0 which satisfy the
following property. If m: I' = My, is an irreducible representation and

r .
T=) 6®b€Muw®Mx,
i=1
is such that 3_;_; aib; = I, and € = max,eg ||7(s) - T — T - 7(s)||n < 6, then we have

r > (1—c(e))n.
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Proof. Let {0}, be an orthonormal basis of ¢, and {e;} be the corresponding
orthogonal projections. Let T'(k) = Y_7_, a;exb; € Ml,. Since Y ;_, a;b; = I,, we have
that >_po | |7(k)|li,x > n. On the other hand, we claim that

Vs€ E Y |ln(s)T(k)m(s)* — T (k) < en.

k=1

Indeed, this follows from a standard homogeneity trick and the following inequality;
for £ € My, o and y € My, we have '

o0 o0
> llwerylivme = Y 1z klles ly*dille,
k=1 k=1
1 = 2 * 2 1 * *
< > Z(||$5k||z2 + |ly*lle,) = E'I‘rn(a:x +y'y).
k=1

These iriequalities implies the existence of kg € N such that
Vs€ E ||m(s)T(ko)m(s)* — T(po)lliz < |El€ T (Ko)ll1,zv-
We put h = T'(ko)/||T(ko)l||1, 1 It follows from Kosaki’s inequality that
I ()|l ()" = Al L1 < 2llw(s)hm(s)" +hlls,wellm ()b (s)” — ki) /? < (41E] €)'/,
Combined with Powers-Stgrmer inequality, this implies
Vs€ E |n(s)|al?n(s)* — A" ?lloze < (41E]€)Y%.

If £ > 0 is small enough, then it follows Schur’s lemma that for c(¢) = f((4|E|)**)
(here f is as in the above definition of Kazhdan’s property (T)), we have

A2 = ™21 I3 p < c(e)

since fixed vectors for the representation Ad 7 of I on the Hilbert-Schmidt class S, is
a multiple of identity. Since rank |h|'/?2 = rankh < r, we have r > (1 — ¢(¢))n. This
completes the proof.

Proof of Theorem 6. Let m: SL(3,Z) — My ) be a sequence of finite dimensional
irreducible representations such that n(k) — oo as k — oo. We identify ¢, with
P, %) and denote by P the orthogonal projection from ¢, onto 2F) Let n(s) =
D2, n(s) € B(£y) for s € SL(3,Z) and let § > 0 be as in Lemma 7. To show B(¢2)
is not amenable by reductio ad absurdum, suppose that thereis T =Y7_ a; ® b; €
B(£y) ® B(£2) such that Y_7_, ab; = Iy, and € = max,eg ||7(s) - T — T - w(s)|ln < 6.
Applying Lemma 7 to Py - T - Py € My(),00 ® Moon(k), We obtain 7 > (1 — c(¢))n(k)
for all k. This is absurd. ' O
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4. EXACTNESS

A C*-algebra A is said to be ezact if
0> A®uminJ > A®uin B> AQmin B/J =0

is exact for any C*-algebra B and any closed 2-sided ideal J in B. As we will see
in the proof of Theorem 8, it suffices to check exactness of the above sequence only
for either J = @,-; M, <« B =[]>> M, or J = K(£2) <« B = B({,). Kirchberg [Ki2]
showed that exactness is characterized by the following property, known as nuclear
embeddability.

Theorem 8. Let A C B(H) be an ezact C*-algebra and let (P,)., be an increasing
sequence of projections on H, which converges strongly to the identity on H. We
denote by ¢, : B(H) — B(P,H) the compression. Then, there is a net of ucp maps
6;: B(PniyH) — B(H) such that lim; ||6;p0n6)(a) —al| =0 for alla € A.

Proof. The following proof is taken from [Pi]. Given a finite dimensional subspace
E C A and € > 0, we will find n € N and a ucp map 6: B(P,H) — B(#) such that
|18¢n|E —idE||c» < €. It is easy to see that ¢,|g is one-to-one for n large enough. We
claim that limy ;e ||(¢n|£) "2 @n(E) = El|lp = 1. Since ¢, factors through ¢, when
m > n, the sequence ||(¢n|£)~}||co is monotonically decreasing and the limit ¢ > 1
exists. For each n, we take 2, € E ® My, with ||lz,|| = 1 and ||(¢n ® idkn)) (zn)]] <
c'+n7!, and let ¢ = (20)2; € [[oo/(E @ Myim)) = E® M C A® M, where
M = T]72, My is the £o-direct product. (That [];2,(E @ M) = EQ M is
because E is finite dimensional.) Let J = @, Mk, be the cp-direct product,
which is an ideal in M. Since ||z,|| = 1 for all n, we have ||z + A ® J||lagm/a0s = 1.
On the other hand, if M/J is faithfully represented on K, then we have

|(ida ® Q)(2) |l agmy/s = [|(ida ® Q) (2)|[Bxex)
' lim ||(¢n ® idays)(ida ® Q)(z)lB(Panex) -

= lim ||(idsr, ) ® Q)((¢n ® idar) (@) e, men)

S nli_{{.lo liglj;p ” (‘pn ® idM;,(m))(xm) ”B(Pn'H)®Mk(m)

S lim sup ” ((pm ® ide(m))($M) ”B(Pmu)®Ml¢(m)

m—00
<ct

Hence, by the assumption on exactness, we have 1 < ¢~! and obtain the claim.

It follows that ||(¢n|g)~|lco < 1 + € for sufficiently large n. Using the injectivity
of B(H), we extend (¢n|g)™! to a self-adjoint map v: B(P,H) — B(#) with the
same cb-norm. Since ¥ is unital self-adjoint, we find a ucp 6: B(P,H) — B(#) with
|0 — ¥|lcb < € by Lemma 9 below. This completes the proof. a

Lemma 9 (Kirchberg). If ¥: A — B(H) is a unital self-adjoint map, then there is
a ucp map 6: A — B(H) such that ||0 — ¥||eo < ||¥]le — 1.
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Proof. Use Wittstock decomposition theorem or Stinespring theorem for cb maps, or
consult Wassermann’s monograph [Wa2]. O

The converse of the above theorem due to Wassermann states that

Theorem 10. Let A C B(H) be a separable C*-algebra such that there is a sequence
of finite rank maps @n: A — B(H) such that

lim ||(¢on ® idB(e;)) () — 2llB(3)0B(E2) = O

for any x € AQ B(L), (e.g9. a sequence of finite rank ucp maps pn: A — B(H) such
that Va € A lim,, ||pn(a) — a|| = 0) then A is ezact.

Proof. We give ourselves a C*-algebra B, an ideal J < B and z € ker(id4 ® Q). We
may assume that B C B(¢;). It follows that

(idB(3) ® Q) (¢ ® idp(e))(2) = (o ® idp(e,)) (ida ® Q)(z) = 0.

Since ¢, is of finite rank, we have (¢, ® idp(,))(r) € A ® J. Taking limit, we have
z € A® J. This completes the proof. a
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