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1. Introduction

We study Martin boundary points of a proper subdomain in R”, where n > 2, that can
be represented as the union of open convex sets. Especially, we give a certain sufficient
condition for a boundary point to have exactly one (minimal) Martin boundary point.

In the 1970’s, Ancona considered a bounded domain £2 that can be represented as the
union of open balls with the same radius. He assumed that

(A) if two balls tangent to each other at a boundary point § of Q, then there is a truncated
circular cone, with vertex at & and axis in the hyperplane tangent to such balls at §,
included in €.

Under these assumption he showed that each boundary point has exactly one Martin bound-
ary point and it is minimal ([4]). ‘

However, this result is not applicable to domains with wedges. So we consider open
convex sets rather than open balls with the same radius. Obviously, we need a different
sufficient condition for a boundary point to have exactly one (minimal) Martin boundary.
point.

We write E and JE for the closure and the boundary of a set E, respectively. Let x,y € R"
(x # y) and r > 0. We denote by B(x,r) and S(x,r) the open ball and the sphere of center x
and radius r, respectively. For 8 > 0 let I'(x,y) stand for the open circular cone of vertex x,
axis xy and aperture 0, i.c.,

Iy(x,y) :={z€R": Lzxy < 6}.
Let pp > 0 and Ap > 1. We consider a proper subdomain D in R" such that

(D) D is the union of a family of open convex sets {Cj }¢ca such that B(z;,po) C C3 C
B(z3,-Aopo). |
(I) Let £ € dD. Then there are positive constants 8; < sin~!(1/Ap) and p; < pocos 6;
such that the union of truncated circular cones I'y, (§,y) N B(§,2p1) included in D is

connected, i.e.,

U Iy, (§,y)NB(E,2p;) is connected.
yeD
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Remark 1. We note that the union in the condition (II) is non-empty (Lemma 3.2). The
condition (II) is the same as Ancona’s when Ag = 1 (Ancona’s setting).

Throughout this note, we simply write a domain instead of a proper subdomain in R”. By
a Greenian domain we mean a domain with the Green function.
The main result is as follows.

Theorem. Let D be a Greenian domain satisfying (I). If &€ € D satisfies (Il), then there is
exactly one Martin boundary point at & and it is minimal.

Remark 2. We investigated in [3] that the number of minimal Martin boundary points at each
boundary point of a John domain is estimated by the John constant. A bounded domain
satisfying (I) is a John domain. As seen in Theorem, we obtain a better result under the
condition (II).

Corollary. Suppose that D is a bounded domain satisfying (I) and that each & € dD satisfies
(II). Then the Martin boundary of D is homeomor_‘phic to its Euclidean boundary. Moreover,
each Martin boundary point is minimal.

The following proposition implies the sharpness of bounds 8; < sin™!(1/A4p) and p; <
pocos By in the condition (II).

Proposition 1.1. Let Ay > 1. Suppose either

(i) 8, >sin~1(1/Ao), or

(ii) 0< 6, < sin'l(l/Ao) and py > pocos 6.
Then there is a domain D satisfying (I) and & € 3D satisfies (II), and yet & has multiple
minimal Martin boundary points.

This note is organized as follows. In Section 2, we shall show a general fact for the support
of the measure associated with a kernel function in the Martin representation. In Section 3,
we shall show geometrical properties. In Section 4, we shall prove a Carleson type estimate
after showing the upper bound of a non-negative subharmonic function on a bounded domain
and showing the integrability of the negative power of the distance function. In Section 5, we
shall show a (uniform) boundary Harnack principle. In Section 6, we shall prove Theorem
and Corollary. In Section 7, we shall give examples for Proposition. In Section 8, we shall
give a domain satisfying (I) and (II) at each boundary point but not a uniform domain.

By the symbol A we denote an absolute positive constant whose value is unimportant and
may change from line to line. If two positive functions f and g satisfy A~ f < g < Af for
some constant A > 1, then we write f = g and call A the constant of comparison.

2. General fact

In this section, we show a general fact for the support of the measure of a corresponding to
a kernel function in the Martin representation. Let & € dD and xo € D be fixed. Let G denote
the Green function for D. The Martin kernel (or the Martin boundary point) at &, written
K(-,&), is given as a limit function of the Martin kernels K(-,y;) := G(-,y;)/G(xo,y;) for
some sequence {y;} in D converging to . We say that a property holds quasi-everywhere if
it holds except a polar set. A function z on D is called a kernel function at & if 4 is positive



and harmonic on D, satisfies 4(xg) = 1, vanishes quasi-everywhere on dD and is bounded on
D\ B(&,r) for each r > 0. We denote by A the Martin boundary of D, and by A; the subset
of all minimal elements in A. We also write A(§) for the set of all Martin boundary points
at £, and let Aj(€) ;== A(E)NA;. Let E C D and y € A;. We say that E is minimally thin
atyif I?E(.’y) + K(-,y). Here RE denotes the regularized reduced function of a non-negative
superharmonic function u relative to E in D.

The following lemma will be used in the proof of Theorem (Section 6).

Lemma 2.1. Let D be a Greenian domain and & € dD. If h is a kernel function at &,
then the support of the measure associated with it in the Martin representation is Ay (). In
particular, A;(€) is non-empty.

Proof. By the Martin representation, there is a unique measure (4 on 4; such that
h(x) = / K(x,y)du(y) forxeD.
Ay

Let E be a compact subset of A\ A(&) and let {E;} be a decreasing sequence of compact
neighborhoods of E in the Martin topology such that (E; ND)NB(&,r) = @ for some r; >0
and ();Ej = E. Then we have ([5, Corollary 9.1.4])

SEND REIND
R, ( )-—

K( )(x)du(y) forx € D.

Noting that lim ﬁE 7 is bounded and harmonic on D and vanishes quasi-everywhere on
jree

dD since h is the kernel function at £, we have
@.1) 0= lim R £ (o) = / lim R (x0) dia ()

by the monotone convergence. Let y e EN A1. Then E;N D is not minimally thin at y for
each j ([5, Lemma 9.1.5]), and so hm RK( )(xo) = K(x9,y) = 1. Hence u(E) = 0 by (2.1).

Thus the lemma follows. O
3. Geometrical properties

Let £ be a proper subdomain and x,y € 2. We write 8¢ (x) for dist(x,d«2), the distance
from x to d£2, and define the quasi-hyperbolic metric between x and y by

kQ(xv)') "lnf/ 5_(2(2)

where the infimum is taken over all rectifiable curves ¥ in 2 connecting x to y.
Throughout this section we suppose that D is a domain satisfying (I) and that § € dD
satisfies (II). The main purpose of this section is to show the following lemma.

Lemma 3.1. Let x = 6/sin 6. There is a positive constant Rg with the following property.
For each 0 < R < Rg there is yg € DN S(&,R) such that 6p(yr) > AglR and

R
kpra(e,xr) (%, YR) < Aglog ) +Ag forx€ DNB(E,R),

where Ag > 1 is independent of x and R.



Remark 3. In general, Lemma 3.1 does not hold for a John domain. We introduced in
[3] a geometrical notion, a system of local reference points of order N. That is, for each
0 < R < R there are N points, say Yhs o+ Y8, in DNS(E,R) such that 8p(vh) > AglR for
i=1,---,Nand

) : R
izrxr}.l-l-],N{anB(g"‘R) (x,yr)} < Aglog 5 +Ag forxe DNB(E,R).
Lemma 3.1 is the case N = 1. '

In order to prove Lemma 3.1, in view of translation and dilation, we may suppose that
& =0and p; = 1 for simplicity. We briefly write I"(x,y) for I'p, (x,). Let

& :={ye §(0,1):I'(0,y)NB(0,2) C D}.

Then the union in the condition (II) is Uyeq I'(0,y) N B(0, 2) written c@”(0) We prove
Lemma 3.1 after showing some lemmas.

Lemma 3.2. There is a positive constant Ry < x~! such that if Cy NB(0,Rp) # O, then
CoN # 0. In particular, % # 0.

Proof. We show this by leading a contradiction. Suppose that there is a sequence {CAJ.}
such that dist(0,C3,) — 0 and C3, N ¥ = 0. Let B(z;,po) C C3, C B(zj,Aopo). Taking a
subsequence if necessary, we may assume that z; converges, say to zo. Let x; € BCA be
such that x; — 0. Then, by continuity of the angle £ - xjz; and the distance |- —x;],

I'(0,20) N B(0,2) C | J(I"(x},2;) NB(x;,2)) < | JCy,-
- J J
Hence (J;C), % +# 0, and this contradicts the assumption. Thus the lemma follows. ~ [J
Let us take y; € % and fix. For 0 < R < 1 we let Y& := Ry;. Then 8p(yg) > Rsin6;.
Lemma 3.3. There is a positive constant A such that if 0 < R < Ry, then
kpra(o,xr)(RY,YR) <A forye .

Proof. Note that €(0) NS(0, 1) is connected since the cone €' (0) is connected. We observe
that there is a closed connected subset E of €(0) N S(0,1) and 0 < ry < sin @ such that
% C E and dist(E,d€(0)) > ro. Then y,y; € E. In view of the compactness of E, we can
take a curve ¥ in ¢’(0) N S(0,1) joining y and y; such that 8¢ g)(z) > ro/2 for all z € ¥ and
£(y) < Arp, where A depends only on a covering constant of E and £(y) denotes the length
of a curve . Let g be the image of ¥ in S(0,R) under dilation. Then we have

ds ArgR
k Ry, < < = 2A.
Dﬂ?(O,KR)( Y yR) = Jye 6D(Z) - r()R/2

Thus the lemma follows. _ O

Let [x,y] denote the (open) line segment between x and y. If C is a convex set, then the
distance function & is concave on C, i.e.,

G.1) 5:(2) > I'%ﬁ—"ac(xn :;‘j;:acm forz € [x,y),

whenever x,y € C (x # y).



Lemma 3.4. Let 0 < R< Ry. If C4,NB(O,R) # 0 and y € C), NY, then there exists w €
C, NI(0,y)NB(0,3R/sin By) such that

in @
sSin IR.

¢, nr(oy) (W) =

Proof. We can take wy € C,, NT(0,y) with |wi| < R/sin6. In fact, if x € C; NB(0,R) \
I'(0,y), then we may take w; at which [x,y] intersects dI"(0,y), so that

| = dist(wy, [0, y]) dist(x, [0, y]) R

sin 6; - sin 6y sm 6,
Note that |w; —y| > 5R/sin6; since R < k™! = 6" !sin6;. Let ws € [w1,y] € C3 NI'(0,y)
be such that [w; — ws| = R/ sin6;. Applying (3.1) to C :=1I"(0,y), we have

lwy ~ W2| R/sin6 2
> —_— > ZR.
oron(2) 2 lwi =yl ooy () 2 1+R/sin6 sinby > 3R

Noting that |wy —z3| > po —2R/sin6; > 4R since pp > 1 > 6R/sin 6y, we can take w €
[w2,22] C Cy, with |wy —w| = R/3. Then (3.1) with C := Cj, yields that
sin 6y

w2 = w AE
8, (00) 2 20, () 2 P02 3R

Hence we have

| . [2, R sin6 sin 6y
3roync, (W) 2 gxln{gR -~ R} SpLUF)
and
W] < fw—wa| +| |+ |wi] < R R _3R
wy| + w2 —wi| + |wi 3 6 T s, < smé;
Thus the lemma follows. _ -

Proof of Lemma 3.1. Let x € C,, NB(0,R) and y € C; N%¥. By Lemma 3.4, we can take
w € C; NI'(0,y)NB(0,3R/sin 6;) with &¢, Ar(0,) (W) = 3~1Rsin ;. Then we have

sm 91

9p(2) > &c, (z) > kel ——|x—z| forze [x,w],

x—wl

8¢, (W) >
by (3.1) with C := Cj,. Since [x,w] C B(0, kR/2), it follows that
ds k=wl 12 dt :
k X, W / < / ——— < Alog ——= +A
orasR) W) < J sy S Jup e T S50
where A depends only on 6;. We also have kpng(o,xr) (W, Ry) < A. Infact, since Sr(0,) (Ry) >
Rsin 6y, it follows from (3.1) with C := I"(0,y) that

sin” 61 |lw—z| forz€ [w,Ry],

80(2) > S0y (2) > TI-“——"L‘ar(o,y)( y) >
and so

—'SA’

ds 2+/§”é’*1’ 4 dt
- M sin2@; t

o)< [ S
DnB(O,KR)(W y) Ry Op(2)



where A depends only on 6;. Hence we obtain from Lemma 3.3 that
kprs(o,cr) (%:YR) < kpa(o,xr) (X, W) +kpns(o,<r) (Ws RY) + kpn(o,kr) (R, YR)
R
<Alog —— +A.
Thus Lemma 3.1 follows. O

4. Carleson type estimate

In this section we show a Carleson type estimate. To this end, we prepare two lemmas.
One is a refinement of Domar’s theorem ([6, Theorem 2]). Another is the integrability of
the negative power of the distance function. This is a local version of [1, Lemma 5].

We note first the following. Let Q2 be a domain and x,y € £2. We say that x and y are con-
nected by a Harnack chain {B(x;,0q (xj))}’}’___1 if x € B(x1, 38 (x1)), xj—1 € B(xj, 36a(x;))
for j =2,---,N and xy = y. The number N is called the length of the Harnack chain. We
observe that if x & B(y, +8o(¥)), then the shortest length of the Harnack chain connecting
x and y is comparable to kg (x,y). Therefore, the Harnack inequality yields that there is a
constant A > 1 depending only on the dimension such that if x,y € £ and & is a positive
harmonic function on £, then

h(x)

4.1) exp(—Akg(x,y)—1) < ;1—(;)— < exp(Akq(x,y)+1).

Lemma 4.1. Let Q be a bounded domain. If u is a non-negative subharmonic function on
L such that
I:= / (log™ u)" 1 *edx < 0o for some € > 0,
Q

then there is a positive constant A depending only on € and the dimension such that

(4.2) u(x) <exp (2 +A<§5€xv> 1/8) ..

© We show first the following lemma. We write |E| for the volume of a set E.

Lemma 4.2. Let u be a subharmonic function on £ containing B(x,R). Suppose that u(x) >
t > 0 and that

43) R 2 Ln|{y € B(x,R) :t/e <u(y) < et}|'/",
where L, = (¢?/|B(0,1)|)!/". Then there exists X' € B(x,R) such that u(x') > et.
Proof. Suppose to the contrary that u < et on B(x,R). Noting that (4.3) is equivalent to

{y'€ B(x,R) : t/e < u(y) < et} < 1
|B(x,R)| = e?’

we have

1
t<ulx) < —— u(y)d
=40 < BB ey

1 .
. — dy+ / d )
|B(x,R)| (/B(x,R)ﬂ{uSt/e}u(y ) B(x,R>n{t/e<u(y)set}u(y) g

t et
_<_'—+-“2“<t.
e e



This is a contradiction, and the lemma follows. D

Proof of Lemma 4.1. Since the right hand side of (4.2) is not less than €2, it is sufficient to
show that

(4.4) 8 (x) < AIM™(log u(x))~é/™  whenever u(x) > €.
Let x; € 2 be such that u(x;) > €, and let
Rj=Ly|{y€ Q: e/ 2u(x) <u(y) < elu(x)) "

Let us show (4.4) for x = x;. We can choose a finite or infinite sequence {x;} in Q as

follows. By Lemma 4.2, we can iteratively find xj41 € B(xj,R;) with u(xjy1) > elu(x)

whenever 8q (x;) > R;. If 8o (x;) < R, then we stop this iteration, otherwise we continue.
We claim that

4.5) Sa(x) <2) R;.
Jj=1
Suppose first {x;} is finite. Noting that

N-1

(4.6) Sa(x1) < Z Ixj—xj+1|+3_Q(xN),
j=1

we obtain (4.5) by our choice of {x;}. Suppose next {x;} is infinite. Since u(x;) >

e/=1u(x;) — oo, it follows from the local boundedness of a subharmonic function that x;

goes to the boundary. Hence 8¢ (xn) < 8o (x1)/2 for some N, and (4.5) follows from (4.6).
To obtain (4.4) for x = x;, it is enough to show that

4.7 Y R; < AIY"(logu(x1)) /™.
j=1

Let j; be the integer such that e/t < u(x;) < /11, Then j; > 2 and
R; < La|{y € Q: e ti=2 <u(y) < M HHY M.

Since the family of intervals {(e/1¥/=2 ¢/17/*1]}; overlaps at most three times, it follows
from Holder’s inequality that

ZRj <3L, Z H{yeQ:e t<uly) < e/}

j=1 j=h
oo 1 (n—l)/n oo ) 1 . l/n
§3Ln(z m) (Zjn— +8|{y€Q:e" <u(y)§ef}|)
J=h J=i

1/n
<AjTE" ( /Q (log+u(y))"”l+£dy)
< A(logu(xl))"s/”ll/",

where A depends only on € and n. Thus (4.7) follows and Lemma 4.1 is proved. O



Lemma 4.3. Let D be a domain satisfying (I) and & € dD. If 0 < R < py, then there are
positive constants T and A depending only on Ag and the dimension such that

R T
——— | dx<AR",
/mm,m(so(x)) £

Proof. For each j € NU{0} we put

) Ap+1 R R
V= {xeDﬂB(é R+ —— = R) 7 S < dp(x) < = }
Let x € UjZt41 V. Then there is Cj so that x € Cy, and let B(zy, po) C C3 C B(zy,A0p0).
Let y,y € [x,z,] be such that 8p(y) = R/2* and &p(y) = (R/2¥*1 + R/2%)/2. Then we see
that x € B(y,AoR/2¥) by (3.1), and that B(y', R/2¥*2) C VN B(y,AoR/2F). Hence we obtain
S5SAQR AoR) ,

*“)ISAI 2

4.8) ‘B(y, =t

Vi ﬂB(y,

where A1 depends only on Ag and the dimension. We also have | j=k+1 Vi C Uy B(y,AoR/2%),
where y is the point associated with x as above. Hence the covering lemma yields that there
is {y;} such that U7, V; € U; B(y;,540R/2*) and {B(y;,AoR/2¥)} are mutually disjoint.
Then we obtain from (4.8) that

5A0R AoR
¥ wi=l U ( ¥ )ISAJ_) VenB(y), o5 )‘<A1|Vkl
j=k+1 J=k+1 J
Lett =1+ 1/2A¢. Then
N N N+l
Al Ztk"rllel > Z Z k+1lV | — Z Ztk+1|V l > Z Ztk+llvjl
k=0 k=0 j=k+1 j=1k=0 J=1k=0

J+l_t

Z V= ;)t"“lel“—):lel,
_l:

'and SO
i J'+ll t -
WV < —m——— ) V)]
= J 1-—(t—-1)A1j§b J
Letting N — oo, we have |
t (<=
W< — ;] < < .
12_: Vil < T—fr—yay Iy Vil SAIBGE R+ 2040+ DR)] < AR
Since t/ < (R/8p(x))* < t/*+! for x € V; with 7 = log?/log2 > 0, we obtain
R T oo )
—— | dx< Y vty < AR"
s () 25 B i<

Thus the lemma follows. O



Lemma 4.4 (Carleson type estimate). Suppose that D is a domain satisfying (I) and that
& € dD satisfies (Il). Let 0 < R < Re. If h is a positive bounded harmonic function on
DN B(&,kR) vanishing quasi-everywhere on dDNB(E,kR), then

h(x) <Ah(yg) forxe DNB(&,x~IR),
where A is independent of x, R and h.

Proof. By (4.1) and Lemma 3.1 we have
h(x) R

(4.9) Z(y—R)_ <A (m

where A and « are positive constants depending only on A and the dimension. We note that
h has a non-negative subharmonic extension 4* to B(&,R) with zero values on B(§,R) \ D
([5, Theorem 5.2.1]). Let u = h* /A2h(yr). Using the inequality

llog (3,,%7)}” < (%)" (-5-0%5)T for x € DNB(E,R),

where T > 0 is as in Lemma 4.3, we obtain from (4.9) and Lemma 4.3 that

R T
I= log* u)"d <A/ (-———) dx < AR".
B(é,R)(og uidx < DnB(E,R) \ Op(x) *=

Hence it follows from Lemma 4.1 that u < A on S(&, k™ 'R), and the maximum principle
yields that

[0/
) forx e DNB(E,R),

h(x) <Ah(yg) forxe DNB(E,x"R). .

Thus the lemma follows. S

5. Boundary Harnack principle

The purpose of this section is to show a (uniform) boundary Harnack principle, which is
useful to obtain properties of Martin kernels. The proofs in this section are based on [2] for
a uniform domain.

For r > 0 we let

U(r):={xeD:8p(x) <r}.
We denote by @(x,E,U) the harmonic measure of a set E for an open set U evaluated at x.
We write |E| for the volume of a set E. Let us start with an estimate of a harmonic measure.

Lemma 5.1. Let D be a domain satisfying (I). Then there are constants 0 < & < 1 and
A3 > 1 such that if 0 < r < pg/2, then

o(x,U(r)NS(x,Asr),U(r)NB(x,Asr)) < & forxeU(r).

Proof. Letx € U(r). Then there is Cy, so that x € Cy, and let B(zy,po) C Ca, C B(zx,A0p0)-
Take w € [x,z;] with 8p(w) = 2r. Then we have |x — w| < 24¢r by (3.1), and so B(w,r) C
B(x,3Aor) \ U(r). Hence there is 0 < & < 1 depending only on A¢ and the dimension such
that ' '
|U(r) N B(x,3A0r)]
|B(x,3407)]  ~
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Let A3 := 3A0+ 1. We note that w(-,U(r) N S(x,A3r),U(r) N B(x,A3r)) has a subharmonic
extension @ to B(x,Azr) with zero values on B(x,A3r) \ U(r) ([S, Theorem 5.2.1]). Hence

o(x) < w(y)dy < &.

|B(x,3A0r)| /B(x,sAor>
Thus the lemma follows. O

Lemma 5.2. Let D be a domain satisfying (I) and Az be as in Lemma 5.1. Then there is a
positive constant A4 < 1 such that if r > 0 and R > 0, then

(5.1 o(x,U(r)NnS(x,R),U(r)NB(x,R)) < exp (A3 R) forxeU(r).

Proof. Note that if R < Asr, then (5.1) clearly holds since the right hand side of (5.1) is not
less than 1. Let k € N be such that kA3r < R < (k+ 1)A3r. We claim that

(5.2) sup  o(,U(r)NS(x,R),U(r)NB(x,R)) < &]

U(r)NB(x,R—jAsr)

for j=0,---,k, where & is as in Lemma 5.1. We show this by induction. If j = 0, then (5.2)
clearly holds. We assume that (5.2) holds for j — 1, and show (5.2) for j. Lety € U(r)N
S(x,R— jAsr). Since S(y,Asr) C B(x,R— (j—1)Asr), it follows from the assumption, the
maximum principle and Lemma 5.1 that

®(y,U(r)NS(x,R),U(r) NB(x,R)) < &' o(y,U(r) N S(y,A3r),U(r) N B(,Asr))
<g.
Since y is an arbitrary point in U(r) NS(x,R — jA3r), the maximum principle yields (5.2) for
J. Finally, noting that R/Azr < 2k, we obtain from (5.2) with j := k that
&—1R

o(x,U(r)NS(x,R),U(r)NB(x,R)) < exp((gp — 1)k) < exp (—E7) .

Thus the lemma follows. 0O

Lemma 5.3. Suppose that D is a domain satisfying (I) and that & € 9D satisfies (II). Let
0 <R < R¢. If his a positive bounded harmonic function on DN\ B(&, kR) vanishing quasi-
everywhere on dDN B(&, kR), then

o(x,DNS(E,x 'R),DNB(E,x'R)) <A:(( )) forxe DNB(E,k2R),

where A is independent of x, R and h.

Proof By Lemma 4.4, we have h < Ah(yg) on DNB(&, k!R). Let A5 be such that Ash/h(yg) <
el on DNB(E,x!R), and put u := Ash/h(yg). Then it follows from (4.1) and Lemma 3.1
that

(5.3) : u(x) > A (SD(x)) forxe DNB(,xIR).

Let Dj:= {x € D: exp(—2/*1) <u(x) < exp(—2/)} and U; := {x € D : u(x) < exp(—2/)}.
Then, by (5.3), we have

J
UjnB(E,x"'R) C V= {x € D: 8p(x) < AgRexp (*’2&) } '
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Let {R;} be a sequence defined by Ry := k'R and

6(k ' —x2) & 1
N

Then R; | k~2R. We briefly write o := o(-,DNS(&, k" 'R),DNB(E, k" 'R)), and put

sup = if D;NB(&,R;) #0,
dj:= ¢ DinB(§,R;) u
0 if DjNB(E,R;) =0.
It suffices to show that sup ;. d; is bounded by a constant independent of R and u. Let j > 0
and x € U;NB(&,R;). Then the maximum principle yields that

5.4 w(x) < o(x,U;NS(E,Rj—1),U;NB(E,R;_1)) +dj_1u(x).

Since B(x,Rj_1 —Rj) C B(§,R;_1), the first term of the right hand side of (5.4) is not greater
than

0(x,V;NS(x,Rj_1 — R}), Vi B(x,Rj_1 ~R;)) < exp (A3 — Agra ot~
'] Lk} J)r V] y8YJ J/) = A6Rexp(—21/a)

by Lemma 5.2. Let us divide the both sides of (5.4) by u(x) and take the supremum over
D;NB(&,R;). Then we have

; ~1_ g2 2/ /a
d] < exp (2]+1 + A, ___1446(K K ) exp( / )) +dj—1'

n? AgJ?

Since dy < €2, we obtain

6(1(‘1 —x"2) exp(2// )
n? Agj?

dj < Z exp (2J+‘ +A3 -

) +dp < oo.
J.—

Thus the lemma follows. O

Lemma 5.4 (Boundary Harnack principle). Suppose that D is a domain satisfying (1) and
that § € D satisfies (I). Let 0 < R < Rg. If u and v are positive bounded harmonic functions
on DN B(&, kR) vanishing quasi-everywhere on dDNB(&, kR), then

u(y) _ uly)
v~ v)

where the constant of comparison is independent of y, ¥, R, u and v.

fory,y € DNB(§,x"?R),

Proof. By Lemma 4.4, the maximum principle and Lemma 5.3, we have

v(y)

u(y) < Au(yp) (3, DNS(§, k7 'R),DNB(E, k7 R)) < Au(yr) ——~ 0R)

for y € DNB(&, k2R). Changing the roles of u and v, we have

u(y')
u(yr)

Hence two inequalities above yield the lemma. O

v(y') < Av(yr) fory € DNB(E,k2R).
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Remark 4. We note that the constant of comparison and R in Lemma 5.4 depends on &. For
a bounded uniform domain, these constants could be taken uniformly for £ ([2, Theorem
1]). Using this fact, the first author showed the uniqueness of a kernel function at & ([2,
Lemma 4 and Proof of Theorem 3]). However, in view of Lemma 2.1, we need not take
those constants uniformly in order to prove Theorem. We also note that there is a bounded
domain satistying (I) and each boundary point satisfies (II) but not a uniform domain (see
example in Section 8).

6. Proof of Theorem and Corollary

Suppose that D is a domain satisfying (I) and that & € dD satisfies (I). We note first that
every Martin kernel at & is a kernel function at &. In fact, let R > 0-be small enough and
x € D\ B(§,xR). Applying Lemma 5.4 to u := G(x,-) and v := G(xo,-), we see that each
Martin kernel at £ is bounded on D\ B(€, kR), and is kernel function at &.

Proof of Theorem. Let u,v € A1(§) and R > 0 be small enough. Then, by definition of
the Martin kernel at &, there are sequences {y;} and {y,} in D converging to & such that
K(-,yj) = uand K(:,;) — v, respectively. Since K(x,y;) ~ K(x,y}) for x € D\ B(&, kR)
by Lemma 5.4 if j is sufficiently large, we have u(x) ~ v(x) for x € D\ B(€,kR). Since
the constant of comparison is independent of R, it follows from the minimality of u and v
and u(xp) = 1 = v(xo) that u = v. Hence A; (&) is a singleton. Furthermore, it follows from
Lemma 2.1 that A(§) = A;(&). Theorem is proved. O

Proof of Corollary. Let x € D. By Theorem, we see that K(x,-) extends continuously to
D\ {xo}. Moreover, it follows from the first paragraph of this section that K (-, &;) # K (-, &)
if €1, &, € dD are distinct. Thus Corollary follows. | O

7. Remark for bounds in condition (II)
Let x = (x1,-++,x,) € R" and let
Hy:={xeR":x, >0} and H_:={xeR":x,<0}.
In view of dilation, we give examples for py = 1.

Example of (i) (6; > sin“l(l /Ao)). Let wo = (0,---,0,Ap) and let.VI be the convex hull of
B(wo, 1) U{0}. We consider the domain ‘

D:= (B(O,Ao +1)\ (B(0,A0—1) nH+)) UWL.

Then D satisfies (I) and the union € (0) in the condition (II) at 0 is B(0,2p;) NH_, that is,
the origin satisfies (II). But there are two minimal Martin boundary points at the origin.

Example of (ii) for 1 <40 <2(0<6; < sin“l(l /Aop) and py > pocos 6y). Let
wi = (0,0,---,0,1), wz=(4/1-(2-40)%0,---,0,—1) and

wz = ( 1- (2—-A0)2,0,---,0,A¢ — 1).
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Let V, be the convex hull of B(w», 1) U{w3}. We consider the domain
D := (B(0,5)\ (B(0,3) m]HI+)> UB(wi,1)UVa.

Then D satisfies (I) and € (0) = B(0,2p,) NH_. But there are two minimal Martin boundary
points at the origin.

Example of (ii) for Ag > 2 (0 < 6; < sin™!(1/Ao) and p; > pocos 6;). Letw} = (0,---,0,1),
wh = (1,0,-+-,0,1 — Ag) and w} = (1,0,---,0,1). Let V3 be the convex hull of B(w),1) U
{w}}. We consider the domain

D= (B(o,s) \ (B(O,3)nH+)) UB(wi,1)UVa.

Then D satisfies (I) and €’(0) = B(0,2p;) NH_. But there are two minimal Martin boundary
points at the origin.

It is easy to check, in each case, that D is represented as the union of balls B(z;,1) and
V;, and that V; includes a ball of radius 1 and is included in a ball of radius A with the same
center. We also observe that any truncated circular cone I'p, (0,y) NB(0,2p;) is not included
in DNHy, so that ¥(0) = B(0,2p;) NH_. Moreover, we observe that one limit function
obtained by approaching from DN H, is bounded on DNH_ and another limit function
obtained by approaching from DNH_ is bounded on DN H+, so that the origin has two
minimal Martin boundary points.

8. Example of a domain satisfying (I) and (II) but not a uniform domain

A domain £ is called a uniform if there exists a positive constant A with the following
property. For each pair of points x1,x; € Q2 there is a rectifiable curve ¥ in Q joining x; and
x2 such that

@) £(y) < Alx1 — x|,
(i) min{€(y(x1,2)),(¥(z,%2))} S ABa(z) forallzey,
where £(y) and y(z,w) are the length of y and the subarc of  between z and w, respectively.
For simplicity, we give an example when n = 2.
Example. Let a = (0,2), b = (0,—2) and ¢ = (—2,0). Suppose
Q := B(a,2) UB(b,2) UB(c,2).
Then € satisfies (I) and each boundary point satisfies (II) but not a uniform domain.
In fact, let p = (0,1) and w = (x,y) be a point in S(p,1) such thatx >0and 0 <y <1, -

and let w = (x,—y). Theny = 1— (1 —x?)!/2. Let %, be an arbitrary rectifiable curve in 2
joining w and w. Then ¥, must hit y-axis {x = 0}, and we have

x 1 x —
a7 T oot

This inequality shows that a constant A satisfying (i) does not exist since

() > distw, {x=0})=x=

li = 400,
:c—lyr(§1+l—(1—-x2)1/2 +

13
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