Beurling's Minimum Principle in a Cone

千葉大学·理学部 宮本 育子 (Ikuko Miyamoto)
Department of Mathematics,
Faculty of Science,
Chiba University
千葉大学·自然科学研究科 柳下 稔 (Minoru Yanagishita)
Graduate School of Science and Technology,
Chiba University
千葉大学·自然科学研究科 吉田 英信 (Hidenobu Yoshida)
Graduate School of Science and Technology,
Chiba University

Abstract

This paper shows that some characterizations of the harmonic majorization of the Martin function connected with a domain having smooth boundary without a corner e.g a ball and a half-space also hold for a special domain with corners, i.e. a cone.

1. Introduction.

Let \mathbf{R} and \mathbf{R}_+ be the set of all real numbers and all positive real numbers, respectively. We denote by \mathbf{R}^n $(n \geq 2)$ the n-dimensional Euclidean space. A point in \mathbf{R}^n is denoted by $P = (X, y), X = (x_1, x_2, \dots, x_{n-1})$. The Euclidean distance of two points P and Q in \mathbf{R}^n is denoted by |P-Q|. Also |P-O| with the origin O of \mathbf{R}^n is simply denoted by |P|. The boundary and the closure of a set S in \mathbf{R}^n are denoted by ∂S and \bar{S} , respectively.

We introduce a system of spherical coordinates $(r, \Theta), \Theta = (\theta_1, \theta_2, \dots, \theta_{n-1})$, in \mathbb{R}^n which are related to cartesian coordinates $(x_1, x_2, \dots, x_{n-1}, y)$ by

$$x_1 = r(\prod_{j=1}^{n-1} \sin \theta_j) \quad (n \ge 2), \qquad y = r \cos \theta_1,$$

and if $n \geq 3$, then

$$x_{n+1-k} = r(\prod_{j=1}^{k-1} \sin \theta_j) \cos \theta_k \quad (2 \le k \le n-1),$$

where $0 \le r < +\infty$, $-\frac{1}{2}\pi \le \theta_{n-1} < \frac{3}{2}\pi$, and if $n \ge 3$, then $0 \le \theta_j \le \pi$ $(1 \le j \le n-2)$. The unit sphere and the upper half unit sphere are denoted by \mathbf{S}^{n-1} and \mathbf{S}^{n-1}_+ , respectively. For simplicity, a point $(1,\Theta)$ on \mathbf{S}^{n-1} and the set $\{\Theta; (1,\Theta) \in \Omega\}$ for a set Ω , $\Omega \subset \mathbf{S}^{n-1}$, are often identified with Θ and Ω , respectively. For two sets $\Lambda \subset \mathbf{R}_+$ and $\Omega \subset \mathbf{S}^{n-1}$, the set

$$\{(r,\Theta)\in\mathbf{R}^n;\ r\in\Lambda,\ (1,\Theta)\in\Omega\}$$

in \mathbb{R}^n is simply denoted by $\Lambda \times \Omega$. In particular, the half-space

$$\mathbf{R}_+ \times \mathbf{S}_+^{n-1} = \{ (X, y) \in \mathbf{R}^n; \ y > 0 \}$$

will be denoted by \mathbf{T}_n .

To extend a result of Beurling [7] for n=2, Armitage and Kuran [4] said that a sequence $\{P_m\}$ of points $P_m = (X_m, y_m) \in \mathbf{T}_n$, $|P_m| \to +\infty$ $(m \to +\infty)$ "characterizes the positive harmonic majorization of y", if every positive harmonic function h in \mathbf{T}_n which majorizes the function y on the set $\{P_m; m = 1, 2, ...\}$ majorizes y everywhere in \mathbf{T}_n , i.e.

$$\inf_{P\in\mathbf{T}_n}\frac{h(P)}{y}=\inf_m\frac{h(P_m)}{y_m} \quad (P=(X,y)\in\mathbf{T}_n).$$

They proved

THEOREM A (Beurling [7] for n = 2, Armitage and Kuran [4, Theorem 1] for $n \ge 2$). Let $\{P_m\}$ be a sequence of points $\{P_m\}$,

$$P_m = (r_m, \Theta_m) \in \mathbf{T}_n, \Theta_m = (\theta_{1.m}, \theta_{2.m}, ..., \theta_{(n-1),m})$$

in \mathbf{T}_n satisfying

$$(1.1) r_{m+1} \ge a r_m (m = 1, 2, ...)$$

for a certain a > 1. Then the sequence $\{P_m\}$ characterizes the positive harmonic majorization of y if and only if

(1.2)
$$\sum_{m=1}^{\infty} (\cos \theta_{1,m})^n = +\infty.$$

We remark that y is the Martin function at the infinite Martin boundary point ∞ of \mathbf{T}_n , i.e. y is (up to a positive multiplicative constant) the only positive harmonic function in \mathbf{T}_n which vanishes on $\partial \mathbf{T}_n$. The "if" part of Teorem A is a minimm principle, since if h is a positive harmonic function h(P) of $P = (X, y) \in \mathbf{T}_n$, then

$$\lim_{P \in \mathbf{T}_{n}} \inf_{P \to P'} \{h(P) - y\} \ge 0$$

for every P' on $\partial \mathbf{T}_n$ and the majorization of the function y by h on the set of points P_m satisfying (1.1) and (1.2) replaces

$$\liminf_{P\in\mathbf{T}_n,\ |P|\to+\infty}\left\{h(P)-y\right\}\geq 0.$$

Hence this sort of sequence was said to be "equivalent to ∞ " in Beurling [7] and this type of Theorem A was called "Beurling minimum principle" in Ancona [3, p.18] and Maz'ya [15]. This Theorem A was also extended by Maz'ya [15] to positive solutions of a second-order elliptic differential equation in an n-dimensional bounded domain with smooth boundary of class $C^{1,\alpha}$ (0 < α < 1).

Let D be a domain in \mathbb{R}^n and $\Delta(D)$ be the Martin boundary of D. The Martin function at $Q \in \Delta(D)$ is denoted by $K_Q(P)$ $(P \in D)$. Following Armitage and Kuran [4], we say that a subset E of D characterizes the positive harmonic majorization of $K_Q(P)$, if every positive harmonic function h in D which majorizes $K_Q(P)$ on E majorizes $K_Q(P)$ everywhere in D, i.e.

(1.3)
$$\inf_{P \in D} \frac{h(P)}{K_O(P)} = \inf_{P \in E} \frac{h(P)}{K_O(P)}.$$

We set

$$B(P,r) = \{ P' \in \mathbf{R}^n; |P' - P| < r \} \quad (r > 0)$$

and

$$d(P) = \inf_{Q \not\in D} |P - Q|$$

for any $P \in D$. For a subset E of D and a number ρ $(0 < \rho < 1)$ we put

(1.4)
$$E_{\rho} = \cup_{P \in E} B(P, \rho d(P)).$$

Dahlberg proved

THEOREM B (Dahlberg [10, Theorem 1]). Let D be a Liapunov-Dini domain in \mathbb{R}^n and $Q \in \partial D$. If $E \subset D$, then the following conditions on E are equivalent;

- (i) E characterizes the positive harmonic majorization of $K_Q(P)$;
- (ii) for every ρ , $0 < \rho < 1$

$$\int_{E_{\rho}} \frac{dP}{|P - Q|^n} = +\infty,$$

(iii) for some ρ , $0 < \rho < 1$

$$\int_{E_{\rho}} \frac{dP}{|P - Q|^n} = +\infty.$$

Since (1.3) is closely related to the notion of minimally thinness of E_{ρ} in (1.4) (see Sjögren [17], Ancona [3] and Zhang [19]), which is also seen in Theorem 1 of this paper, Aikawa and Essén [2, Corollary 7.4.7] also proved Theorem B in a different way from Dahlberg's.

By using a suitable Kelvin transformation which maps \mathbf{T}_n onto a ball, the following Theorem C follows from Theorem B.

THEOREM C (Dahlberg [10, Theorem 3]). If $E \subset \mathbf{T}_n$, then the following conditions on E are equivalent;

- (i) E characterizes the positive harmonic majorization of y;
- (ii) for every ρ , $0 < \rho < 1$

$$\int_{E_{\rho}} \frac{dP}{(1+|P|)^n} = +\infty,$$

where

$$E_{\rho} = \bigcup_{P=(X,y)\in E} B(P,\rho y);$$

(iii) for some ρ , $0 < \rho < 1$

$$\int_{E_{\rho}} \frac{dP}{(1+|P|)^n} = +\infty.$$

The methods of proving these Theorems A and B were based on the smoothness of the boundary having no wedges e.g. a ball. For a domain having more rough boundary e.g. a Lipschiz domain, Ancona [3, Theorem 7.4] and Zhang [19, Theorem 3] gave more complicated results which generalize Theorem A.

For a Lipshitz domain and an NTA domain D, Zhang [19, Corollary 1] and Aikawa [1, Remark and Theorem 1] gave a necessary and sufficient qualitative condition for a subset E of D characterizing the positive harmonic majorization of $K_Q(P)$ by connecting with minimally thinness of E_ρ in (1.4), respectively. In his paper Aikawa says that since a general NTA domain may have wedges, Theorem B does not hold for an NTA domain. But when we see our results in this paper, we may ask whether quantitative Theorem B can just be extended to a Lipshitz domain and an NTA domain.

In this paper we shall prove Theorems A and C can be extended to a result at a corner point of a wedge i.e. a result at ∞ of a cone. We remark that a half-space is one of cones.

2. Statements of results.

Let Ω be a domain on $\mathbf{S}^{n-1}(n \geq 2)$ with smooth boundary. Consider the Dirichlet problem

$$(\Lambda_n + \tau)f = 0$$
 on Ω
 $f = 0$ on $\partial\Omega$,

where Λ_n is the spherical part of the Laplace operator Δ_n

$$\Delta_n = rac{n-1}{r}rac{\partial}{\partial r} + rac{\partial^2}{\partial r^2} + r^{-2}\Lambda_n$$

We denote the least positive eigenvalue of this boundary value problem by τ_{Ω} and the normalized positive eigenfunction corresponding to τ_{Ω} by $f_{\Omega}(\Theta)$;

$$\int_{\Omega} f_{\Omega}^2(\Theta) d\sigma_{\Theta} = 1,$$

where $d\sigma_{\Theta}$ is the surface element on \mathbf{S}^{n-1} . We denote the solutions of the equation

$$t^2 + (n-2)t - \tau_{\Omega} = 0$$

by $\alpha_{\Omega}, -\beta_{\Omega}$ $(\alpha_{\Omega}, \beta_{\Omega} > 0)$. If $\Omega = \mathbf{S}_{+}^{n-1}$, then $\alpha_{\Omega} = 1$, $\beta_{\Omega} = n-1$ and

$$f_{\Omega}(\Theta) = (2ns_n^{-1})^{1/2} \cos \theta_1,$$

where s_n is the surface area $2\pi^{n/2}\{\Gamma(n/2)\}^{-1}$ of \mathbf{S}^{n-1} .

To make simplify our consideration in the following, we shall assume that if $n \geq 3$, then Ω is a $C^{2,\alpha}$ -domain $(0 < \alpha < 1)$ on \mathbf{S}^{n-1} (e.g. see Gilbarg and Trudinger [12, pp.88-89] for the definition of $C^{2,\alpha}$ -domain). By $C_n(\Omega)$, we denote the set $\mathbf{R}_+ \times \Omega$ in \mathbf{R}^n with the domain Ω on \mathbf{S}^{n-1} ($n \geq 2$). We call it a cone. Then \mathbf{T}_n is a cone obtained by putting $\Omega = \mathbf{S}_+^{n-1}$. It is known that the Martin boundary of $C_n(\Omega)$ is the set $\partial C_n(\Omega) \cup \{\infty\}$, each of which is a minimal Martin boundary point. The Martin kernel at ∞ with respect to a reference point chosen suitably is $K_{\infty}(P) = r^{\alpha_{\Omega}} f_{\Omega}(\Theta)$ $(P = (r, \Theta) \in C_n(\Omega))$.

A subset E of a domain D in \mathbb{R}^n is said to be *minimally thin* at $Q \in \Delta(D)$ (Brelot [8, p.122], Doob [11, p.208]), if there exists a point $P \in D$ such that

$$\hat{R}_{K_Q(\cdot)}^E(P) = K_Q(P),$$

where $\hat{R}_{K_Q(\cdot)}^E(P)$ is the regularized reduced function of $K_Q(P)$ relative to E (Helms [14, p.134]).

The following Theorem 1 which is used to prove Theorem 2 is a specialized version of Aikawa [1, Theorem 1]. Since his proof is so complicated because of an NTA domain we shall give a simple proof based on a function which is a conical version of Dahlberg's [10, pp.240-241].

THEOREM 1. Let E be a subset of $C_n(\Omega)$. The following conditions on E are equivalent:

- (i) E characterizes the positive harmonic majorization of $K_{\infty}(P)$;
- (ii) for any ρ , $0 < \rho < 1$, E_{ρ} is not minimally thin at ∞ ,
- (iii) for some ρ , $0 < \rho < 1$, E_{ρ} is not minimally thin at ∞ .

The following Theorem 2 extends Theorem C.

THEOREM 2. Suppose that $E \subset C_n(\Omega)$. Then the following conditions on E are equivalent:

- (i) E characterizes the positive harmonic majorization of $K_{\infty}(P)$;
- (ii) for every ρ (0 < ρ < 1),

$$\int_{E_{\rho}} \frac{dP}{(1+|P|)^n} = +\infty,$$

(iii) for some ρ (0 < ρ < 1),

$$\int_{E_{\rho}} \frac{dP}{(1+|P|)^n} = +\infty.$$

A sequence $\{P_m\}$ of points $P_m \in D$ is said to be *separated*, if there exists a positive constant c such that

$$|P_i - P_j| \ge cd(P_i) \quad (i, j = 1, 2, ..., i = j)$$

(e.g. see Ancona [3, p.18], Aikawa and Essén [2, p.156]).

From Theorem 2 we immediately have the following Corollary which extends Theorem A.

COROLLARY. Let $\{P_m\}$, $P_m \in C_n(\Omega)$ be a separated sequence satisfying

$$\inf_{m}|P_m|>0.$$

The sequence $\{P_m\}$ characterizes the positive harmonic majorization of $K_{\infty}(P)$ if and only if

$$\sum_{m=1}^{\infty} \left(\frac{d(P_m)}{|P_m|} \right)^n = +\infty.$$

3. Lemmas and proof of Theorem 1.

Let f and g be two positive real valued functions defined on a set Z. Then we shall write $f \approx g$, if there exists two constants $A_1, A_2, 0 < A_1 \le A_2$ such that $A_1g \le f \le A_2g$ everywhere on Z. For a subset S in \mathbb{R}^n , the interior of S and the diameter of S are denoted by int S and diam S, respectively. For two subsets S_1 and S_2 in \mathbb{R}^n , the distance between S_1 and S_2 is denoted by dist (S_1, S_2) . A cube of \mathcal{M}_k is of the form

$$[l_1 2^{-k}, (l_1 + 1) 2^{-k}] \times \cdots \times [l_n 2^{-k}, (l_n + 1) 2^{-k}] \quad (k = 0, \pm 1, \pm 2, \ldots)$$

where l_1, \ldots, l_n are integers. Let ρ be a number satisfying $0 < \rho \le \frac{1}{2}$. A family of the Whitney cubes of $C_n(\Omega)$ with ρ is the set of cubes having the following properties; $(i) \bigcup_i W_i = C_n(\Omega)$,

(ii) int $W_i \cap \text{int } W_k = \emptyset \quad (i = k),$

(iii) $\left[\frac{8}{3\rho}\right] \operatorname{diam} W_i \leq \operatorname{dist}(W_i, \mathbf{R}^n \setminus C_n(\Omega)) \leq 2\left(\left[\frac{8}{3\rho}\right] + 1\right) \operatorname{diam} W_i$, where [a] denotes the integer satisfying $[a] \leq a < [a] + 1$ (Stein [18, p.167, Theorem 1]).

The following Lemma 1 is fundamental in this paper.

LEMMA 1 (I.Miyamoto, M.Yanagishita and H.Yoshida [16, Theorems 2 and 3]). Let a Borel subset E of $C_n(\Omega)$ be minimally thin at ∞ . Then we have

$$(3.1) \int_E \frac{dP}{(1+|P|)^n} < +\infty.$$

If E is a union of cubes from a family of the Whitney cubes of $C_n(\Omega)$ with ρ $(0 < \rho \le \frac{1}{2})$, then (3.1) is also sufficient for E to be minimally thin at ∞ .

For a set $E \subset C_n(\Omega)$ and a number ρ $(0 < \rho \leq \frac{1}{2})$, define E_{ρ} and $E_{\frac{\rho}{4}}$ as in (1.4).

LEMMA 2. Let $\{W_i\}_{i\geq 1}$ be a family of the Whitney cubes of $C_n(\Omega)$ with ρ . Then there exists a subsequence $\{W_{i_j}\}_{j\geq 1}$ of $\{W_i\}_{i\geq 1}$ such that

 $(i) \bigcup_{j} W_{i_{j}} \subset E_{\rho},$

$$(ii) \stackrel{\mathcal{J}}{W}_{i_j} \stackrel{\mathcal{J}}{\cap} E_{\frac{\rho}{4}} \stackrel{\mathcal{F}}{=} \emptyset \quad (j=1,2,\ldots), \quad E_{\frac{\rho}{4}} \subset \bigcup_j W_{i_j}.$$

Proof of Lemma 2. Let k be an integer. Let $c = \left(\left\lceil \frac{8}{3\rho} \right\rceil + 1 \right)$ and set

$$I_{k} = \left\{ P \in C_{n}(\Omega) ; c\sqrt{n}2^{-k} < \operatorname{dist}(P, \partial C_{n}(\Omega)) \le c\sqrt{n}2^{-k+1} \right\}.$$

Let $\{W_{i_j}\}_{j\geq 1}$ be a sequence of all Whitney cubes of $\{W_i\}_{i\geq 1}$ such that

$$W_{i_j}\cap E_{rac{
ho}{4}}=\emptyset \quad (j=1,2,\ldots).$$

Then it is evident that (ii) holds. We shall also show that this $\{W_{i_j}\}_{j\geq 1}$ satisfies (i). Take any $W_{i_{j_0}}$ and let $W_{i_{j_0}}$ be a cube of \mathcal{M}_{k_0} . Since $W_{i_{j_0}} \cap E_{\frac{\rho}{4}} = \emptyset$, there exists a point P_{j_0} in E such that

(3.2)
$$B(P_{j_0}, \frac{\rho}{4}d(P_{j_0})) \cap W_{i_{j_0}} = \emptyset.$$

Then $P_{j_0} \in I_{k_0+1} \cup I_{k_0} \cup I_{k_0-1}$. Because, if $P \in I_k$ and W_{i_j} is a Whitney cube satisfying $W_{i_j} \cap B(P, \frac{\rho}{4}d(P)) = \emptyset$, then $W_{i_j} \in \mathcal{M}_{k+1} \cup \mathcal{M}_k \cup \mathcal{M}_{k-1}$. If $P_{j_0} \in I_{k_0+1}$, then

$$\rho d(P_{j_0}) - \frac{\rho}{4} d(P_{j_0}) = \frac{3}{4} \rho d(P_{j_0}) > \frac{3}{4} \rho \left(\left[\frac{8}{3\rho} \right] + 1 \right) \sqrt{n} 2^{-(k_0+1)} > \sqrt{n} 2^{-k_0}.$$

Since the diameter of $W_{i_{j_0}}$ is $\sqrt{n}2^{-k_0}$, we have from (3.2) that $W_{i_{j_0}} \subset B(P_{j_0}, \rho d(P_{j_0}))$ and hence $W_{i_{j_0}} \subset E_{\rho}$. Even if $P_{j_0} \in I_{k_0}$ or $P_{j_0} \in I_{k_0-1}$, we similarly have $W_{i_{j_0}} \subset E_{\rho}$.

Thus all cubes of $\{W_{i_j}\}_{j\geq 1}$ are contained in E_{ρ} , which is just (i).

Proof of Theorem 1. Proof of $(i) \Rightarrow (ii)$. First of all, we shall remark the following fact. Let c be a positive constant. Since E characterizes the positive harmonic majorization of $K_{\infty}(P)$, $E_1 = \{P \in E; K_{\infty}(P) > c\}$ also characterizes the positive harmonic majorization of $K_{\infty}(P)$. For otherwise there exists a positive harmonic function h(P) on $C_n(\Omega)$, satisfying

$$a = \inf_{P \in C_n(\Omega)} \frac{h(P)}{K_{\infty}(P)} < \inf_{P \in E_1} \frac{h(P)}{K_{\infty}(P)} = b.$$

If we put $h_1(P) = h(P) + bc$ $(P \in C_n(\Omega))$, then $h_1(P) \ge bK_{\infty}(P)$ for all $P \in E$ and hence

 $\inf_{P \in C_n(\Omega)} \frac{h_1(P)}{K_{\infty}(P)} = a < b \le \inf_{P \in E} \frac{h_1(P)}{K_{\infty}(P)},$

which contradicts the assumption that E characterizes the positive harmonic majorization of $K_{\infty}(P)$. If we can show that for any ρ $(0 < \rho < 1)$ $(E_1)_{\rho}$ is not minimally thin at ∞ , then for any ρ $(0 < \rho < 1)$ E_{ρ} is also not minimally thin at ∞ . Hence by applying the following argument to E_1 if necessary, we may assume that $K_{\infty}(P) > c$ for every $P \in E$, without generality.

Suppose that for some number ρ (0 < ρ < 1) E_{ρ} is minimally thin at ∞ . Then to obtain a contradiction to (i) we shall make a positive harmonic function h(P) on $C_n(\Omega)$ satisfying

 $\inf_{P \in C_n(\Omega)} \frac{h(P)}{K_{\infty}(P)} < \inf_{P \in E} \frac{h(P)}{K_{\infty}(P)}.$

If E is a bounded subset of $C_n(\Omega)$, then let h be a constant function. When E is unbounded, we shall follow Dahlberg [10, p.240] to make it.

We can assume $\rho \leq \frac{1}{2}$. Let $\{P_j\}$ be a sequence of points P_j which are the central points of cubes W_{i_j} in Lemma 2. Then $\{P_j\}$ can not accumulate to any finite boundary point of $C_n(\Omega)$ and hence $|P_j| \to +\infty$, because $P_j \in E_\rho$ from (i) of Lemma 2 and $K_\infty(P) > c$ for any $P \in E$. Since E_ρ is minimally thin at ∞ and

$$\int_{W_{i_j}} \frac{dP}{(1+|P|)^n} \approx \left(\frac{d(P_j)}{|P_j|}\right)^n \quad (j=1,2,\ldots),$$

Lemma 1 and (i) of Lemma 2 give

(3.3)
$$\sum_{j=1}^{\infty} \left(\frac{d(P_j)}{|P_j|} \right)^n < +\infty.$$

Now we shall assume that $d(P_j) \leq \frac{1}{2}|P_j|$ $(j=1,2,\ldots)$. The general case will be treated at the end of this proof. Take a point $Q_j = (t_j, \Phi_j) \in \partial C_n(\Omega) \setminus \{O\}$ satisfying

$$|P_j - Q_j| = d(P_j) \ (j = 1, 2, \ldots).$$

Then we also see $|Q_j| \ge \frac{1}{2} |P_j|$ and hence $|Q_j| \to +\infty$ $(j \to +\infty)$. We define a function h(P) by

$$h(P) = \sum_{j=1}^{\infty} \mathbf{P}_{Q_j}(P) \frac{\{d(P_j)\}^n}{|P_j|^{1-\alpha_{\Omega}}}, \quad \mathbf{P}_{Q_j}(P) = \frac{\partial G(P, Q_j)}{\partial n_{Q_j}} \quad (P \in C_n(\Omega)),$$

where $G(P_1, P_2)$ $(P_1, P_2 \in C_n(\Omega))$ is the Green function of $C_n(\Omega)$ and $\frac{\partial}{\partial n_Q}$ denotes the differentiation at $Q \in \partial C_n(\Omega)$ along the inward normal into $C_n(\Omega)$. Then h is well-defined and hence is a positive harmonic function on $C_n(\Omega)$, because at any fixed $P = (r, \Theta) \in C_n(\Omega)$

$$\mathbf{P}_{Q_j}(P)pprox r^{lpha_\Omega}f_\Omega(\Theta)t_j^{-eta_\Omega-1}rac{\partial}{\partial n_{\Phi_i}}f_\Omega(\Phi_j)$$

for every Q_j satisfying $t_j \geq 2r$ (see Azarin [6, Lemma 1]).

Now we shall show

$$\inf_{P\in E}\frac{h(P)}{K_{\infty}(P)}>0.$$

To see first

$$\frac{h(P_j)}{K_{\infty}(P_j)} \ge A \quad (j = 1, 2, \ldots)$$

for some positive constant A, denote the Poisson kernel of the ball $B_j = B(P_j, d(P_j))$ by $\mathbf{P}_j(P,Q)$ $(P \in B_j, Q \in \partial B_j)$. Then we see

$$\mathbf{P}_{Q_j}(P) \ge \mathbf{P}_j(P, Q_j) \quad (P \in B_j; \ j = 1, 2, \ldots)$$

and hence

$$\mathbf{P}_{Q_j}(P_j) \ge \mathbf{P}_j(P_j, Q_j) = s_n^{-1} \{d(P_j)\}^{1-n} \quad (j = 1, 2, \ldots).$$

Since

$$f_{\Omega}(\Theta) \approx d(P') \ (P' = (1, \Theta), \Theta \in \Omega),$$

we obtain

$$h(P_j) \ge \mathbf{P}_{Q_j}(P_j) \frac{\{d(P_j)\}^n}{|P_j|^{1-\alpha_{\Omega}}} \ge AK_{\infty}(P_j) \quad (j = 1, 2, \ldots).$$

Next take any $P \in E$. Then by (ii) of Lemma 2 there exist a point P_j such that

$$|P - P_j| < \frac{1}{2} \operatorname{diam}(W_{i_j}) \le \delta d(P_j),$$

where $\delta = \frac{1}{2} \left[\frac{8}{3\rho} \right]^{-1}$. Hence we see

$$h(P) \ge \frac{1-\delta}{(1+\delta)^{n-1}} h(P_j)$$
 and $K_{\infty}(P) \le \frac{1+\delta}{(1-\delta)^{n-1}} K_{\infty}(P_j)$

from the Harnack's inequalities (see Armitage and Gardiner [5, Theorem 1.4.1]). Thus we have

$$\frac{h(P)}{K_{\infty}(P)} \ge \left(\frac{1-\delta}{1+\delta}\right)^n \frac{h(P_j)}{K_{\infty}(P_j)} \ge \left(\frac{1-\delta}{1+\delta}\right)^n A$$

from (3.4), which shows

$$\inf_{P\in E}\frac{h(P)}{K_{\infty}(P)}>0.$$

To show $\inf_{P \in C_n(\Omega)} \frac{h(P)}{K_{\infty}(P)} = 0$, fix a ray L which is inside $C_n(\Omega)$ and starts from O. We shall show

(3.5)
$$\lim_{|P| \to +\infty, \ P \in L} \frac{h(P)}{K_{\infty}(P)} = 0.$$

Put

$$g_j(P) = \frac{\mathbf{P}_{Q_j}(P)}{K_{\infty}(P)} |P_j|^{\beta_{\Omega}+1} \quad (P \in C_n(\Omega), j = 1, 2, \ldots).$$

Then we have

$$\frac{h(P)}{K_{\infty}(P)} = \sum_{j=1}^{\infty} g_j(P) \left(\frac{d(P_j)}{|P_j|}\right)^n.$$

Since

$$(3.6) \mathbf{P}_{Q_{j}}(P) \approx t_{j}^{\alpha_{\Omega}-1} r^{-\beta_{\Omega}} f_{\Omega}(\Theta) \frac{\partial}{\partial n_{\Phi_{j}}} f_{\Omega}(\Phi_{j}) (P = (r, \Theta) \in C_{n}(\Omega), r \geq 2t_{j})$$

(see Azarin [6, Lemma 1]), we see

$$\lim_{|P| \to +\infty, \ P \in L} g_j(P) = 0$$

for any fixed j. Hence if we can show that

(3.7)
$$|g_j(P)| \leq M \quad (P \in L, j = 1, 2, \ldots)$$

for some constant M, then we shall have (3.5) from (3.3).

Now we shall prove (3.7) by dividing into three cases. If $r \leq \frac{t_i}{2}$, then we have

$$\mathbf{P}_{Q_j}(P)pprox r^{lpha_\Omega}t_j^{-eta_\Omega-1}f_\Omega(\Theta)rac{\partial}{\partial n_{oldsymbol{\Phi}_j}}f_\Omega(\Phi_j)$$

and hence we have

$$|g_j(P)| \leq M \quad (P = (r, \Theta) \in C_n(\Omega), j = 1, 2, \ldots).$$

If $r \geq 2t_j$, then we have

$$|g_j(P)| \leq M \quad (P = (r, \Theta) \in C_n(\Omega); \ j = 1, 2, \ldots)$$

from (3.6). Lastly, put $R_1 = \frac{r}{t_j}$, $u = t_j$ and $\Theta_1 = \Theta$ in

$$u^{n-2}G((uR_1,\Theta_1),(uR_2,\Theta_2)) = G((R_1,\Theta_1),(R_2,\Theta_2)) \quad ((R_1,\Theta_1),(R_2,\Theta_2) \in C_n(\Omega)).$$

When (R_2, Θ_2) approaches to $(1, \Phi_j)$ along the inward normal, we obtain

(3.8)
$$\frac{\partial G(P,Q_j)}{\partial n_{Q_j}} = \frac{1}{t_j^{n-1}} \frac{\partial G}{\partial n_{Q_j'}} \left(\left(\frac{r}{t_j}, \Theta \right), (1, \Phi_j) \right).$$

If $\frac{1}{2}t_j \leq r \leq 2t_j$, then

$$t_i^{n-1}\mathbf{P}_{Q_j}(P) \le M' \quad (P = (r, \Theta) \in L; \ j = 1, 2, \ldots)$$

for some constant M' and hence

$$|g_j(P)| \leq M \quad (P \in L; \ j = 1, 2, \ldots).$$

Finally, even if there is a j such that $d(P_j) > \frac{1}{2}|P_j|$, there also exists a J such that $d(P_j) \leq \frac{1}{2}|P_j|$ for every $j \geq J$. Define h_2 by

$$h_2(P) = \sum_{j=J}^{\infty} \mathbf{P}_{Q_j}(P) \frac{\{d(P_j)\}^n}{|P_j|^{1-\alpha_{\Omega}}} \quad (P \in C_n(\Omega)),$$

which satisfies

$$h_2(P_j) \ge AK_{\infty}(P_j) \ \ (j \ge J) \ \ ext{and} \ \ \inf_{P \in C_n(\Omega)} \frac{h_2(P)}{K_{\infty}(P)} = 0.$$

Put $\gamma = \max_{1 \leq j < J} K_{\infty}(P_j)$. Then the function $h(P) = h_2(P) + \gamma$ is a positive harmonic function on $C_n(\Omega)$ such that

$$\inf_{P \in C_n(\Omega)} \frac{h(P)}{K_{\infty}(P)} = 0$$

and

$$h(P_j) \ge \min\{A, 1\} K_{\infty}(P_j) \quad (j = 1, 2, \ldots)$$

from which it follows in the same way as above that

$$\inf_{P\in E}\frac{h(P)}{K_{\infty}(P)}>0.$$

Proof of $(iii) \Rightarrow (i)$.

Suppose that E does not characterize the positive harmonic majorization of $K_{\infty}(P)$. Then there exists a positive harmonic function h(P) in $C_n(\Omega)$ such that

$$a = \inf_{P \in C_n(\Omega)} \frac{h(P)}{K_{\infty}(P)} < \inf_{P \in E} \frac{h(P)}{K_{\infty}(P)} = b.$$

If we put $v(P) = h(P) - aK_{\infty}(P)$ $(P \in C_n(\Omega))$, then v(P) is a positive harmonic function on $C_n(\Omega)$ satisfying $\inf_{P \in C_n(\Omega)} \frac{v(P)}{K_{\infty}(P)} = 0$. Let ρ be any positive number satisfying $0 < \rho < 1$. For any $P \in E_{\rho}$, there exists a point $P' \in E$ such that $|P - P'| < \rho d(P')$ and hence

 $\left(\frac{1-\rho}{1+\rho}\right)^n \frac{v(P')}{K_{\infty}(P')} \le \frac{v(P)}{K_{\infty}(P)}$

by Harnack's inequality. (e.g. Armitage and Gardiner [5, Theorem 1.4.1]). Hence we have

 $\inf_{P\in E_\rho}\frac{v(P)}{K_\infty(P)}\geq \left(\frac{1-\rho}{1+\rho}\right)^n\inf_{P\in E}\frac{v(P)}{K_\infty(P)}=\left(\frac{1-\rho}{1+\rho}\right)^n(b-a)>0.$

Therefore we obtain

$$\inf_{P \in C_n(\Omega)} \frac{v(P)}{K_{\infty}(P)} < \inf_{P \in E_{\rho}} \frac{v(P)}{K_{\infty}(P)}.$$

Since v(P) is also a positive superharmonic function, E_{ρ} is minimally thin at ∞ (e.g. Miyamoto, Yanagishita and Yoshida [16. Theorem 1]). This contradicts (iii).

4. Proofs of Theorem 2 and Corollary

Proof of Theorem 2. Proof of $(i) \Rightarrow (ii)$. Suppose that

$$\int_{E_{\rho}} \frac{dP}{(1+|P|)^n} < +\infty$$

for some ρ (0 < ρ < 1). We can assume that this ρ satisfies 0 < $\rho \leq \frac{1}{2}$. Let $\{W_{i_j}\}_{j\geq 1}$ be a subsequence of $\{W_i\}_{i\geq 1}$ in Lemma 2. Then from (i) of Lemma 2 we also have

$$\int_{\cup_j W_{i_j}} \frac{dP}{(1+|P|)^n} < +\infty.$$

Since $\bigcup_j W_{i_j}$ is a union of cubes from the Whitney cubes of $C_n(\Omega)$ with ρ , we see from the second part of Lemma 1 that $\bigcup_j W_{i_j}$ is minimally thin at ∞ , and hence from (ii) of Lemma 2 that E_{ℓ} is minimally thin at ∞ . Since E characterizes the positive harmonic majorization of $K_{\infty}(P)$, it follows from Theorem 1 that E_{ℓ} is not minimally thin at ∞ , which contradicts the conclusion obtained above.

Proof of $(iii) \Rightarrow (i)$. Suppose that E does not characterize the positive harmonic majorization of $K_{\infty}(P)$. Then we see from Theorem 1 that for any ρ $(0 < \rho < 1)$ E_{ρ} is minimally thin at ∞ . Lemma 1 gives that for any ρ $(0 < \rho < 1)$

$$\int_{E_o} \frac{dP}{(1+|P|)^n} < +\infty.$$

This contradicts (iii).

Proof of Corollary. It is easy to see that if $\{P_m\}$ is a separated sequence, then

$$B(P_i, \rho d(P_i)) \cap B(P_j, \rho d(P_j)) = \emptyset \quad (i, j = 1, 2, ...; i = j)$$

for a sufficiently small ρ (0 < ρ < 1) and hence

$$\int_{E_{\rho}} \frac{dP}{(1+|P|)^n} \approx \sum_{m=1}^{\infty} \left(\frac{d(P_m)}{|P_m|} \right)^n.$$

This corollary immediately follows from (iii) of Theorem 2.

References

- [1] H. Aikawa, Sets of determination for harmonic functions in an NTA domain, J. Math. Soc. Japan, 48(1996), 299-315.
- [2] H. Aikawa and M. Essén, *Potential Theory-Selected Topics*, Lect. Notes in Math., 1633, Springer-Verlag, 1996.
- [3] A. Ancona, *Positive harmonic functions and hyperbolicity*, Lect. Notes in Math., 1344, Springer-Verlag, 1987, pp.1-23.
- [4] D.H. Armitage and \ddot{U} . Kuran, On positive harmonic majorization of y in $\mathbb{R}^n \times (0, +\infty)$. J. London Math. Soc., (2)3(1971), 733-741.
- [5] D.H. Armitage and S.J. Gardiner, Classical Potential Theory, Springer-Verlag, 2001.
- [6] V.S. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone, Mat. Sb., 66(108)(1965), 248-264; Amer. Math. Soc. Translation, (2)80(1969), 119-138.
- [7] A. Beurling, A minimum principle for positive harmonic functions, Ann. Acad. Sci. Fenn. Ser. AI. Math., 372(1965).
- [8] M. Brelot, On topologies and boundaries in potential theory, Lect. Notes in Math., 175, Springer-Verlag, 1971.
- [9] R. Courant and D. Hilbert, *Methods of mathematical physics*, 1st English edition Interscience, New York, 1954.
- [10] B.E.J. Dahlberg, A minimum principle for positive harmonic functions, Proc. London Math. Soc., (3)33(1976), 238-250.

- [11] J.L. Doob, Classical potential theory and its probabilistic counterpart, Springer-Verlag, 1984.
- [12] D.S. Jerison and C.E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. in Math., 46(1982), 80-147.
- [13] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1977.
- [14] L.L. Helms, Introduction to potential theory, Wiley, New York, 1969.
- [15] V.G. Maz'ya, Beurling's theorem on a minimum principle for positive harmonic functions, Zapiski Nauchnykh Seminarov LOMI, 30(1972), 76-90; (English translation) J. Soviet. Math., 4(1975), 367-379.
- [16] I. Miyamoto, M. Yanagishita and H. Yoshida, Beurling-Dahlberg-Sjögren type theorems for minimally thin sets in a cone, Canad. Math. Bull., to appear.
- [17] P. Sjögren, Une propriété des functions harmoniques positives d'après Dahlberg, Séminaire de théorie du potentiel, Lecture Note in Math., 563, Springer-Verlag, 1976, pp.275-282.
- [18] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970.
- [19] Y. Zhang, Ensembles équivalents a un point frontière dans un domaine lipshitzien, Séminaire de théorie du potentiel, Lecture Note in Math., 1393, Springer-Verlag, 1989, pp.256-265.