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Abstract

This paper shows that some characterizations of the harmonic méjorization of the Martin
function connected with a domain having smooth boundary without a corner e.g a ball and a
half-space also hold for a special domain with corners, i.e. a cone.

1. Introduction.

Let R and R be the set of all real numbers and all positive real numbers, respectively.
We denote by R"™ (n > 2) the n-dimensional Euclidean space. A point in R" is denoted
by P=(X,y),X = (21,%2,...,Zn-1). The Euclidean distance of two points P and Q in
R" is denoted by | P —Q|. Also | P — O] with the origin O of R" is simply denoted by | P|.
The boundary and the closure of a set S in R" are denoted by S and S, respectively.

We introduce a system of spherical coordinates (r,0),0 = (6;,6,,...,60,_;), in R"
which are related to cartesian coordinates (i, 2, ...,Zn-1,¥) by

zy =r(II}=}sind;) (n>2), y=rcosh,

and if n > 3, then
Tnii—k = (2} sinf;)cosbp (2<k<n-1),

where 0 <7 < +00, —37 <6, ; <37, andifn>3,then 0<9; <7 (1<j<n-—2).
The unit sphere and the upper half unit sphere are denoted by S"~! and S,
respectively. For simplicity, a point (1,0) on 8"~! and the set {6;(1,8) € Q} for a set
0, Q C 8"}, are often identified with © and (2, respectively. For two sets A C R, and
Q C S™!, the set
{(r,©) e R"; r€ A, (1,6) € O}



85

in R" is simply denoted by A x 2. In particular, the half-space
R, x ST ={(X,y) e R"; y > 0}
will be denoted by T,,.

To extend a result of Beurling [7] for n=2, Armitage and Kuran [4] said that a
sequence {P,,} of points P, = (Xm,Ym) € Tn, |Pm| = +00 (m — 400) “characterizes
the positive harmonic majorization of y”, if every positive harmonic function A in T,
which majorizes the function y on the set {Pn; m = 1,2,..} majorizes y everywhere in
Ty, ie.

. h(P) . h(Pnm) .
Anf Yy lﬁy—m (P=(X,y) € Tn).

They proved

THEOREM A (Beurling [7] for n = 2, Armitage and Kuran [4, Theorem 1] for n > 2).
Let {P,.} be a sequence of points { P,,},

P, = (rm, O.,) € T, 0m = (b1.m, O2.my -3 On—1);m)
in T, satisfying
(1.1) Tmet > Q@ Twm (m=1,2,..)
A for a certain a > 1. Then the sequence {P,} characterizes the positive harmonic ma-

jorization of y if and only if

(1.2) f: (cosby,m)" = +o0.

m=1

We remark that y is the Martin function at the infinite Martin boundary point oo of
T,, i.e. yis (up to a positive multiplicative constant) the only positive harmonic function
in T,, which vanishes on 8T,. The “if” part of Teorem A is a minimm principle, since
if h is a positive harmonic function h(P) of P = (X,y) € T, then

liminf  {h(P) -y} 2 0

PeTy, P—

for every P’ on 0T, and the majorization of the function y by h on the set of points P,
satisfying (1.1) and (1.2) replaces

pediminf  {h(P)-y}20.
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Hence this sort of sequence was said to be “equivalent to co” in Beurling [7] and this
type of Theorem A was called “Beurling minimum principle” in Ancona [3, p.18] and
Maz’ya [15]. This Theorem A was also extended by Maz’ya [15] to positive solutions of
a second-order elliptic differential equation in an n-dimensional bounded domain with
smooth boundary of class C1* (0 < a < 1).

Let D be a domain in R™ and A(D) be the Martin boundary of D. The Martin
function at @ € A(D) is denoted by Ko(P) (P € D). Following Armitage and Kuran [4],
we say that a subset E of D characterizes the positve harmonic majorization of Kgo(P), if
every positive harmonic function h in D which majorizes Ko(P) on E majorizes Kg(P)
everywhere in D, i.e.

MP) _ . h(P)

(1.3) A~ R,
We set

B(P,;r)={P €R"; |[P'—P|<r} (r>0)
and

d(P) = inf |P —
(P)= inf [P - Q) ‘
for any P € D. For a subset E of D and a number p (0 < p < 1) we put
(1.4) Ep = UPGEB(P, pd(P))

Dahlberg proved

THEOREM B (Dahlberg [10, Theorem 1]). Let D be a Liapunov-Dini domain in R™
and Q € 0D. If E C D, then the following conditions on E are equivalent;

(i) E characterizes the positve harmonic majorization of Kgo(P);

(i2) for every p,0< p< 1

/ P = 400
E, |P - Q!n ’

(#it) for some p,0 < p < 1
/ dP "
e = 4-00.
E, |P — Q|*

Since (1.3) is closely related to the notion of minimally thinness of E, in (1.4) (see
Sjogren [17], Ancona [3] and Zhang [19]), which is also seen in Theorem 1 of this paper,
Aikawa and Essén {2, Corollary 7.4.7] also proved Theorem B in a different way from
Dahlberg’s.
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By using a suitable Kelvin transformation which maps T, onto a ball, the following
Theorem C follows from Theorem B.

THEOREM C (Dahlberg [10, Theorem 3|). If E C T,, then the following conditions
on E are equivalent;

(i) E characterizes the positive harmonic majorization of y;

(i) for every p,0 < p <1

dP
E, (L+|P])"

= +OO,

where
Ep = UP:(X,y)GEB(Pa py);
(13t) for some p,0 < p <1

dP — 4
B A+
The methods of proving these Theorems A and B were based on the smoothness of
the boundary having no wedges e.g. a ball. For a domain having more rough boundary
e.g. a Lipschiz domain, Ancona [3, Theorem 7.4] and Zhang [19, Theorem 3] gave more
complicated results which generalize Theorem A.

For a Lipshitz domain and an NTA domain D, Zhang [19, Corollary 1] and Aikawa
[1, Remark and Theorem 1] gave a necessary and sufficient qualitative condition for a
subset E of D characterizing the positive harmonic majorization of K (P) by connecting
with minimally thinness of E, in (1.4), respectively. In his paper Aikawa says that since
a general NTA domain may have wedges, Theorem B does not hold for an NTA domain.
But when we see our results in this paper, we may ask whether quantitative Theorem B
can just be extended to a Lipshitz domain and an NTA domain.

In this paper we shall prove Theorems A and C can be extended to a result at a
corner point of a wedge i.e. a result at co of a cone. We remark that a half-space is one
of cones.

2. Statements of results.

Let Q be a domain on 8™ *(n > 2) with smooth boundary. Consider the Dirichlet
problem

(An+7)f=0 onQ

f=0 on 01,
where A, is the spherical part of the Laplace operator A,
_ 2
An — _7}___1_6_ “+ _?._ +r-2An

r Or Or?
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We denote the least positive eigenvalue of this boundary value problem by 7 and the
normalized positive eigenfunction corresponding to 7o by fo(O);

/fo)(e)dae =1,
where dog is the surface element on S"~'. We denote the solutions of the equation
2+ n—2Dt—19=0
by aq,—fa (ag,Ba >0). f @ =8%"1 thenag =1, fo=n—1and
fa(®) = (2ns;1)2 cos by,

where s, is the surface area 27™/2{I'(n/2)}~! of S"1,

To make simplify our consideration in the following, we shall assume that if n > 3,
then Q2 is a C**-domain (0 < @ < 1) on S™! (e.g. see Gilbarg and Trudinger [12, pp.88-
89] for the definition of C**-domain). By C,(Q2), we denote the set R, x  in R™ with
the domain Q on S™!(n > 2). We call it a cone. Then T, is a cone obtained by putting
Q = 8771 It is known that the Martin boundary of C, (1) is the set 8C,,(§2) U{oo}, each
of which is a minimal Martin boundary point. The Martin kernel at oo with respect to
a reference point chosen suitably is Koo (P) = r°2 fo(6) (P = (r,8) € C,(R)).

A subset E of a domain D in R" is said to be minimally thin at Q € A(D) (Brelot
[8, p.122], Doob [11, p.208]), if there exists a point P € D such that

Ri oy (P) = Kqo(P),

where RE o()(P) is the regularized reduced function of Ko (P) relative to E (Helms [14,
p.134}).

The following Theorem 1 which is used to prove Theorem 2 is a specialized version
of Aikawa [1, Theorem 1]. Since his proof is so complicated because of an NTA domain
we shall give a simple proof based on a function which is a conical version of Dahlberg’s
[10, pp.240-241].

THEOREM 1. Let E be a subset of C,,(Q). The following conditions on E are equiva-
lent:

(i) E characterizes the positive harmonic majorization of Keo(P);

(i1) for any p, 0 < p < 1, E, is not minimally thin at oo,

(43i) for some p, 0 < p < 1, E, is not minimally thin at co .

The following Theorem 2 extends Theorem C.

THEOREM 2. Suppose that E C Cn(Q2). Then the following conditions on E are
equivalent:
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(i) E characterizes the positive harmonic majorization of Ko (P);
(i1) for every p (0 < p < 1),

.__Eii___ — +OO
5 (L+|P)r
(i41) for some p (0 < p < 1),
il = +00
5, (L+[P)~

A sequence {Py} of points P, € D is said to be separated, if there exists a positive
constant ¢ such that

‘P‘i - PJI 2 Cd(P‘&) (7'1.7 =12,.,t= .7)
(e.g. see Ancona (3, p.18], Aikawa and Essén [2, p.156]).

From Theorem 2 we immediately have the following Corollary which extends Theorem
A.

COROLLARY. Let {Pn}, Pm € Cn(SY) be a separated sequence satisfying
inf |Py| > 0.
m
The sequence {Pn} characterizes the positive harmonic magorization of Keo(P) if and

only if 2 (d(Pm))" o
Bl )

m=1

3. Lemmas and proof of Theorem 1.

Let f and g be two positive real valued functions defined on a set Z. Then we shall
write f = g, if there exists two constants A;, A2,0 < A; < Aj such that A;19 < f < Ayg
everywhere on Z. For a subset S in R", the interior of S and the diameter of S are
denoted by int S and diam S, respectively. For.two subsets S; and S; in R", the distance
between S; and S, is denoted by dist(S;, S2). A cube of Mj is of the form

0275, (L +1)27%] x -+ x 275, (I, + 1)27%] (k=0,£1,%2,...)

where [y, ...,1, are integers. Let p be a number satisfying 0 < p < % A family of the
Whitney cubes of C,,(2) with p is the set of cubes having the following properties;
(7') Us W; = C‘n(Q)7
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(i) int W;Nint W =0 (2 =k),
(i61) [£] diamW; < dist(W;, R" \ Ca() < 2([] + 1) diamW;,
where [a] denotes the integer satisfying [a] < a < [a] + 1 (Stein [18, p.167, Theorem 1]).

The following Lemma 1 is fundamental in this paper.

LEMMA 1 (I.Miyamoto, M.Yanagishita and H.Yoshida [16, Theorems 2 and 3]). Let
a Borel subset E of C,(Q) be minimally thin at oo. Then we have

dP
(3.1) /;3 (TW < o0

If E is a union of cubes from a family of the Whitney cubes of Cr(Q) withp (0 < p < %),
then (3.1) is also sufficient for E to be minimally thin at co.

For a set E' C Cn(Q2) and a number p (0 < p < 3), define E, and Ep as in (1.4).

LEMMA 2. Let {W;}i>1 be a family of the Whitney cubes of C,,(Q) with p. Then there
ezists a subsequence {W;;};>1 of {W;}i>1 such that
(Z) LJ‘7 Wj,j C Ep,
() Wiy NEs =0 (j=1,2,...), Es CU;W,

Proof of Lemma 2. Let k be an integer. Let ¢ = ([%} + 1) and set

I ={P € Co() ;ev/n27* < dist(P,0C,(Q)) < ev/n2 1Y
Let {W;, };>1 be a sequence of all Whitney cubes of {W;};>; such that
Wi, ﬂEe =0 (j=12,...).

Then it is evident that (i) holds. We shall also show that this {W;,};>; satisfies ().
Take any W;, and let W, be a cube of My,. Since Wy, N E. =0, there exists a point
Py, in E such that

(3.2) B(Pyy, d(P;)) 0 Wi, =0.
Then Pj, € Ixy41 U Iy U Iiy—;. Because, if P € Ik and W;, is a Whitney cube satisfying

W ﬂB(P Bd(P)) = (), then W € M1 UMz UM,
If I:Jjo € Ixy+1, then

3 . 3 8 _ -
pi(Fs) = Gi(Py) = GoiPe) > o ([5] 1) Rzt > R

Since the diameter of W, is v/n27%, we have from (3.2) that W;, C B(P;,, pd(P},))
and hence W, C E,. Even if P, € Iko or Pj, € Iy—1, we sumlarly have Wy, C E,.
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Thus all cubes of {W;,};>1 are contained in E,, which is just (1).

Proof of Theorem 1. Proof of (i)=> (ii). First of all, we shall remark the following
fact. Let ¢ be a positive constant. Since E characterizes the positive harmonic majoriza-
tion of Keo(P), E1 = {P € E; Kx(P) > c} also characterizes the positive harmonic
majorization of K. (P). For otherwise there exists a positive harmonic function h(P)
on C,(?), satisfying

WP . (P
@= Pel({‘lf(ﬂ) Koo(P) < Plglfﬂjl Ko (P)

If we put hi(P) = h(P) +bc (P € Ca(€)), then hy(P) > bKoo(P) for all P € E and

hence h(P) ha(P)
1 . 1
rdlo Ko@)~ ¢S B RL(P)

which contradicts the assumption that E characterizes the positive harmonic majoriza-
tion of Koo(P). If we can show that for any p (0 < p < 1) (E}), is not minimally thin at
oo, then for any p (0 < p < 1) E, is also not minimally thin at co. Hence by applying
the following argument to E; if necessary, we may assume that Koo (P) > c for every
P € E, without generality.

Suppose that for some number p (0 < p < 1) F, is minimally thin at co. Then to
obtain a contradiction to (i) we shall make a positive harmonic function ~(P) on C,(Q2)
satisfying '

. h(P) . . h(P)
relo Ko@) < Bk Ka(P)
If E is a bounded subset of C,(Q), then let h be a constant function. When E is
unbounded, we shall follow Dahlberg [10, p.240] to make it.

We can assume p < ;. Let {P;} be a sequence of points P; which are the central
points of cubes W;, in Lemma 2. Then {P;} can not accumulate to any finite boundary
point of Cn(2) and hence |Pj| — +oo, because P; € E, from (i) of Lemma 2 and
Koo(P) > c for any P € E. Since E, is minimally thin at co and

o, TP (5) G=r2e

Lemma 1 and (i) of Lemma 2 give

(3.3) j: (d_%’_,%)" < +o0.

Now we shall assume that d(P;) < 1|P;| (j = 1,2,...). The general case will be
treated at the end of this proof. Take a point Q; = (tj,®;) € 0Ca(Q) \ {O} satisfying

1P —Qil =d(Py) (G=1,2,...).
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Then we also see |Q;| > £|P;| and hence |Q;| — +00 (j — +00). We define a function
h(P) by

9G(P, Q;

h(P):iPQj(P)M Po,(P) = 5 ) (Pec.o)),

R

3

where G(Py, P,) (P, P, € Cn(f2)) is the Green function of C,(2) and »2- Q denotes

the differentiation at @ € 0C,(f2) along the inward normal into C,(2). Then h is
well-defined and hence is a positive harmonic function on C,(2), because at any fixed
P = (r,0) € C,(Q)

—Bo—-1 O
PQ].(P) ~ r"‘ﬂfg(e)tj Pa la’l'hp- fQ(q’.‘i)

for every @; satisfying t; > 2r (see Azarin [6, Lemma 1]).
Now we shall show

. h(P)
sz K (P) > 0.
To see first
h(F;)
(3.4) °O(P)>A G=12,...)

for some positive constant A, denote the Poisson kernel of the ball B; = B(P;,d(P;)) by
P;(P,Q) (P € B;j,@ € 0B;). Then we see

PQj(P) 2PJ(P7Q_1) (PEBJ; j= 1a27"')

and hence
Po,(P) 2 Pi(P;, Q) = s; {d(P)} ™ (1=1,2,...).
Since
fa(®) = d(P) (P'=(1,0),0 € ),
we obtain

AP > Pa,(R) [ > AKwl(P) (1=1.2...)

Next take any P € E. Then by (i) of Lemma 2 there exist a point P; such that
1.
|P— Bj| < ydiam(W,,) < 6d(F)

-1 .
where § = 1 [—] . Hence we see

1-6 | 146
hP) 2 gihF) and KeolP) < r— g Kool )
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from the Harnack’s inequalities (see Armitage and Gardiner [5, Theorem 1.4.1]). Thus

we have ]?ifl))) S G;g)";ﬁfg) 2 (%_J:r—g)nA

from (3.4), which shows

_h(P)

r.m Y

h(P)
To show elélf(n) Koo (P)

We shall show

= 0, fix a ray L which is inside Cr(f2) and starts from O.

. h(P) _
(3:5) ;P|—»££ PeL Koo(P) 0
Put P, (P)
5(P) = 3 1B (PECa@,i=1.2,.)
Then we have h(P) - i(P,)
Ku?) ~ 2% (77 )

Since

(3.6) Py, (P) ~

;) (P =(r,0) e Ch(Q),r > 2t;)

(see Azarin [6, Lemma 1]), we see

;P|—hluoo, PeLg’(P) =0

for any fixed j. Hence if we can show that

for some constant M, then we shall have (3.5) from (3.3).
Now we shall prove (3.7) by dividing into three cases. If r <% 4, then we have

P, (P) = rat;" 1fn(e)

fn(q’y)

and hence we have
lg;(P)] <M (P=(r,8)¢eCu(Q),j=12,...).
If r > 2t;, then we have

(P <M (P=(r,0)€Ca(Q); j=1,2,...)
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from (3.6). Lastly, put R, = t%, u=t; and ©; = O in

un_QG((uRl’ el): (UR27 @2)) = G((Rls 81)’ (R27 @2)) ((Rla 61)7 (R2> 62) € Cn(Q))

When (R, ©,) approaches to (1,®;) along the inward normal, we obtain

(3.8) oG(PQ;) 1 0G (({-,e),a,@j)).

6’nQ ; - t?_l 6TLQ; j

If 2t; < r < 2t;, then
t;-'_lPQj(P) <M (P=(@r0)el;j=12,...)
for some constant M’ and hence
G(PI <M (PeL;j=12..).

Finally, even if there is a j such that d(P;) > 3|P;/, there also exists a J such that
d(P;) < 3|P;| for every j > J. Define hy by

m(P) =3 Po,(P)pis (P € Cu(e)

which satisfies

ho(P) _
PeCa(@) Koo(P)

ha(P}) > AKwo(P;) (j 2 J) and

Put v = max;<j<j Koo(P;). Then the function h(P) = hy(P)+ 7 is a positive harmonic
function on C,(f2) such that
h(P) _

PeCn(@) Kog(P) 0

and
h(R?) 2 min{A’l}Koo(‘Pj) (G=12...)

from which it follows in the same way as above that

. . h(P)
Proof of (iii)=> (7).
Suppose that E does not characterize the positive harmonic majorization of K (P).
Then there exists a positive harmonic function A(P) in C,(f2) such that

h(P) < inf h(P)

a= e Ko(P) ~ PeE Koo(P) b.
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If we put v(P) = h(P) — aKn(P) (P € Cn(f2)), then v(P) is a positive harmonic
function on C,,(£2) satisfying Peicrif( o Ktoif()}’)
0 < p < 1. For any P € E,, there exists a point P’ € E such that [P — P'| < pd(P') and

hence n
1-p\  v(P) < v(P)
1+p) Keo(P) ™ KeolP)
by Harnack’s inequality. (e.g. Armitage and Gardiner [5, Theorem 1.4.1]). Hence we

have
o(P) ><1—-p)".nf v(P) _(1~P)"(b_a)>o.

= 0. Let p be any positive number satisfying

nf =
Pk, Koo(P) = \1+p) PeEKo(P) \1+p
Therefore we obtain P) (P)
v v
pecn@) Kog(P)  Peb, Koo(P) |
Since v(P) is also a positive superharmonic function, E, is minimally thin at oo (e-g.
Miyamoto, Yanagishita and Yoshida [16. Theorem 1]). This contradicts (ii).

4. Proofs of Theorem 2 and Corollary

Proof of Theorem 2. Proof of (:)=> (4¢). Suppose that

dP

—— < +
B (LE|P)"

for some p (0 < p < 1). We can assume that this p satisfies 0 < p < 3. Let {W;;}j>1 be
a subsequence of {W;};>, in Lemma 2. Then from (i) of Lemma 2 we also have

[
— 00.
U;Wi, (1+|P})"

Since U;W; is a union of cubes from the Whitney cubes of Cn(Q2) with p, we see from
the second part of Lemma 1 that U;W;; is minimally thin at oo, and hence from (i) of
Lemma 2 that E¢ is minimally thin at co. Since E characterizes the positive harmonic
majorization of K. (P), it follows from Theorem 1 that E¢ is not minimally thin at oo,
which contradicts the conclusion obtained above.

Proof of (iii)=> (i). Suppose that E does not characterize the positive' harmonic
majorization of K. (P). Then we see from Theorem 1 that for any p (0 < p < 1) E, is
minimally thin at co. Lemma 1 gives that for any p (0 < p < 1) ’

dP

—— < 4-00.
5 AP
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This contradicts (ii2).

Proof of Corollary. 1t is easy to see that if {P,} is a separated sequence, then
B(F,, pd(F,)) N B(Fj, pd(F;)) =0 (,5 =1,2,..; i =)

for a sufficiently small p (0 < p < 1) and hence

P i (d(Pm))”
g, L+|P)* S\ |Pml )
This corollary immediately follows from (iii) of Theorem 2.
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