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Riesz decomposition and limits at infinity for p-precise functions
on a half space

IRBRWEFRFEE  ABEESL (Yoshihiro Mizuta)
LB RBEFH F#t # (Tetsu Shimomura)

1 Introduction

Let u be a nonnegative superharmonic function on D = {z = (z1,...,Tn_1,Zn) €
R";z, > 0}, where n 2 2. Then it is known (cf. Lelong-Ferrand [6]) that u is uniquely
decomposed as

um=mwﬁpmww@+éfmmww,

where a is a nonnegative number, x (resp. v) is a nonnegative measure on D (resp.
0D), G is the Green function for D and P is the Poisson kernel for D. The first author

showed in [9] that if 0 S 8 £1,1-n<y<1and / Yndu(y) +/ ly["dv(y) < oo,
then P op
; =B | |nt7—2+8 - =
ool T |z| [u(z) — azn] =0

with a suitable exceptional set E' C D. For related results, we also refer the reader to
Essén-Jackson [3, Theorem 4.6], Aikawa [1] and Miyamoto-Yoshida [8].

Our main aim in this paper is to establish the analogue of these results for locally
p-precise functions u in D satisfying

/ Vau(z)Pzldz < oo, (1)

where V denotes the gradient, 1 < p < oo and —1 < v < p — 1 (see Ohtsuka [15] and
Ziemer [17] for locally p-precise functions).

2 Fine limits at infinity

Denote by DP? the space of all locally p-precise functions on D satisfying (1). Consider

the kernel function
K,(z,y) = |z — y|' "y, 7.

To evaluate the size of exceptional sets, we use the capacity

Cre,olBiG) =inf [ g(u)? dy,
D
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where E is a subset of an open set G in D and the infimum is taken over all nonnegative
measurable functions g such that g = 0 outside G and

/ K, (z,y)g(y)dy 2 1 forallz € E.
D

We say that E C D is (K., p)-thin at infinity if

3 27ROy (B Dy) < 0o, (2)

=1 :
where ;= {r € E:2° S |z| <2} and D;={z € D: 2i-1 < |z| < 2°+2}
Our first aim in this paper is to establish the following theorem.

THEOREM 1 (cf. [4]). Letp>1, -1 <y<p-1landn +"y —p20. Ifu e D,
then there exist a set E C D and a number A such that E is (K,,p)-thin at infinity;

lim || TP /P[y(z) — A] =0
|z|—=o0,2€D-E

in case n +y —p >0 and
lim (log |z)) " [u(z) — A] =0

|lz]—o00,z€D~
in case n ++v — p =0, where p' =p/(p — 1).

In fact, if 1 < ¢ < p and ¢ < p/(1 + v), then Hélder’s inequality gives

1-q/p a/p
/ |Vu(z)|?dz < (/ z; 19/ =9 da:) (/ |Vu(z) [Pz} d:c) < 00
G G G .

for every bounded open set G C D. Hence we can find a locally g-precise extension &
to R™ such that u(a2’, z,) = u(z’, z,) for z, > 0 and (', z,) = u(z', —z,) for r, <O0.
We denote by B(z,r) the open ball centered at z with radius r > 0. In view of [13], we
can find a number a such that

_ % T; —y;i OU - / ( T; — Yi “yi) ou
T(z) = cn ——— ——(y)dy + Cy — — (y) dy+a
() Z‘:‘ /3(0,1) lz — y[ ayi( ) ; a—-B(0,1) |z —yl ly|» ) Oui

for almost every z € R™. Here we see that the equality holds for every x €D except
that in a set of Ck, p-capacity zero. Now Theorem 1 is a consequence of [4].

3 Riesz decomposition

We denote by D5 the space of all functions v € D having vertical limit zero at almost
every boundary point of D, and by HD?? the space of all harmonic functions on D in
DP7. As in Deny-Lions [2], we have the following Riesz decomposition of u € DP7.
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THEOREM 2. A function u € DP? is uniquely represented as
u = ug + h, (3)

where uy € D§" and h € HD?". More precisely, for fixed { € D,

B C"Z/ (Ix = éi-_ yyf?) ay,‘y) W
ha) = ZC"Z/(m—ytn‘é y:n) 5 8) du+ 4

where T = (Z1, ..., Tn-1, —%n) fOr £ = (Z1, ..., Tn_1,Zn), Cn = I'(n/2)/(27™/?) and A is a
constant depending on u and §.

As applications we are concerned with the limits at infinity of functions in D" and
HD?".
Consider the kernel function

ko (z,y) = 2 Py Ple =yl "z -yl

for z and y in D. To evaluate the size of exceptional sets, we use the capacity

Ciy. p(E;G) = inf / o(y)? dy,
D

where E is a subset of an open set G in D and the infimum is taken over all nonnegative
measurable functions g such that ¢ = 0 outside G and

/ kg (z,y)g9(y)dy 2 1 forall z € E.
D

We say that E C D is (kg,,p)-thin at infinity if

(o *]
> 2mintr=U=0nC, (Ei; Di) < co. (4)
i=1
THEOREM 3. Letp > 1, -1 <y<p—1and0< B £ 1. Ifu € D}, then there
exists'a set E C D such that E is (kg,,p)-thin at infinity and

lim z‘ﬁla:|("+7"(1‘ﬂ)”)/”u(x) =0.
|z|—00,2€D~E n

THEOREM 4. Let p > 1, -1 <y <p—-1landn+vy—p20. If h € HD??, then
there exist a number A such that

lim g™ P/Pp(z) — A =0

|z| +o0,z€D
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in casen+y—p >0 and
lim o (max{log(1/z,),log 1z|}) 7 [h(z) — A] =0

|z|—00,x

in casen+vy—p=0.

REMARK 1. Let p>1, -1 <y <p—1andn+~—p > 0. Then we can find a
function h € HDP such that

limsup |z|™t"P/Ph(z) = 00
|z}—00,z€D

and

lim (™ /PR(z) =0,
jz}—o00,2€D

For proofs of these theorems, we refer to {14].

4 Examples of thin sets at infinity

We are concerned with the measure condition on sets which are thin at infinity.
For a measurable set E C R", denote by |E| the Lebesgue measure of E. Then we
can prove that

|E|1-0-2/mP < MCy, , 5(E; Do) ()
and
Chy.,p(TE; Do) = rtr=0=AeCy (E; Do) (6)
whenever E C DN B(0,2) — B(0,1) and 7 > 0. Hence we have the following result.
PROPOSITION 1. Let 0 < 8 <1 and —1 <y < p— 1. If (4) holds, then

/(B -A/me
1 < ,
Ya) e

=1

where E; = E N B;4; — B; with B; = B(0,2*) N D.
If E is well situated, then we have stronger results as in the following.

PROPOSITION 2. Let 0 S 8 < land -1 <y <p-—1 Set F=UZ,B;, where
B; = B(zj,s;) with 2 < |z;| < 27! and 1; = (zj)n > 25;. Ifp <nandF is
(kg ., p)-thin at infinity, then

(%) @) <o ®

=1
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conversely, if (7) holds, then F' is (ks ,p)-thin at infinity.
ProOF. First we show that if p < n, then
s"PrfPtT < MGy, p(B; Do) (8)

for B = B(zg,s) with 1 £ |zo] < 2 and r = (zg), > 2s. Let g be a nonnegative
measurable function such that ¢ = 0 outside Dy and

[ Eaaevg dy 21
D

for every x € B. Then we have by Fubini’s theorem

1Bl = L(/l)okﬂ,v(w,y)g(y)dy) dx

= / g(y)y""? (/ i Ple - y' "z - yl‘ldx) dy
Do B
< Mr‘“"/ 9(y)y"® (/ |z —y|' |z - yrldx) dy.
Do B

We set
I(y) = / o — y|'""[7 — y|"dz

J= / 9(y)y " (/ |z —y|' "z — yl“ld:r> dy.
Dy B

If ly — zo| < 3s/2, then

and

1) st [ -yl e S Mrts,
B
so that we have by Holder’s inequality

J, = 9()y;"?1(y)dy

—/{yEDo=Iy—zo‘1<38/2}

< MT‘IS/ 9(y)y;"Pdy
{y€Do:ly—x0|<3s/2}

) 1/p’ 1/p
Mr~'s ( / Y " ”’dy) ( / g(y)"dy)
{y€Do:|ly—zo|<3s/2} Do

1/p
0

IA

HA
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If |y — zo| = 3s/2 and y,, £ ,/2, then |z —yl 2 M|z =yl + zn) 2 M(|zg — y|+ 1), so
that

Ly) = / & — 'z — y| Nz
{z€B:yn Sz /2}
< M(lh -yl +7)"s"

Hence we have by Holder’s inequality

Jy = 9(y)yn"? L (y)dy

/{yEDo=|$o—y|§33/2}
Ms"/ 9y P (lxy — y| + 1) "dy
Do ’

, ) 1/p 1/p
Ms" (/ Y PP (lzy — y| +7)7F ”dy) (/ g(y)”dy>
. Do Do

1/p
Msn,r—’Y/P"n/P (/ g(y)pdy)
Do
1/p
s ([ o)
Do

since p < n. If |y — zo| = 3s/2 and y, > Z./2, then |z — y| 2 M(|zo — y| + ) and
|z — y| 2 M(|zo — y| + ), so that

Li(y) = / |z —y|' "z — y| da
{z€B:yn>zn/2}

< M(jzo -yl + 8) " (lmo — yl + 1) 71"

A A 7A

A

Consequently, it follows that

Jy = 9(¥)y "I (y)dy

/{yGDo:lxo—yl§38/2,yn>r/4}

< 9@y P (jzo — yl + 8) " (lzo — yl + 7)1y

Ms"/
{yGDo:|y——mol§3$/2,yn>1‘/4}
Setting t = |z — y| and |(Zo)n — Yn| = t cos @, we note that

(t +7)cos8 £ |(Zo)n — Yn! + (T0)n £ 3Yn < 3(r +1)

when y, > r/4. Using Holder’s inequality and applying the polar coordinates about z,

we have
0o ) 1/p' 1/p
Ms" (/ (t+s)P O™ (t + 1) (“"/””1)t”‘1dt) (/ g(y)”dy)
3s/2 Do

1/p
MsPsl—/Pp=1-7/p (/ g(y)”dy)
Do .

J3

HA

HA
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since p < n. Therefore we obtain

1/p
IB, _<__ Mr“ﬁ””'/ps(p"")/”s” (/D g(y)pdy) _

0

Hence it follows from the definition of Cy, _, that
rfrivgn—p < MCh,_, »(B; Dy),

as required.
To obtain the converse inequality, note that forze B

/B 21z — T — gy Ry 2 M-Sl / - y[*"dy
B
> MrFlrg

so that

B

Thus the proof is completed.

PROPOSITION 3. Let 0 £ S £ 1 and ~l1<y<p-1 SetV =UR B(zjr;)ND
with z; € 0D, 27 < |z;] < 2+ and 0 < r; £ 2 IfV is (kg., p)-thin at infinity, then

i (%)nﬂ—(l—ﬂ)p < 00; ©)

i=1
conversely, if v > (1 — B)p and (9) holds, then V is (kg,, p)-thin at infinity.

PROOF First we show that if B, = B(xo,r) N D with 7o € 8D, 1 £ |zg| < 2 and
0<r <2 then

7'71+7_(1_.,6)p g MCkﬂ'-y,p(B+; DO) (10)

Let g be a nonnegative measurable function such that g = 0 outside D, and

[ kaotz,v)atw) dy 2 1
D

for every z € B,. Then we have by Fubini’s theorem

B < / ( Dokﬂ,7(x,y)g<y>dy) dz

= / @)y "? (/ i Plz -y - yl‘ldx) dy
Do B+



Here we see that if |zg — y| > 2r, then
/ 2Pl — y|' "z — y| Mz £ M|zo — y| A
By

and that if |zo — y| £ 2r, then

/ o} Plr —y' ™z — y| Mz £ Mrl_ﬂ/ lz — y|' (| — y| + yn) "'dz

< MriPlog(4r/yn).
Then we have by Holder’s inequality

J o= / o(9)y>" 1og(4r /ya)dy
{y€Do:|zo—y|S2r}

4 1/p
ri-s ( / {log<4r/yn)}"'y;w’/"dy) ([ stwrar)
{y€Do:|zo-ylS2r} Do

1/p
Mrl=B-/ptn/p ( /l‘) g(y)”dy)
0

fIA

HA

and

J, = ploAen / o)u"Plz0 — yI~"dy
{y€Do:jzo-y|>2r}

) ) 1/p 1/p
rl=ftn ( / Y P P\zo — y| 7P "dy) ( / g(y)”dy)
{y€Do:|zo~y}>2r} Do ‘

1/p
<  Mpl-B-v/pnly (/ g(y)”dy) )
. Dy

Therefore we have

HA

l/p
|B,| £ Mr!i-B-v/pn/v ( /D g(y)”dy> :
(]

so that it follows from the definition of Ck,,, p that
) < MCk;;,-,,p(B+; Dy),

as required.
To obtain the converse inequality, note that for z € B,

/ 22|z — y|* "z — y| 7y Pdy
By

/ 2l Pz — y' Mz — y Ty P dy
ByNB(z,2./2)

v

Mgl P-1lr / |z — y|' "dy

B4iNB(z,zn [2)
Mx,ll"ﬂ"'/” Z— M,.l-ﬂ—"r/P,

v

105
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since 1 — 3 < v/p. Hence it follows from the definition of Ci, ., p that

Chpp(Bi Do) £ Myr==At7 [ gy = pppntr=(-6)p,
By

Thus the proof is completed.

For a nondecreasing function ¢ on R! such that 0 < ¢(2t) £ M(t) for ¢ > 0 with
a positive constant M, we set

T,={z=(,z,); 0< z, < o(jz'D}.

PROPOSITION 4 (cf. Aikawa [1, Proposition 5.1]). Let 0 < 8 < 1 and p(1—8) —1 <
y<p-Ll Assume further that

lim ('L(Q = 0. (11)

r—oo T

Then T, is (kg,y, p)-thin at infinity if and only if

/100 (@)p(—uﬂ)ﬂﬂ ﬂ ‘o (12)

t t

For example, ¢(r) = r{log(1 + )]~ satisfies (12), when 6{p(—1 + 8) + v + 1} > 1.

5 Limits of monotone functions

Finally we consider the limits at infinity for monotone BLD functions. A continuous
function u is called monotone on D in the sense of Lebesgue (see [5]) if for every relatively
compact open subset G of D, ‘

max ¥ = maxu and min v = min u.
GUAG G GUAG G

For examples and fundamental properties of monotone functions, see [12] and [16].
Among them the following result is only needed for monotone functions.

LEMMA 1. If u is a monotone BLD function on B(z,2r) and p > n — 1, then

)~ u@P < M [ Tu)pay (13

B(z,2r)

for every z € B(z,r).
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THEOREM 5. Letp>n—1, -1 <y<p-1landn+~vy—p20. Ifu is a monotone
function on D satisfying (1), then there exist a number A such that

i, H ) - 4]0

in casen+vy—p> 0 and
lim  (max{log(1/z,),log Ix|})“1/”l [u(z) — A] =0

|z|—=o0,2€D

incasen+vy—p=0.

PrOOF. For z € D, let r = |z|, C(z) = (0,...,0,7) and pp(z) denote the distance
of z € D from the boundary 8D, that is, pp(z) = z,. We take a finite covering {B,},
Bj = B(Xj,4"1pD(Xj)), such that

(i) X, =z and Xy41 = C(2);
(ii) r/2 < |2z| < 2r for z € A(r) = U;2B;, where 2B; = B(X}, 27 pp(Xj));
(iii) B;j N Bj41 # 0 for each j;

(iv) Zj X28; is bounded, where x4 denotes the characteristic function of A.

By the monotonicity of u, we see that

lu(y) — u(X;)| € Mpp(X;)E=™1P / Vu(z)Pdz

2B;

for y € B;. First suppose n+vy—p > 0. Using Theorem 1, we can find a number A and
01(56) such that C1 ($) € BN+1 and

lim ||t P/P[y(Ci(z)) — A] = 0.

|zt 00
Then we have by H&')lderfs inequality ‘ 3
u@) = Al S () — u(Xo)| + fu(X2) = u(Xa)| 4+ -+ u(Xw) = u(Xna)]
+u(Xn 1) — w(Ci(2))] + [u(Ci(x)) — A

1/p |
MY po(X;)0 e ( | Wu(z)wm(z)mz) + [u(Ci(e)) ~ A

A

HA

) l/p' . 1/p
M X )P (p-n=)/p Vulz)P Tdz

(;pn( ) ) ([ 1wucrrooora:)
+[u(Ci(z)) — 4] o

1/p
Mg®P-n-"/p (/ |Vu(z)|”pp(z)"dz) + |[u(Ci(z)) — Al
D-B(0,r/2) ’

HA
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which proves
lim z{"P/P[y () — A] =0,
jz|—00

as required.
The case n + v — p = 0 can be treated similarly.
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