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The main purpose of this talk is to give
the asymptotics at infinity of a Green function for an elliptic equation with
periodic coefficients on R?.

The second purpose is to completely determine the Martin compactifica-
tion of R?

with respect to an elliptic equation with periodic coefficients by usmg the
exact asymptotics at infinity of the Green function.

1. Asymptotics at infinity of Green functions
Let

b d 9
Z 8 Jk(x)a;;) - .ij(z)é—i; + ()

Fk=1
= -V -a(z)V - b(z) - V + c(z)

be a second order elliptic operator on R¢ with smooth real-valued coeffi-
cients which are Z%-periodic. Here

d> 2,

V = (8/0zy,---,0/0z4),
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a(z) = (aju(2))] 1> and b(z) = (b;(2))j=1-

For each ¢ € C¢, define an operator L(¢) on the d-dimensional torus
T? = R¢/Z4 by

L(¢) = e %= Le¥®

= —(V+i)-a(z)(V +1i¢) = b(z) - (V+ i) + c(z),

where ¢ = /—1 is the imaginary unit.

L(¢) : a closed operator in L?(T%) with the domain H?(T?)
H?(T?) : the Sobolev space of order two

L(¢)* : the formal adjointof L(()

For 8 € RY,

E(B) : the principal eigenvalue of L(i3)

By the Krein-Rutman theorem, E(f) is a real eigenvalue of multiplic-
ity one such that the corresponding eigenspace is generated by a positive
function. ‘

E(B) is also an eigenvalue of L(i3)*.

Cp = {u€ C*R%; Lu=0and u>0in R%}.

L : subcritical when a positive Green function for L on R? exists (In this
case, Cr # 0.)
L : critical when a positive Green function for L on R4 does not exist but
CL#0
For A € R, put
'y = {8 € R% 3 € Cp_, of the form ¥(z) = e#“u(z), where u is periodic}
(Note: L(iB8)u = Au on T¢ and E(B) = ))
K, = {8 € R% 3y € C*(RY such that (L — A)y > 0and 9(z) =
e #*u(z) > 0, where u is periodic}
Define K} and I'j for L* — X analogously to K) and I'; for L — A.
First suppose that supg E(8) > 0. Then
L : subcritical
Vs € S%! (the unit sphere), 3,3, € I'g such that supger, B8 =5, - 5.
{€s1,: -, €s4-1,5} : orthonormal basis of R? (Vs € S‘?"l)
For 8 € R¢,
ug : positive solution to L(i8)u = E(B)u
vg : positive solution to L(if)*v = E(B)v
For functions u and v in L?(T%), put (u,v) = [ u(z)9(z)dz.



Theorem 1 Suppose that supg E(B) > 0. Then the minimal Green function
G of L on R has the following asymptotics as |z — y| — oo:

G( ) _ e_(w"'y)‘ﬁs
SV e — @R
VE(8,)|-9r2 ug, (2)v5, (y)

(det(—e,,; - Hess E(B,)esk)jk) /2 (ug,,vs,)

x(1+O0(lz - y|™)),
where s = (z — y)/|z — y|.

Here, let us recall some more facts.
Ac : The generalized principal eigenvalue of L on RY, i.e.

Ac = sup{A € R; L — )X is subcritical }

Then —o0 < A < 00, L — A is subcritical for A < A, and L — )\, is subcritical
or critical.

The formal adjoint operator L* of L is subcritical (or critical) if and only
if L is subcritical (or critical). | ‘

The generalized principal eigenvalue of L and L* coincide.

Theorem (Agmon & Pinsky) (i) If A < A, then K, is a d-dimensional
strictry convex compact set with smooth boundary and

Ty = 0K,.

(ii) If A = A, then
T = Ky = {B} for some G, € R4,

(iii) If A > X, then T’y = K, = 0.

(iv) The function E(f) is real analytic and strictly concave.

Its Hessian Hess E((3) is negative definite for any 3 € R9.

The equality A. = supg E(f) holds, and the supremum is attained uniquely
at ﬂo in (ll)
- V3E(B) = 0if and only if 8 = fo.

(v) For any A € R,

I'y= {8 € R, E() = A}

K\ = {8 € R4 E() > A}.

(vi) Ky = —K),and By =0if L* = L.

Now, let us look at the asymptotics of the Green function again. Note
that its main term is positive because of the assertion (iv).
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Theorem 1. Suppose that A\, > 0. Then the minimal Green function G
of L on R? has the following asymptotics as

|z — y| = oo:
Glo.4) = e~ (z=1)Be
T e =y
[VE(B,)| @3/ ug, ()v, ()

(det(—e,,; - Hess E(B;)esx)ik) /2 (ug,,vs,)

x(1+O(lz — y|™)),
where s = (z — y)/|z — y|.

This theorem is derived from the following theorem, where we regard L

as a closed operator in L?(R?) with the domain H2(R?).

Theorem 2 Assume E(0) > 0. Then the

resolvent L™! exists, and the integral kernel G of L™! has the same asymp-
totics as in Theorem 1.

Actually, consider the operator
L, = ePozLeFo=,

Then L, satisfies the assumption of Theorem 2, and the minimal Green
function G, of L, satisfies

Gi(z,y) = e*°G(z,y)e ™7,

Thus Theorem 1 follows from Theorem 2.
Later, I will give an outline of the proof of Theorem 2.
Next, suppose that supg E(8) = 0. Then
L is critical if d < 2, and subcritical if d > 3
Our second main theorem is the following

Theorem 3 Let d > 3. Suppose that

Ac = E(fp) =0. Put H = —HessE(f)-

Then the minimal Green function G of L on R? has the following asymptotics
as |z — y| = oo:
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2. Martin boundaries .

Now, let us determine explicitly the Martin compactification of R¢ with
respect to L in the case A\, > 0.

Fix a reference point zp in R9. Then the following proposition is a direct
consequence of Theorem 1.

Proposition 1. Suppose that A, > 0. Then for any sequence {yn} in R?
such that '

[yn| = 00 and y,/|yn| = v as n — oo,

lim EM —_ e‘(-’”'-zo)'ﬂ—v Us_, (.’E)

- , ze€R%
n-00 G’(.’L‘g, Yn) Ug_, (o)

Denote this right hand side by K(z,v). Then

K(-,v) € Cr, K(xp,v) =1,

K(v) # K(-,p) ifv#p

Vv € §471, K(-,v) is minimal in Cy, i.e.,

If ¢ € Cy, satisfies 9(z) < K(z,v) on RY, then ¥(z) = IcK (z,v)

Hence we can explicitly determine the Martin compactification of R for
L as follows.

Theorem 4 Suppose that A\, > 0. Then the Martin boundary and the mini-
mal Martin

boundary of R® for L are both equal to
the sphere S9! at infinity which is homeomorphic to Ty;
the Martin kernel at v € S%! is equal to K(-,v);
the Martin compactification of R? for L is equal to

{z € R%|z| < 1} U1, 00] x S§¢!

equipped with the standard topology.
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In the case A\, = 0 and d > 3, we obtain
directly from Theorem 3 the following theorem.

This result, however, is also a simple consequence of the known result
that Cp, is one dimensional in this case.

Theorem 5 Suppose that d > 3 and
Ac = E(By) =0. Then
for any sequence {y,} in R?® with |y,| = o0 as n — oo,

lim G(z,yn) — e—(z—xo)ﬂoﬁ_@_(_@_, z € R%;
n—00 G(:L‘o, yn) UBo (.’L‘o)

the Martin boundary and the minimal Martin boundary are both equal to
one point 0o at infinity;

the Martin kernel at oo is equal to this right hand side;

the Martin compactification of R® for L is equal to the one point com-
pactification
RIU {oo} of R4.

3. Proof of Theorem 2

Finally, let us give an outline of the proof of Theorem 2.

Basic ingredients in establishing the asymptotics are an
integral representation of the Green function and the saddle point method
in complex integrations.

Let us give an integral expression of the
resolvent of L.

27 T4 = R?/(2nZ)¢

-ZdeC,2d_® 2/mdy 96
= DErT, o I(T ))'/MdL (™) Gy

F:L*RY) > H
(FH(G z) = Z f(z — e i=b<,
lezd

Then F is a unitary operator, and
an isomorphism from H?(RY) to L?(27T¢, (2r)~¢d(¢; H*(T?)).
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The adjoint F* is given by, for g € H,

(Fo)@-1) = / G g@htg (¢, ),

anye (2m)¢
zeT leZ

_ L=7F'LF,
L= (m) frra L(Q)C

(since (V, + i) Ff = F(VS))

Assume E(0) > 0. Then

L(¢)7! is a real analytic function from 27T
to the Banach space of bounded operators on L?(T?).

L' =FMF
M = (21)~ [y7pa L(¢)1dC

That is, Vz € T4, l € Z4, and f € L*(RY),

Ha-n=[ POz

27T (27!') d ’

where
F(Q) ==L () f(- - m)e ™) ().
meZd
Meromorphic extension of L({)™!
For each s € 8971, take 8, € Iy such that supgep, B-5=0,"s

Ns = ﬂs/l/@sl
{€s1,---,€s4-1,8} : orthonormal basis of R?
es = (€s1,---,€sd-1)

Introduce new coordinates (w, z) near i3, such that
d-1
(= wn + 2 e = wn +szea,j’
j=1
weC, z=(z,...,2¢-1) € R*L
Proposition 2. Ir > 0 such that
Vs € S9! and z € R*! with |z| <,
the inverse L(wn, + z - €;)~! has a simple pole w,(z) as a function of w
and has the following asymptotics at the pole

A
Llwns + 7)™ = o= oy +00).



Here A, , is a rank one operator-valued function with

A 0= 1’ (.’Uﬂs)uﬁa
> "75 : VE(/Bs) (uﬁs7vﬂa) ,

and w,(z) is a smooth function having the followmg properties:

ws(0) = |G
Q%(O)—O (1<j<d-1)

0w, > (0) = z62Im ws( )= (8" Hess E(8;)€s k
8z,6zk aZ]a - U VE(IBs) '
0%Im w,

( )) >0
0202 1<j,k<d—1

Now, regard the integral expression of the resolvent of L via L(wns + z -
e;)”! as a complex integration for w.

Deform the contour of the integral in w.

Finally, apply the residue theorem and the following saddle point
method to get the asymptotics at infinity of the Green function.

Hess Im w,(0) = (

Proposition 3. Let n = d — 1. Let U be an open neighborhood of the
origin in R".
Let (z) and a(x) be C®-functions on a neighborhood of U satisfying
llelleory < by and ||allcey < be for some constants b; and b,.
Assume that Hess ¢(0) = Hess Re ¢(0)
and it is positive definite.
Further suppose that 3p > 0 such that
plz|? < z - Hess p(0)z for z € R™ and Re (p(z) — ¢(0)) 2 plz|?/4 forx € U.
Then the asymptotics

o nf2 6—1\9‘)(0)
~p(z) =1
/{;«g a(z)dz ( A ) (det Hess (0))'/2

x(a(0) + O(A7!)) as A — o0

holds.
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