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Mean value property for temperatures on an annulus domain

HEBRERER - ZUBEERFEAER 8K B (Noriaki SUZUKI)
Graduate School of Mathematics,
Nagoya University

§1. Introduction

Heat balls in R™"! are characterized by some mean value identity for temperatures
(solutions of the heat equation) in [3]. In this paper we give similar theorem for a heat
annulus. The corresponding result for harmonic functions is given in [1] (see also [2]).

For a point in (n + 1)-dimensional Euclidean space R™*!, we write

P = (z,t) = (z1,...,Zn,t, ).
We use W = W, to denote the Gauss-Weierstrass kernel, defined by

_ | (ant)y™exp(~|z|?/4t) if t>0,
Walm1) = { 0 if t<0,

where |z| := (22 + - -+ + 22)/2. The heat ball Q(c) centered at the origin and radius
¢ > 0 is defined by a level surface of W, that is,

Qc) = {(z,t) € R™ : W,(z,—t) > (4nc)™/?}.

Clearly Q(c) C {|z|? < 2nc/e, —c < t < 0}. We consider the following mean values
M ((u, c) over the heat sphere 8€(c) and V4 (u,c) over the heat ball Q(c):

1

M(u,c) = (4mc)™? Jog(c)

Q(z, t)u(z, t)do(z,t)
where Q(z,t) = |z|*{4/z*¢* + (|z|* + 2nt)*}~'/3(t < 0), Q(0,0) =1, and
(1.1)  Valu,¢) i=ac™® /Oc r* ! M(u, r)dr,

for a > 0. Then,

o .
Va(u,C) = W /L(c) Ka(x,t)U(x,t)dxdt,

Kulot) = gt oo (222

(-—-t) (n+4—20)/2 4n( ——t)

where
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For 0 < ¢; < ¢y, we put
A(ery e) = Qea) \ Qcr)

and call A(cy,cp) a heat annulus.

We have the following mean value property for temperatures.

Theorem 1. (I) Let a > 0 and ¢ > 0. If u is a temperature in Q(c) and continuous
on its closure €2(c), then u(0,0) = V,(u, c), that is

«a
(12) U(O, O) = m //(;(c) Ka(x, t)u(m,t)da:dt

(II) Let @ > 0 and 0 < ¢; < ¢p. If u is a temperatrure in A(c;,c;) and continuous
on its closure A(cy,cz), then

(87
Ky(z,t , t)dzdt,
n2"+17r”/2(cg — C‘II) /[l(cl,cz) (x )u(m ) 7

where c is a constant defined by

(1.3) M(u,c) =

G R
(1.4) oz ) (@ n/2)( )
_nloglep/er) (if @ = n/2).

26" — &)

The following converse assertions of Theorem 1 are our main results in this paper.

Theorem 2. (I) Let a@ > 0, ¢ > 0 and let D be a bounded open set in R**!. If the
following conditions are satisfies, then D = Q(c):

(1) (xp — Xa()) Ko € LP(R™?) for some p > n/2 + 1.
(2) For all (y,s) € R*\ D,

(0%
(15) W//I; W($ - y,t - s)Ka(m,t)dmdt = W(ya “'S).

(II) Let @« > 0, 0 < ¢; < ¢z and let D be a bounded open set in R*"!. Put ¢ as in
(1.4). If the following conditions are satisfies, then D = A(cy, ¢3):
(1) D contains 89(c) \ {(0,0)}.
(2) (XD — XA(e1,c2)) Ko € LP(R™1) for some p > n/2 + 1.
(3) For all (y,s) € R**!\ D,
o

(1) oG = /[ W(z —y,t — 8)Ka(z, t)dadt = MW (- — 3, — 8),0).

(4) inf{s ; (y, s) € Q1) N D} = ¢y
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§2. Proof of Theorems

Proof of Theorem 1. (I) Since u(0,0) = M(u,r) for 0 < r < ¢ (see [4]), we have
Valu,c) = ac™® /OC r*~1u(0, 0)dr = u(0,0).

To show (II), we first remark that
M(u,r)=pr ™%+ q (c; <Vr < c)

with some constants p, ¢ (see [5]). Hence if a # n/2, we have
. a-n/2 a-n/2
ez ac —c )
r* I M(u,r)dr =p- 2 .
Jo, 7MY = G

On the other hand, by (1.1)

+q=pc ™+ q= M(u,c).

2 1 _ 1 /‘/ .
(2.1) / PM ) = s [y Kol @ o,

c1

These equalities give (1.3). The case a = n/2 is shown in a similar way.

_Proof of Theorem 2. (I) In (3], we gave a proof for the case @ = n/2. Although
its proof is valid for general a > 0, we will repeat it for the sake of completeness.

Put 3 := 2" 'n1™2c* /. By the volume mean value property of temperatures in

[4], we have

//Q( )Ka(x,t)dxdt =0
and for every (y,s) € R*™\ Q(c),
(2.2) / fn o W@ = vt = 5)Ka(a, t)dadt = BW(y, ~s).

Since D is bounded, there is s < 0 such that (y, s) € Q(c) for all y € R", so that (1.5)
gives

B = ﬁ/R W(y, —s)dy

= /R‘.' (//I;W(x—y,t—s)Ka(_x,t)da:dt) dy
- f /D Ko (z,t)dzdt

and hence

(2.3) /[ﬂ(c) Ka(x,t)dxdt=/LKa(x,t)dxdt.
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Now for every (y,s) € R"™, we put

v(y,s) = //I)W(x—y,t—s)Ka(x,t)dxdt
vo(y,s) := //Q(C) Wz —y,t — s)Kq(z, t)dzdt

u(y’ 3) = /BW(y’ —S) - U(y? 8)
UO(y9 S) = ,BW('y, —'S) - UO(ya S)-

Then (1.5) implies that

(2.4) ‘u(y,8) =0, V¥(y,s) e R"'\D
and (2.2) implies

(2.5) w(y,s) =0, VY(y,s) € R"\Qc)
Further, for r > 0 we see

Wy, —s) if (y,s) & Q(r)

(2.6) M(W(- ~y, = 5),7) = W(y, ~s) A (dnr) ™* = { (4nr) ™2 it (y,s) € Qr)

(see {5]), and hence
(2.7) uo(y,s) >0,  V(y,s) € Qo).

We assert that v —vp € C(R™™). Put f := (xp — xa(c)) Ko Take s = 0in (1.5), we
see supp(f) C R™! x (—00,0]. For each a < 0, let f, denote the restriction of f to
R" x (—00,a), and let F, := supp(f) N (R" x [a,0]). If a < 0 then f, is bounded, so
that the function

(y, 8) = / /R L W@ =yt — ) fa(z, t)dadt
is continuous. Since

H ( / /F W(z-y,t-9)f(a, t)dwdt) —0 V(y,s) € R*'\F,

it follows that v — v € C(R™* \ F,). Since a is arbitrary, v — vy € C(R‘."Jrl \ Fo).
Finally, if ¢ := p/(p—1), the exponent conjugate to p, then g < (n+2)/n and for some
constant M we have

v — w0l(y, s) < Ms|"2m02) £,

so that condition (1) in (I) implies that (v — vo)(y,s) — 0 as s — 0.
To prove that D = Q(c), it is sufficient to show that xp = xq() a.e. on R™". For
then u = ug, so that (2.4) and (2.7) imply that Q(c) C D. Therefore (c) = D\ F for
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some relatively closed subset F of D with measure zero. Since Q(c)®> = Q(c), it follows
that D = Q(c).
Suppose that xp # Xxa() on a set of positive measure. Since Xa@ = X a-e.,

we can choose Py € D\ Q(c), in view of (2.3). If L is any line through F,, we can
choose @;,Q2 € LN AD such that Py belongs to the segment Q1(Q;. If @ and @
both belonged to Q(c), then by convexity Py would also belong to €(c), which is false.
Therefore D \ Q(c) # 0. Moreover, D \ Q(c) contains a point (yo, o) with the
property that every ball centred there meets D, = DN (R" x (sp,00)). For otherwise
6D\_§—2—(_cj would be contained in the union of a sequence of parallel hyperplanes, and so
D would be unbounded. Choose a ball B, centred at (1o, Sg), such that B N Q(c) = 0.
The function u is an H*-subtemperature on B, is not an H*-temperature on BN D,
and is zero at (yo, o) by (2.4). Since BN D, # @, the maximum principle therefore
implies that

sup u > 0.
B

Put
m = max (u— up) and E = (u—1u) Y(m).

Rn+ 1

Since B N Q(c) = @, we have ug = 0 on B. Therefore supg(u — u5) > 0, and hence
m > 0. Because uy > 0 by (2.5) and (2.7), we have © > 0 on E, and hence £ C D by
(2.4). On the other hand, for all (z,t) € D we have

*(u— - - ll=1l?
H (u UO)(z,t) - (1 Xﬂ(c)(m’t)) 12 203

so that u — ugy is an H*-subtemperature on D. The maximum principle now implies
that ENJD # 0, a contradiction. Hence D = Q(c).
To show (II), we first remark that

(2.8) xam Ke € LR, (Vr > 0).

Now applying u = 1 to (1.3), we have

(84
K. (z, dt = 1.
n2v+1nn/2(cg — cf) /-/;1(01102) (,t)dedt =1

Furthermore, by the usual limiting argument, (1.3) gives

(2.8) M(W(-~y,-

a ‘ — T ——
—8),¢c) = 2 TR — ) //;(cx’cz) W(z—y,t—s)Ku(x,t)dzdt

for all (y,5) € R™\ A(cy,cz). As in (2.2), we have

(2.9) / fD Ko (z,t)dedt = / /A o Kalo t)dzdt,
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and as in the proof of (I), we put

«
= Wiz — — 8)K,(z, t)dxdt,
v(y, s) T (g — o) / /D (z — y,t — s)Ka(z, t)dz
«
— W(z —y,t — s)Ka(z, t)dzdt,

u(y’ 3) = M(W( —Y = 8), C) - v(y, S),
'U'O(y’s) = M(W( - Y- s),c) - 'Uo(y, 3)'

for every (y,s) € R™!. Then u — ug € C(R™!) as in (I). Also, (1.6) implies
(2.10) u(y,s) =0, V(y,s) e R*'\D
and by (2.6) and (2.1) we have
uo(y,5) =0, if (y,5) & Alcr, ¢2)
{ uo(y,s) >0, if (y,s) € Alcr, c2).

(2.11)

If we assume D \ Q(c;) # 0, then we have a contradiction as in the proof of ().
Hence D C Q(cy).

Next we pay attension to a set D N Q(c;) and assume that this is empty. Then
D C A(cy, ¢2) or D D Q(c;). In the first case, we have Xp = XA(c1,c2) @€ by (2.9) and
hence D = A(c;, ¢z) as in (I). The second case does not occur, because of (2.8). The rest
of proof is to consider the case 8D N Q(c;) # 0. Choose a point (yo, s0) € ID N Qc)
and take r > 0 such that a usual ball B := B((yo, $0),7) is contained in Q(c;). If
BnDnN{(y,s);s > so} # 0, we have a contradiction by the maximum principle as in
(I). On the other hand, if BNDN{(y, s); s > so} = @ for all point (yo, s6) € IDNN(cy1),
we see that DN Q(c;) = {(y,s); s < so} N Qc;). This contradicts our assumption (4)
of (II).
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