Lindelöf type theorems for monotone Sobolev functions on half spaces

広島大学 理学研究科 二村 俊英 (Toshihide Futamura) 広島大学 総合科学部 水田 義弘 (Yoshihiro Mizuta) 広島大学 教育学研究科 下村 哲 (Tetsu Shimomura)

Abstract

This paper deals with Lindelöf type theorems for monotone functions in weighted Sobolev spaces.

1 Introduction

Let \mathbf{R}^n $(n \geq 2)$ denote the *n*-dimensional Euclidean space. We use the notation **D** to denote the upper half space of \mathbf{R}^n , that is,

$$\mathbf{D} = \left\{ x = (x', x_n) \in \mathbf{R}^{n-1} \times \mathbf{R} : x_n > 0 \right\}.$$

We denote by $\rho_{\mathbf{D}}(x)$ the distance of x from the boundary $\partial \mathbf{D}$, that is, $\rho_{\mathbf{D}}(x) = |x_n|$ for $x = (x', x_n)$. Denote by B(x, r) the open ball centered at x with radius r, and set $\sigma B(x, r) = B(x, \sigma r)$ for $\sigma > 0$ and $S(x, r) = \partial B(x, r)$.

A continuous function u on \mathbf{D} is called monotone in the sense of Lebesgue (see [6]) if the equalities

$$\max_{\overline{G}} u = \max_{\partial G} u$$
 and $\min_{\overline{G}} u = \min_{\partial G} u$

hold whenever G is a domain with compact closure $\overline{G} \subset \mathbf{D}$. If u is a monotone Sobolev function in \mathbf{D} and p > n - 1, then

$$|u(x) - u(y)| \le Mr \left(\frac{1}{r^n} \int_{2B} |\nabla u(z)|^p dz\right)^{1/p} \tag{1}$$

for all $x, y \in B$, where B is an arbitrary ball of radius r with $2B \subset \mathbf{D}$ (see [7, Theorem 1] and [5, Theorem 2.8]). For further results of monotone functions, we refer to [3], [14] and [16].

²⁰⁰⁰ Mathematics Subject Classification: Primary 31B25 (46E35)

Key words and phrases: monotone functions, Sobolev functions, Lindelöf theorem, Hausdorff measures, weighted p-capacity

Our aim in the present note is to extend the second author's result [13, Theorem 2] to weighted case.

Let μ be a Borel measure on \mathbb{R}^n satisfying the doubling condition :

$$\mu(2B) \leq c_1 \ \mu(B)$$

for every ball $B \subset \mathbb{R}^n$. We further assume that

$$\frac{\mu(B')}{\mu(B)} \ge c_2 \left(\frac{r'}{r}\right)^s \tag{2}$$

for all $B' = B(\xi', r')$ and $B = B(\xi, r)$ with $\xi', \xi \in \partial \mathbf{D}$ and $B' \subset B$, where s > 1.

THEOREM 1. Let u be a Sobolev function on D satisfying

$$|u(x) - u(y)| \le M\rho_{\mathbf{D}}(z) \left(\int_{\sigma B} |\nabla u(z)|^p d\mu \right)^{1/p} \tag{3}$$

for every $x, y \in B = B(z, \rho_{\mathbf{D}}(z)/(2\sigma))$ with $z \in \mathbf{D}$ and

$$\int_{\mathbf{D}} |\nabla u(z)|^p d\mu(z) < \infty.$$

Define

$$E_1 = \left\{ \xi \in \partial \mathbf{D} : \int_{B(\xi,1) \cap \mathbf{D}} |\xi - y|^{1-n} |\nabla u(y)| dy = \infty \right\}$$

and

$$E_2 = \left\{ \xi \in \partial \mathbf{D} : \limsup_{r \to 0} \left(r^{-p} \mu(B(\xi, r)) \right)^{-1} \int_{B(\xi, r) \cap \mathbf{D}} |\nabla u(y)|^p d\mu(y) > 0 \right\}.$$

Then u has a nontangential limit at every $\xi \in \partial \mathbf{D} \setminus (E_1 \cup E_2)$.

Remark 1. Note here that $E_1 \cup E_2$ is of $C_{1,p,\mu}$ -capacity zero. In Manfredi-Villamor [9], the exceptional sets are characterized by Hausdorff dimension, so that their result follows from this nontangential limit result.

THEOREM 2. Let u be a function on **D** for which there exist a nonnegative function $g \in L^p_{loc}(\mathbf{D}; \mu)$, M > 0 and $\sigma \geq 1$ such that

$$|u(x) - u(y)| \le M\rho_{\mathbf{D}}(z) \left(\int_{\sigma B} g^p d\mu \right)^{1/p} \tag{4}$$

for every $x, y \in B = B(z, \rho_{\mathbf{D}}(z)/(2\sigma))$ with $z \in \mathbf{D}$ and

$$\int_{\mathcal{D}} g(z)^p d\mu(z) < \infty. \tag{5}$$

Suppose p > s - 1 and set

$$E = \left\{ \xi \in \partial \mathbf{D} : \limsup_{r \to 0} \left(r^{-p} \mu(B(\xi, r)) \right)^{-1} \int_{B(\xi, r) \cap \mathbf{D}} g(z)^p d\mu(z) > 0 \right\}.$$

If $\xi \in \partial \mathbf{D} \setminus E$ and there exists a curve γ in \mathbf{D} tending to ξ along which u has a finite limit β , then u has a nontangential limit β at ξ .

For $\alpha > -1$, we consider

$$d\nu(x) = |x_n|^{\alpha} dx$$

as a measure, which satisfies

$$\nu(B(\xi,r)) = \nu(B(0,1))r^{n+\alpha} \quad \text{ for all } \xi \in \partial \mathbf{D} \text{ and } r > 0.$$

Then we obtain the following result.

COROLLARY 1. Let u be a monotone Sobolev function on D satisfying

$$\int_{\mathbf{D}} |\nabla u(z)|^p z_n^{\alpha} dz < \infty$$

for p > n - 1 and $-1 < \alpha < p - n + 1$. Consider the set

$$E_{n+\alpha-p} = \left\{ \xi \in \partial \mathbf{D} : \limsup_{r \to 0} r^{p-\alpha-n} \int_{B(\xi,r) \cap \mathbf{D}} |\nabla u(z)|^p z_n^{\alpha} dz > 0 \right\}.$$

If $\xi \in \partial \mathbf{D} \setminus E_{n+\alpha-p}$ and there exists a curve γ in \mathbf{D} tending to ξ along which u has a finite limit β , then u has a nontangential limit β at ξ .

REMARK 2. We know that $\mathcal{H}^{n+\alpha-p}(E_{n+\alpha-p})=0$, where \mathcal{H}^d denotes the d-dimensional Hausdorff measure, and hence it is of $C_{1-\alpha/p,p}$ -capacity zero; for these results, see Meyers [10, 11] and the second author's book [14].

2 Proof of Theorem 2

A sequence $\{x_j\}$ is called regular at $\xi \in \partial \mathbf{D}$ if $x_j \to \xi$ and

$$|x_{j+1} - \xi| < |x_j - \xi| < c|x_{j+1} - \xi|$$

for some constant c > 1.

First we give the following result, which can be proved by (4).

LEMMA 1. Let u and g be as in Theorem 2. If $\xi \in \partial \mathbf{D} \setminus E$ and there exists a regular sequence $\{x_j\} \subset \mathbf{D}$ with $x_j = \xi + (0, ..., 0, r_j)$ such that $u(x_j)$ has a finite limit β , then u has a nontangential limit β at ξ .

PROOF OF THEOREM 2: For r > 0 sufficiently small, take $C(r) \in \gamma \cap S(\xi, r)$. Letting $C_1(r) = \xi + (0, ..., 0, r)$, take an end point $C_2(r) \in \partial \mathbf{D}$ of a quarter of circle containing $C_1(r)$ and C(r).

We take a finite chain of balls B_1, B_2, \ldots, B_N (N may depend on r) with the following properties:

(i)
$$B_j = B(z_j, \rho_{\mathbf{D}}(z_j)/(2\sigma))$$
 with $z_j \in \widehat{C(r)C_1}(r), z_1 = C(r)$ and $z_N = C_1(r)$;

(ii)
$$\rho_{\mathbf{D}}(z_j) \leq \rho_{\mathbf{D}}(z_{j+1})$$
 and $z_{j+1} \notin B_j$;

(iii)
$$B_i \cap B_{i+1} \neq \emptyset$$
 for each j ;

(iv)
$$|C_2(r) - z| \leq 3\rho_{\mathbf{D}}(z)$$
 for $z \in A(\xi, r) = \bigcup_{j=1}^N \sigma B_j \subset B(\xi, 2r) \cap \mathbf{D}$;

(v) $\sum_{j} \chi_{\sigma B_{j}} \leq c_{3}$, where χ_{A} denotes the characteristic function of A and c_{3} is a constant depending only on c_{1} and σ ;

see Heinonen [2] and Hajłasz-Koskela [1].

Pick $x_j \in B_{j+1} \cap B_j$ for $1 \le j \le N-1$. By (4), we see that

$$|u(x_j) - u(x_{j-1})| \le M \rho_{\mathbf{D}}(z_j) \left(\int_{\sigma B_j} g(z)^p d\mu(z) \right)^{1/p}$$

for $1 \leq j \leq N$, where $x_0 = C(r)$ and $x_N = C_1(r)$.

Since p > s - 1 by our assumption, there is $\delta > 0$ such that $s - p < \delta < 1$. We have by Hölder's inequality

$$|u(C_{1}(r)) - u(C(r))|$$

$$\leq |u(x_{1}) - u(x_{0})| + |u(x_{2}) - u(x_{1})| + \dots + |u(x_{N}) - u(x_{N-1})|$$

$$\leq M \sum_{j=1}^{N} \rho_{\mathbf{D}}(z_{j})^{1+\delta/p} \mu(\sigma B_{j})^{-1/p} \left(\int_{\sigma B_{j}} g(z)^{p} \rho_{\mathbf{D}}(z)^{-\delta} d\mu(z) \right)^{1/p}$$

$$\leq M \left(\sum_{j=1}^{N} \rho_{\mathbf{D}}(z_{j})^{p'(1+\delta/p)} \mu(\sigma B_{j})^{-p'/p} \right)^{1/p'} \left(\int_{A(\xi,r)} g(z)^{p} \rho_{\mathbf{D}}(z)^{-\delta} d\mu(z) \right)^{1/p}$$

$$\leq M \left(\sum_{j=1}^{N} \rho_{\mathbf{D}}(z_{j})^{p'(1+\delta/p)} \mu(\sigma B_{j})^{-p'/p} \right)^{1/p'} \left(\int_{B(\xi,2r)\cap\mathbf{D}} g(z)^{p} |C_{2}(r) - z|^{-\delta} d\mu(z) \right)^{1/p}$$

$$\leq M \left(\sum_{j=1}^{N} \rho_{\mathbf{D}}(z_{j})^{p'(1+\delta/p)} \mu(\sigma B_{j})^{-p'/p} \right)^{1/p'} \left(\int_{B(\xi,2r)\cap\mathbf{D}} g(z)^{p} |C_{2}(r) - z|^{-\delta} d\mu(z) \right)^{1/p}$$

where 1/p + 1/p' = 1. Here note that $\mu(B(C_2(r), \rho_{\mathbf{D}}(z_j))) \leq c_4 \mu(\sigma B_j)$, where c_4 is a positive constant depending only on the doubling constant c_1 . Since $\delta > s - p$, we see from (2) that

$$\sum_{j=1}^{N} \rho_{\mathbf{D}}(z_{j})^{p'(p+\delta)/p} \mu(\sigma B_{j})^{-p'/p} \leq M \sum_{j=1}^{N} \rho_{\mathbf{D}}(z_{j})^{p'(p+\delta)/p} \mu(B(C_{2}(r), \rho_{\mathbf{D}}(z_{j})))^{-p'/p}$$

$$\leq M \sum_{j=1}^{N} \rho_{\mathbf{D}}(z_{j})^{p'(p+\delta)/p} \left(\frac{\rho_{\mathbf{D}}(z_{j})}{2r}\right)^{-sp'/p} \mu(B(\xi, 2r))^{-p'/p}$$

$$\leq M r^{sp/p'} \mu(B(\xi, r))^{-p'/p} \sum_{j=1}^{N} \rho_{\mathbf{D}}(z_{j})^{p'(p+\delta-s)/p}$$

$$\leq M r^{sp'/p} \mu(B(\xi, r))^{-p'/p} \int_{0}^{r} t^{p'(p+\delta-s)/p} dt/t$$

$$\leq M r^{\delta p'/p} \left(r^{-p} \mu(B(\xi, r))\right)^{-p'/p}.$$

Moreover, since $0 < \delta < 1$, we note that

$$\int_{2^{-j}}^{2^{-j+1}} |C_2(r) - z|^{-\delta} dr \le \int_{2^{-j}}^{2^{-j+1}} |r - |z||^{-\delta} dr \le M 2^{-j(1-\delta)}.$$
 (6)

Hence it follows from (6) that

$$\int_{2^{-j}}^{2^{-j+1}} |u(C_{1}(r)) - u(C(r))|^{p} \frac{dr}{r} \\
\leq M \int_{2^{-j}}^{2^{-j+1}} r^{\delta} (r^{-p} \mu(B(\xi, r)))^{-1} \left(\int_{B(\xi, 2r) \cap \mathbf{D}} g(z)^{p} |C_{2}(r) - z|^{-\delta} d\mu(z) \right) \frac{dr}{r} \\
\leq M 2^{-j(p+\delta-1)} \mu(B(\xi, 2^{-j}))^{-1} \int_{B(\xi, 2^{-j+2}) \cap \mathbf{D}} g(z)^{p} \left(\int_{2^{-j}}^{2^{-j+1}} |C_{2}(r) - z|^{-\delta} dr \right) d\mu(z) \\
\leq M \left(2^{jp} \mu(B(\xi, 2^{-j})) \right)^{-1} \int_{B(\xi, 2^{-j+2}) \cap \mathbf{D}} g(z)^{p} d\mu(z).$$

Since $\xi \in \partial \mathbf{D} \setminus E$, we can find a sequence $\{r_j\}$ such that $2^{-j} < r_j < 2^{-j+1}$ and

$$\lim_{j\to\infty}|u(C_1(r_j))-u(C(r_j))|=0.$$

By our assumption we see that $u(C_1(r_j))$ has a finite limit β as $j \to \infty$. If we note that $\{C_1(r_j)\}$ is regular at ξ , then Lemma 1 proves the required conclusion of the theorem.

3 A_q weights

Let w be a Muckenhoupt A_q weight, and define

$$d\nu(y) = w(y)dy.$$

Let u be a monotone Sobolev function on **D** such that

$$\int_{\mathbf{D}} |\nabla u(x)|^p d\nu(x) < \infty.$$

Suppose that 1 < q < p/(n-1). Since $p_1 = p/q > n-1$, applying inequality (1) we obtain

$$|u(x) - u(y)| \le Mr \left(\frac{1}{r^n} \int_{2B} |\nabla u(z)|^{p_1} dz\right)^{1/p_1}$$

for all $x, y \in B$, where B is an arbitrary ball of radius r with $2B \subset \mathbf{D}$. As in the proof of Theorem 2, we insist that

$$\int_{2^{-j}}^{2^{-j+1}} |u(C_1(r)) - u(C(r))|^{p_1} \frac{dr}{r} \le M 2^{-jp_1} |B(\xi, 2^{-j})|^{-1} \int_{B(\xi, 2^{-j+2}) \cap \mathbf{D}} |\nabla u(z)|^{p_1} dz.$$

Using Hölder inequality and A_q -condition of w, we have

$$\int_{2^{-j}}^{2^{-j+1}} |u(C_{1}(r)) - u(C(r))|^{p_{1}} \frac{dr}{r} \\
\leq M 2^{-jp_{1}} |B(\xi, 2^{-j})|^{-1} \left(\int_{B(\xi, 2^{-j+2}) \cap \mathbf{D}} |\nabla u(z)|^{p_{1}q} w(z) dz \right)^{1/q} \left(\int_{B(\xi, 2^{-j+2})} w(z)^{-q'/q} dz \right)^{1/q'} \\
\leq M \left(\left(2^{jp} \nu(B(\xi, 2^{-j})) \right)^{-1} \int_{B(\xi, 2^{-j+2}) \cap \mathbf{D}} |\nabla u(z)|^{p} d\nu(z) \right)^{1/q},$$

where 1/q + 1/q' = 1. Thus we obtain the following result (cf. Manfredi-Villamor [9]), as in the proof of Theorem 2.

COROLLARY 2. Let $1 \le q < p/(n-1)$. Let $w \in A_q$ and set $d\nu(y) = w(y)dy$. Suppose that u is a monotone Sobolev function on D satisfying

$$\int_{\mathbf{D}} |\nabla u(z)|^p d\nu(z) < \infty. \tag{7}$$

Set

$$E = \left\{ \xi \in \partial \mathbf{D} : \limsup_{r \to 0} \left(r^{-p} \nu(B(\xi, r)) \right)^{-1} \int_{B(\xi, r) \cap \mathbf{D}} |\nabla u(z)|^p d\nu(z) > 0 \right\}.$$

If $\xi \in \partial \mathbf{D} \setminus E$ and there exists a curve γ in \mathbf{D} tending to ξ along which u has a finite limit β , then u has a nontangential limit β at ξ .

REMARK 3. Let $1 \le q < p/(n-1)$. Let w be a Muckenhoupt A_q weight, and define

$$d\nu(y) = w(y)dy.$$

Suppose that u is a monotone Sobolev function on \mathbf{D} satisfying (7). Applying Hölder's inequality to (1) with p replaced by p/q, we see that

$$|u(x) - u(y)| \le Mr \left(\int_{2B} |\nabla u(z)|^p d\nu(z) \right)^{1/p}$$

for all $x, y \in B$, where B is an arbitrary ball of radius r with $2B \subset \mathbf{D}$ (see also Manfredi-Villamor [9]).

REMARK 4. Consider $w(y) = |y_n|^{\alpha}$. Then $w \in A_q$ if and only if $-1 < \alpha < q - 1$. In this case, Corollary 2 does not imply Corollary 1 when $n \ge 3$.

4 Generalizations of Lindelöf theorems

For an integer d, $1 \le d < n$, let $P_d : \mathbf{R}^n \longrightarrow \mathbf{R}^d$ be the projection, that is,

$$P_d(x) = (x_1, \dots, x_d, 0, \dots, 0)$$
 for $x = (x_1, x_2, \dots, x_n)$.

We say that $\Gamma \subset \mathbf{D}$ is a $(\lambda_1, \lambda_2, d)$ -approach set at ξ , where $\lambda_1 \geq 1$ and $\lambda_2 > 0$, if there exists a sequence of positive numbers $\{r_j\}$ tending to zero such that $r_{j+1} < r_j < \lambda_1 r_{j+1}$ and

$$\mathcal{H}^d(P_d(\Gamma \cap (B(\xi, r_j) \setminus B(\xi, r_{j+1})))) \ge \lambda_2 r_i^d$$

Theorem 3. Let u be a function on D with g satisfying (4) and

$$\int_{\mathbf{D}} g(z)^p d\mu(z) < \infty.$$

Suppose p > s - d, and define

$$E = \left\{ \xi \in \partial \mathbf{D} : \limsup_{r \to 0} \left(r^{-p} \mu(B(\xi, r)) \right)^{-1} \int_{B(\xi, r) \cap \mathbf{D}} g(z)^p d\mu(z) > 0 \right\}.$$

If $\xi \in \partial \mathbf{D} \setminus E$ and there exists a $(\lambda_1, \lambda_2, d)$ -approach set $\Gamma \subset \mathbf{D}$ at ξ along which u has a finite limit β at ξ , then u has a nontangential limit β at ξ .

PROOF. By our assumption, we can take $\delta > 0$ such that $s - p < \delta < d$. Set

$$G_j = P_d(\Gamma \cap (B(\xi, r_j) \setminus B(\xi, r_{j+1}))).$$

For $X \in G_j$, take $C(X) \in \Gamma \cap (B(\xi, r_j) \setminus B(\xi, r_{j+1}))$, and set $r(X) = r = |\xi - C(X)|$. Let $C_1(X) = \xi + (0, ..., 0, r)$ and $D(X) = P_{n-1}(C(X))$.

We take a finite chain of balls B_1, B_2, \ldots, B_N with the following properties:

(i)
$$B_j = B(z_j, \rho_{\mathbf{D}}(z_j)/(2\sigma))$$
 with $z_j \in \widehat{C(X)C_1}(X), z_1 = C(X)$ and $z_N = C_1(X)$;

- (ii) $\rho_{\mathbf{D}}(z_j) \leq \rho_{\mathbf{D}}(z_{j+1})$ and $z_{j+1} \notin B_j$;
- (iii) $B_j \cap B_{j+1} \neq \emptyset$ for each j;

(iv)
$$|D(X) - z| \leq 3\rho_{\mathbf{D}}(z)$$
 for $z \in A(\xi, r) = \bigcup_{j=1}^{N} \sigma B_j \subset B(\xi, 2r) \cap \mathbf{D}$;

(v)
$$\sum_{j} \chi_{\sigma B_{j}} \leq c_{3}$$
.

Since $\delta > s - p$, we have as in the proof of Theorem 2

$$|u(C_1(X)) - u(C(X))|^p \le Mr^{\delta} \left(r^{-p}\mu(B(\xi,r))\right)^{-1} \int_{B(\xi,2r)\cap \mathbf{D}} g(z)^p |D(X) - z|^{-\delta} d\mu(z).$$

Further, since P_d is 1-Lipschitz and $0 < \delta < d$, we see that

$$\int_{G_j} |D(X) - z|^{-\delta} d\mathcal{H}^d(X) \leq \int_{G_j} |X - P_d(z)|^{-\delta} d\mathcal{H}^d(X)
\leq \int_{P_d(B(\xi, r_j))} |X - P_d(z)|^{-\delta} d\mathcal{H}^d(X)
\leq M r_j^{d-\delta}.$$

Hence we have

$$\int_{G_j} |u(C_1(X)) - u(C(X))|^p d\mathcal{H}^d(X) \le M \left(r_j^{-p} \mu(B(\xi, r_j))^{-1} \int_{B(\xi, 2r_j) \cap \mathbf{D}} g(z)^p d\mu(z).$$

Thus we can find a sequence $\{X_j\}$ such that $X_j \in G_j$ and

$$\lim_{j\to\infty}|u(C_1(X_j))-u(C(X_j))|=0.$$

Thus we see that $u(C_1(X_j))$ has a finite limit β as $j \to \infty$. Since $\{C_1(X_j)\}$ is regular at ξ , we can show that u has a nontangential limit β at ξ by Lemma 1.

Corollary 3. Let u be a harmonic function on D satisfying

$$\int_{\mathbf{D}\cap B(0,N)} |\nabla u(z)|^p z_n^{\alpha} dz < \infty$$

for every N > 0, and $-1 < \alpha < p - n + d$. If $\xi \in \partial \mathbf{D} \setminus E_{n+\alpha-p}$ and there exists a $(\lambda_1, \lambda_2, d)$ -approach set $\Gamma \subset \mathbf{D}$ at ξ along which u has a finite limit β at ξ , then u has a nontangential limit β at ξ .

REMARK 5. The conclusion of Corollary 3 is still valid for A-harmonic functions and polyharmonic functions.

References

- [1] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688.
- [2] J. Heinonen, Lectures on analysis on metric spaces, Springer, 2001.
- [3] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Univ. Press, 1993.
- [4] T. Kilpeläinen, Weighted Sobolev spaces and capacity, Ann. Acad. Sci. Fenn. Ser. AI Math. 19 (1994), 95-113.
- [5] P. Koskela, J. J. Manfredi and E. Villamor, Regularity theory and traces of A-harmonic functions, Trans. Amer. Math. Soc. 348 (1996), 755-766.

- [6] H. Lebesgue, Sur le probléme de Dirichlet, Rend. Cir. Mat. Palermo 24 (1907), 371-402.
- [7] J. J. Manfredi, Weakly monotone functions, J. Geom. Anal. 4 (1994), 393-402.
- [8] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions, J. Geom. Anal. 6 (1996), 433-444.
- [9] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions in weighted Sobolev spaces, Illinois J. Math. 45 (2001), 403-422.
- [10] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255-292.
- [11] N. G. Meyers, Taylor expansion of Bessel potentials, Indiana Univ. Math. J. 23 (1974), 1043-1049.
- [12] Y. Mizuta, On the boundary limits of harmonic functions, Hiroshima Math. J. 18 (1988), 207-217.
- [13] Y. Mizuta, Tangential limits of monotone Sobolev functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 20 (1995), 315-326.
- [14] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
- [15] M. Vuorinen, On functions with a finite or locally bounded Dirichlet integral, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 177-193.
- [16] M. Vuorinen, Conformal geometry and quasiregular mappings, Lectures Notes in Math. 1319, Springer, 1988.

Department of Mathematics
Faculty of Science
Hiroshima University
Higashi-Hiroshima 739-8526, Japan
E-mail address: toshi@mis.hiroshima-u.ac.jp

and

The Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739-8521, Japan
E-mail address: mizuta@mis.hiroshima-u.ac.jp
and

Department of Mathematics
Faculty of Education
Hiroshima University

Higashi-Hiroshima 739-8524, Japan E-mail address: tshimo@hiroshima-u.ac.jp