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Lindelof type theorems for monotone Sobolev
functions on half spaces
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Abstract

This paper deals with Lindelof type theorems for monotone functions in
weighted Sobolev spaces.

1 Introduction

Let R™ (n > 2) denote the n-dimensional Euclidean space. We use the notation D to
denote the upper half space of R™, that is,

D= {z=(z,z,) e R xR: 3, >0}.

We denote by pp(z) the distance of x from the boundary D, that is, pp(z) = |z,
for z = (2',z,,). Denote by B(z,r) the open ball centered at x with radius r, and set
oB(z,r) = B(z,or) for ¢ > 0 and S(z,r) = dB(z, 7).

A continuous function u on D is called monotone in the sense of Lebesgue (see [6])
if the equalities

maxuy = maxu and minu = minu
el aG el 8G

hold whenever G is a domain with compact closure G C D. If u is a monotone Sobolev
function in D and p > n — 1, then |

u(z) - uw)] < Mr (-},; | ivuera:) " W

for all z,y € B, where B is an arbitrary ball of radius r with 2B C D (see [7, Theorem
1} and [5, Theorem 2.8]). For further results of monotone functions, we refer to [3],
[14] and [16].

2000 Mathematics Subject Classification : Primary 31B25 (46E35)

Key words and phrases : monotone functions, Sobolev functions, Lindel6f theorem, Hausdorff
measures, weighted p-capacity




Our aim in the present note is to extend the second author’s result (13, Theorem
2] to weighted case.

Let 4 be a Borel measure on R™ satisfying the doubling condition :
#(2B) < a1 u(B)

for every ball B C R"™. We further assume that
u(B") Y
ME) S (T 2
5 2o (; ®)
for all B' = B(¢',r') and B = B(€,r) with £,€ € 0D and B’ C B, where s > 1.

THEOREM 1. Let u be a Sobolev function on D satisfying

1/p
u(@) - u(y)] < Mpp(2) (f vu(a lpdu) (3)
for every z,y € B = B(z, pp(z)/(20)) with z € D and

/ |Vu(z)[Pdu(z) < oco.
D

Define

B = {f € oD : € - 4" Vu(y)ldy = oo}

B(£,1)nD

and

5= {e e oD timsup (2u(BEN) ™ [ FuwPdut) > o}

B(¢,r)ND
Then u has a nontangential limit at every £ € 8D \ (E; U Ey).

Remark 1. Note here that E; U Ej is of C) , ,-capacity zero. In Manfredi-Villamor
[9], the exceptional sets are characterized by Hausdorff dimension, so that their result
follows from this nontangential limit result.

THEOREM 2. Let u be a function on D for which there exist a nonnegative function
g€ L? (D;u), M >0 and o > 1 such that

loc

i/p
) ~ (o) < Mpo(e) (f i) (@)
for every z,y € B = B(z, pp(z)/(20)) with z € D and

/ﬁﬁwm<w~ (5)
D )
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Suppose p > s — 1 and set

E = {f € 0D : lirilj(l)lp (r“p,u(B(.f, r)))"I/

9(z)Pdu(z) > O} .
B(¢,r)ND

If£ € 8D \ E and there exists a curve v in D tending to & along which u has a finite

limit B, then w has a nontangential limit 3 at &.

For o > —1, we consider
dv(z) = |z,|*dz

as a measure, which satisfies
v(B(&,r)) =v(B(0,1))r"**  for all £E€0D and r > 0.

Then we obtain the following result.

COROLLARY 1. Let u be a monotone Sobolev function on D satisfying

/ IVu(z)[P28dz < oo
D

forp>n—1and -1 < a < p—n+ 1. Consider the set

r—0

Fnia—p= {§ € 0D : limsup r”“"“”/ |Vu(2)|P28dz > O} .
B(¢,r)nD
If¢ € 0D\ En+a_py and there exists a curve y in D tending to ¢ along which u has a

finite limit (3, then u has a nontangential limit (3 at §.

REMARK 2. We know that H"t*P(E,,, ,) = 0, where H% denotes the d-
dimensional Hausdorff measure, and hence it is of C)_a/p,-capacity zero; for these
results, see Meyers [10, 11] and the second author’s book [14].

2 Proof of Theorem 2

A sequence {z;} is called regular at £ € 8D if z; — ¢ and
|Zj41 = €| < |zj — €] < c|ajqr — €]

for some constant ¢ > 1.
First we give the following result, which can be proved by (4).

LEMMA 1. Let u and g be as in Theorem 2. If £ € D \ E and there exists a
regular sequence {z;} C D with z; = £+ (0, ...,0,7;) such that u(z,) has a finite limit
3, then u has a nontangential limit 3 at &.
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PROOF OF THEOREM 2 : For r > 0 sufficiently small, take C(r) € yN S(¢,7).
Letting Cy(r) = £ + (0, ...,0,7), take an end point Cy(r) € 9D of a quarter of circle
containing Cy(r) and C(r).

We take a finite chain of balls By, Bs,..., By (N may depend on r) with the
following properties:

—~

(i) B; = B(z;, pp(z;)/(20)) with z; €C(r)Cy(r), z = C(r) and 2y = Cy(r);
(i) pp(2;) < pp(2)+1) and zj41 ¢ Bj; |
(ii) Bj N Bj41 # 0 for each j;
(iv) |Ca(r) = 2| < 3pp(2) for z € A(¢,7) = UL, 0B; C B(£,2r) N D;
)

(v Ej XoB; < c3, where x4 denotes the characteristic function of A and ¢; is a
constant depending only on ¢; and o;

see Heinonen [2] and Hajlasz-Koskela [1].
Pick z; € Bj;1 N Bj for 1 < j < N — 1. By (4), we see that

1/p
[u(z;) - u(@;—1)| < Mpp(z;) (][ g(z)*’dmz))

B;

for 1 < 7 < N, where o = C(r) and zy = C(r).
Since p > s — 1 by our assumption, there is § > 0 such that s —p < § < 1. We
have by Hélder’s inequality

[u(Ci(r)) — u(C(r))]

u(z1) — w(zo)| + lu(2) — wlzy)| + -+ + [u(zy) — w(zy-1)|

N ‘ 1/p
MY po(2)) /(o By ( /. g(z)”pn(z)-“du(z))

=1

IA

IA

INA

N 2 - 1/p
M (ZPD(Zj)p’(l“L&/”)u(UBj)_"I/p) (/A(£ )g(z)"PD(z)"JdIL(z))

=1

N 1/
< M (Z pD(zj)”'(1+5/”)u(aBj)""/”> (/
=1 B

where 1/p + 1/p' = 1. Here note that u(B(Cg(r),pD(zj))) < cyp(oB;), where ¢4 is a
positive constant depending only on the doubling constant ¢;. Since § > s — p, we see
from (2) that

1/p
9(2)|Calr) - Z'l“"dn(z))
(£,2r)ND _

N N
Z pp(z)F POPueB) PP < M Z pp (2P ®H/Pu(B(Cy(r), pp(25))) * /P
p j=1
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IN

s wrsyp [P0(2) ) P ,
M Yoy 010 (225 (e )
j=1

IA

N
Mrsp/pIM(B(f, r)) /P Z pD(zj)p’(pH—s)/p
J=1

r
Mrs”'_/”u(B(f, ) / t”/(””‘s)/”dt/t
0

IA

< M (rPu(B(E, ) P
Moreover, since 0 < § < 1, we note that

2—i+1 9=i+1

/ Ca(r) — 2|~%dr < / Ir — |2||%dr < M2-30-9) (6)
27 2-7 :
Hence it follows from (6) that
2-j+1
dr
L. ) - weenps
277 dr
< u [ reumen ([ gerion - A du(z) ) &
2-i B(£,2r)ND r

2-i+t

T o N O ( [, e~ zrﬁdr) du(z)

< M(uBe ) [ 9(2)°du(z).

B(¢,2-7+2)nD
Since £ € D \ E, we can find a sequence {r;} such that 277 < r; < 277+ and

lim |u(Ci(r;)) — u(C(r;))| = 0.

j—oo

By our assumption we see that 4(C(r;)) has a finite limit 8 as j — co. If we note that
{Ci(r;)} is regular at £, then Lemma 1 proves the required conclusion of the theorem.

3 A, weights
Let w be a Muckenhoupt A, weight, and define

dv(y) = w(y)dy.

Let u be a monotone Sobolev function on D such that

/ [Vu(z)Pdv(z) < oo.
D
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Suppose that 1 < ¢ < p/(n —1). Since p; = p/g > n — 1, applying inequality (1) we
obtain

lu(z) —u(y)| < Mr (%{ /23 |Vu(z)§7’1dz>l/p1

for all z,y € B, where B is an arbitrary ball of radius r with 2B C D. As in the proof
of Theorem 2, we insist that
9—j+1

[ o) - wewnr s < mrmise ) [ V()P dz.

B(£,2-3+2)ND
Using Holder inequality and Ag-condition of w, we have

[ ey - wconrs

-J

) . 1/q 1/¢
< M2P|B(E,27) ( / !Vu(Z)I””w(z)dZ) ( / w(z)-‘”qdz)
B(£,2-i+2)nD B(¢,2-7+2)

< M ((2ij(B(§,2“j)))—1/ |Vu(z)|pdu(z))1/q,

B(£,2-i+2)ND
where 1/¢+1/¢' = 1. Thus we obtain the following result (cf. Manfredi-Villamor @),
as in the proof of Theorem 2.

COROLLARY 2. Let 1 < ¢ < p/(n—1). Let w € A, and set dv(y) = w(y)dy.
Suppose that u is a monotone Sabolev function on D satisfying

/ Vu(e)Pdv(z) < oo. 7)
D
Set

E = {§ € 0D : lililj(;lp (r~Pu(B(¢, r)))—l/ IVu(z)Pdv(z) > O} .

B(¢,r)nD )

If £ € 8D \ E and there exists a curve vy in D tending to { along which u has a finite
limit (3, then u has a nontangential limit 38 at &.

REMARK 3. Let 1 < ¢ < p/(n —1). Let w be a Muckenhoupt A4, weight, and
define ‘

dv(y) = w(y)dy.
Suppose that u is a monotone Sobolev function on D satisfying (7). Applying Holder’s
inequality to (1) with p replaced by p/q, we see that

)~ uio)l < v (f |w<z)v’dv<z>)1/”

for all z,y € B, where B is an arbitrary ball of radius r with 2B C D (see also
Manfredi-Villamor [9]).

REMARK 4. Consider w(y) = |yn|*. Then w € A, if and onlyif -1<a<gqg-1
In this case, Corollary 2 does not imply Corollary 1 when n > 3.
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4 Generalizations of Lindel6f theorems
For an integer d, 1 < d < n, let P;: R® — R be the projection, that is,
Py(z) = (1,...,24,0,...,0) forz= (1,2, ..., Tp).

We say that I' C D is a (A1, A2, d)-approach set at &, where A, > 1 and \; > 0, if
there exists a sequence of positive numbers {r;} tending to zero such that Tig1 <715 <
)‘ITJ-H and

HY(Py(T' N (B(E, i)\ B(§,7j41)))) = /\27‘}1-

Theorem 3. Let u be a function on D with g satisfying (4) and

/ o(2Pdu(z) < oo.
D

Suppose p > s — d, and define

= {§ € 0D : limsup (rPu(B(, 7')))‘1/

B(¢,r)nD

o(Pdu(z) > o} .

If{ € 0D\ E and there exists a (A1, A2, d)-approach set ' C D at ¢ along which u has
a finite limit B at €, then u has a nontangential limit 3 at ¢. '

PROOF. By our assumption, we can take § > 0 such that s —p < § < d. Set
Gj = FPy(I'n(B( ;) \ B(,7j41))).

For X € Gj, take C(X) € TN (B(&,r;) \ B(ﬁ,r3+1)) and set 7(X) =r = | — C(X)].
Let C1(X) =&+ (0,...,0,7) and D(X) = P,_1(C(X)).
We take a finite cham of balls B;, Bg,. .., By with the following properties:

N

() B; = Bz, pn(2)/(20)) with 2 €C(X)Cy(X), 21 = C(X) and z = Cy(X);
(ii) pp(z;) < pp(2j41) and zj4, ¢ Bj;
(iii) B; N Bjs1 # 0 for each j;
(iv) ID(X) - 2| < 3pp(z) for 2 € A(¢,7) = UY., 0B,  B(€,2r) N D;
(v) 3 XoB; S €3

Since § > s — p, we have as in the proof of Theorem 2

[u(C1L(X)) — u(C(X))]P < M7 (rPu(B(€,))) ™ - 9(2)?|D(X) — 2| du(z).
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Further, since P, is 1-Lipschitz and 0 < § < d, we see that
[ 1000 - ai) < [ X - P andx)
G; Gj

< / IX — Py(2)| " dHA(X)
Pa(B(£,75))
< M'r;-i—".

Hence we have

[CH () = wCENPARAX) < M (7B r)) ™ [ olepdnte)

G;
Thus we can find a sequence {X;} such that X; € G; and

Jim [u(C1(X;) ~ uw(C(X;))] = 0.

Thus we see that u(C1(X;)) has a finite limit 8 as j — oco. Since {C1(Xj;)} is regular
at &, we can show that u has a nontangential limit 8 at £ by Lemma 1.

Corollary 3. Let u be a harmonic function on D satisfying

/ |Vu(z) [”z"dz < 00
DNB(0,N)

for every N > 0, and -1 < a <p-n+d. If§ € 0D\ E,1q_p and there exists a
(A1, A2, d)-approach set T' C D at & along which u has a finite limit 3 at {, then u has
a nontangential limit 3 at £.

REMARK 5. The cbnclﬁsion of Corollary 3 is still valid for .A-harmonic functions
and polyharmonic functions.
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