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Function spaces and stochastic processes on fractals

Takashi Kumagai*
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1 Introduction

Since the late 80’s of the last century, there has been a lot of development in
the mathematical study of stochastic processes and the corresponding operators
on fractals (see, for instance, [2], [12], [13], [17]). On the other hand, there has
been intensive study of Besov spaces, (which are roughly speaking, fractional
extensions of Sobolev spaces) on d-sets, which correspond to regular fractals
(see [11], [24], [25]). In this survey paper, we summarize several recent works to
connect these two research areas, i.e., functional spaces and stochastic processes.

In Section 2, we first review basic facts in the Dirichlet form theory which
connects functional spaces and stochastic processes. We will also give a defini-
tion of d-sets, the state space we work on. In Section 3, we discuss on function
spaces appear as domains of local regular Dirichlet forms on fractals, whose cor-
responding generators are so called Laplacians on fractals. The characterization
of the domain is possible through heat kernel estimates (3.1) of the Laplacian.

In Section 4, we introduce other types of function spaces appear as domains of
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non-local Dirichlet forms on d-sets, whose corresponding processes are stable-
like jump processes. Three natural jump-type processes are introduced on d-sets
and the corresponding three forms are shown to be equivalent. It turns out that
one of the forms (and the corresponding operator) corresponds to the form (and
the operator) studied by Triebel in [24]. In Section 5, we will summarize the
results on heat kernel estimates for the stable-like jump processes.

Throughout the paper, we only consider compact fractals, but most of the
results hold for unbounded fractals with suitable modifications of the statements.
We do not give any proof except Theorem 3.2. The proof and further details

are given in the references cited.

2 Dirichlet forms and d-sets

In this section, we will briefly review the definition of Dirichlet forms and the
correspondence to processes following [6]. We will also introduce d-sets.

Let X be a locally compact separable metric space and v de a positive Radon
measure on X whose support is X. Let £ be a symmetric bilinear closed form
on L2(X,v) with domain F. (€, F) is called a Dirichlet form if it is Markovian,
ie. foreachu e F,v:=(0Vu)Al € F and £(v,v) < E(u,u). A Dirichlet form
(€, F) is regular if there exists C C FNCy(X) such that C'is dense in F with £,-
norm and C is dense in Co(X) under the uniform norm, where Co(X) is a space
of continuous compact supported functions on X and €,(-,") =& G, + 1 1Es
(€, F) is local if for each u,v € F whose supports are disjoint compact sets,
£(u,v) = 0. There is a one to one correspondence between a regular Dirichlet
form on L2(X, v) and a v-symmetric Hunt process (i.e., a strong Markov process

whose paths are right continuous and quasi-left continuous w.r.t. some filtration)
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on X except for some exceptional set of starting points. Further, if the regular
Dirichlet form is local, then the corresponding process is a diffusion process (i.e.
Hunt process with continuous paths).

We next introduce our state space. Let G be a compact d-set in R™ (n >

2,0 < d < n). That is, G C R" and there exists c1,cz2 > 0 such that
c217™ < p(B(z, 7)) < cgar® forall ze G, 0<r<1, (2.1)

where B(z,r) is a ball centered at z and radius r w.r.t. the Euclidean metric.
Thus d is the Hausdorff dimension of G and y the Hausdorff measure on G. We

normalize the size of G so that the diameter of G is 1.

3 Lipschitz spaces and domains of Dirichlet forms

For several sub-classes of d-sets, diffusion processes, corresponding Laplace op-
erators and Dirichlet forms have been studied extensively (see [2], [12], [13], [17]
etc). The most typical example is the Sierpinski gasket which we will define
later. In this section, we will consider a class of d-sets which has a fractional
diffusion in the sense of Barlow [2] and show that the doma.iﬁ of the Dirichlet

form is the Lipschitz space. We first give a definition of the fractional diffusion.

Definition 3.1 Let (G, p) be a complete compact metric space. (G, p) is called
a fractional metric space and {Bf }:>¢ is called a fractional diffusion if the fol-
lowing holds.

1) p has the midpoint property; for each z,y € G, there exists z € G such that
p(z,y) = p(z,2)/2 = p(2,y)/2. Further, there exists a Borel measure u which
satisfies (2.1) w.r.t. p.

2) {Bf }150 is a p-symmetric conservative Feller diffusion on G which has a sym-
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metric jointly continuous transition density (fundamental solution of the heat

equation) pi(z,y) (t > 0,z,y € G) satisfying the following estimate,

C3-1t—d‘/2 exp(_c3.2(p(x’ y)dwt-l)l/(dw—l)) S pt(x) y) (31)
< cast P exp(—caalp(z,y)™t )/ ® V) forall 0<t<1, 7,y€G,
with some constants ds > 0,d,, > 2.

We note that in the original definition of the fractional diffusions in [2], G is not
necessarily compact. For simplicity, we further assume that p(-, -) is equivalent

to the Euclidean metric, i.e.,
caslz —yl < plx,y) < caslz - y| foral z,yeG. (3.2)

In this case, ds/2 = d/d,, holds.
Example: Sierpinski gasket

Let D, be a n-dimensional simplex whose vertices are {po,p1,--+,Pa}. For
i=12--,n+1,let F(2) = (z —p:)/2+pi, z € R". Then, there exists a
unique non-void compact set G such that G = UMLF(G). This G is calléd a
(n-dimensional) Szevpmskz gasket. It is known that the Sierpinski gasket has
a fractional diffusion with d = log(n + 1)/ 1og 2, dy = 2log(n + 1)/ log(n + 3)
dy = log(n + 3)/log 2. (Note that d, < 2 for this example.)

In general, (afﬁne) nested fractals, (which is a class of fracf;als including
Sierpinski gaskets) and Sierpinski carpets have fractional diffusions with ¢;|z —

> 1 instead of (3 2)

y|% < p(z,v) < colz — y|% for some d.
We now introduce Lipschitz spaces. For 1 <p< oo, 1 <¢< < oo, 320 and
m € N U {0}, set '
om(B )= L@ [ [ 1f@) = fQ)Pdu)du@) | €LP(Gop)

—yl<e
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where 1 < L < 00, 0 < ¢ < 0o. Define a Lipschitz space Lip(8,p, ¢)(G) as a
set of f € L7(G, p) such that a(g, f) == {am(B, f)}5_o € 1% Lip(B,p,q)(G) is
a Banach space with the norm ”f”Lip = || flle + |a(B, f)|lie. Note that the
Lipschitz space is determined independently of the choice of L and ¢y as long as

the former is greater than 1 and the latter is positive.

"Theorem 3.2 ([9], [14], [19], (8]) Let (£, F) be a local regular Dirichlet form on
G which corresponds to a fractional diffusion. Then, the following holds.

F = sz(d ,2,00)(G).

PROOF. We will follow the argument in [19). We first prove F C Lip. For f €
L2(G, u), let E(f, f) := (f — P.f, f)r2/t, where P, is a semigroup corresponding
to (£,F). Then,

£, 1) = 51; [ [ 0@ - F@)pla, putdo)u(dy)
2t / /m_quot1 . = F())*pe(z, y)p(dz)u(dy)
> o f /H, 2(f(@) - fQ) uld)uldy),  (3.3)

v

where we use the lower bound of (3.1) in the last inequality. Taking t = L4
and using the fact d,/2 = d/d,, we see that (3.3) is equal to c1am(dw/2, f)2.
It is well known that €:(f,f) /" €(f,f) ast | 0 ([6], Lemma 1.3.4). We thus
obtain sup,, am(dy/2, f)? < cz\/g(—f,—ﬂ and the result holds.

We next prove Fo Lip. Set v = 1/(dy — 1). Since the diameter of G is 1,
we have for each g € Lip, |

99 / / ewec (9() y)) *p(z, y)u(de)p(dy)

lz—y{<1

- Z: cat™/2gmenteim) [ (9(2) — 9(v)u(dz)(dy)

“m<jg—y|<L-mt1
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< cgtm 1) i gmea ()T [ mmldutd) (o 32 (3.4)

m=1
where we use the upper bound of (3.1) in the first inequality. For 0 < t and
0 < 7, let &y(z) = e~c4(L**)™7 [~=(dw+d) By elementary calculation, we see that
®,(0) > 0, limg_eo ®:(z) = 0 and [° ®;(z)dz = cst**%/2. Further, there exists
z; > 0 such that ®,(z) is increasing for 0 < z < 1z, decreasing for r; <z < 00
and ®;(z,) = cst!™4/2. Thus, S2_, &,(m) < [£° ®:(z)dx + 284(z:) < cptt /2,
Since (3.4) is less than or equal to cgt~(1+4/2)|| g“iip w2 _, $:(m), we conclude

that sup,so £:(9, 9) = lime0 &:(9,9) < csl glliip and the result holds. 1

4 Dirichlet forms and jump type processes on d-sets

In [15], three natural non-local regular Dirichlet forms are introduced, whose
corresponding processes are stable-like jump type processes on compact d-sets.

We will survey the results here.

4.1 Jump process as a Besov space on a d-set

We first introduce Besov spaces on G and their trace theory within the scope of
our use (see [11], [24] etc. for details).

For 0 < a < 1, we introduce a Besov space B>?(G) as follows,

BN = Tl + (f [, B uda)utan)” (4.
B>*(G) = {u:u is measurable, |u|B>*(G)|| < oo}. - (4.2)

In [11], it is shown that for 0 < a < 1, B%*(G) = Lip(q, 2,2){G) and the two

norms are equivalent (Chapter V, Proposition 3).
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For each f € LL.(R") and z € R™, define

1

Rf(@) =m Zm sy Jown T W%

if the limit exists, where m is the Lebesgue measure in R". It is well-known
that the limit exists quasi-everywhere (i.e. except a set of zero capacity) in
R"™ with respect to the Newtonian capacity if n > 3 or logarithmic capacity
if n = 2 and coincides with f(z) almost everywhere in R™. For each 5 > 0,
denote by B;’z(R") the classical Besov space on R" (see Remark 4.2 below for
its definition). The following trace theorem plays an important role in the study
of Besov spaces on d-sets (see, for instance, Chapters V and VIin [11] or Section

20 in [24]).

Proposition 4.1 For 0 < s < 1, the trace operator Trg : f — Rf is a bounded
linear surjection from Bff(n_d) ;2(R™) onto B22(G) and it has a bounded linear
rz'ght inverse operator Eg (which is called the extension operator in literature)

so that Trg o Eg is the identity map on B%2(G).

Remark 4.2 Note that for § > 0 with integer k¥ < 8 < k + 1, the classical
Besov space BE’Z(R") is defined to be

" ) , A Dj 2 1/2
By*(R™) = {ue C*R™): fullgza = D  ID%ulla+ ) ( /R" —““—‘lll,,,th,e(p{l';f) dh) <0

0<lji<k =k

where for j = (j1, j2,++,Jn) € 23, ljl = T ju and D7 = 520, Ay is
the difference operator so that for A € R", (Anf)(z) = f(z + h) — f(z), and
|| - ||z denotes the L?-norm in L*(R", m) (see, for instance, section 1.1.5 in [11]).
It is known (cf. Section V.1.1 in [11]) that when 0 < 8 < 1, the norm ”u"B;,z
is equivalent to “uIBg’z(R”)“.deﬁned by (4.2) with G = R", and therefore

B;'Z(R") is the same as the space defined by (4.1) with G = R"™. Furthermore,



the space Bf,‘z(R") coincides with the classical Bessel potential space on R™ (also
called the fractional Sobolev space or the Liouville space); see, for instance, p.

8 in Section 1.1.5 of [11].

Now, for 0 < a < 1 and u,v € B%*(G), define

byt = [ [ 0= M) o), ), ).

lx —_ y|d+2a

By standard properties of Besov spaces, it is easy to check that (Ey), B%%(G))
is a regular Dirichlet space on L?(G, i) (a detailed proof is given, for instance,
in Theorem 3 of [21]). We denote {¥{*}450 the corresponding Hunt process on
G. We note that when G = R", this is a (2a)-stable process on R™.

4.2 Jump process as a subordination of a diffusion

In this subsection, we assume that there exists a fractional diffusion on G.

For 0 < a < 1, let {&}e>0 be the strictly a-stable subordinator, i.e., it is
a one dimensional non-negative Lévy process independent of {BE}:>0 with the
generating function E[exp(—u&;)] = exp(—tu®). Let {n(u):t > 0,u 2 0} be
the distribution density of {&}:>0. Using pi(z,y) in (3.1), we define

a(z,y) = /pru(:v,y)nt(U)du forall t>0, z,y€G.

Then, by a general theory, g:(z,%) is a transition density of some Markov pro-
cess which we denote by {X,f“) }+>0, called the subordinate process (see (3], [20]).
In our case, {Xt(a)}tzo is a p-symmetric Hunt process and we denote the corre-

sponding Dirichlet form on L?(G, ) as (€x(@),F x(@)-

Remark 4.3 The argument here can be extended to a class of diffusions wider

than fractional diffusions. Indeed, by checking the proof of [15], [21] carefully,
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we see that the same results hold for diffusions whose transition densities satisfy
estimates similar to (8.1), but with different orders 0 < 1,72 < 00 on the
shoulders of p(z,y)*t! (instead of 1/(dw — 1)). If we weaken the condition
as above, then we can include all diffusions on p.c.f: self-similar sets (which

roughly corresponds to finitely ramified fractals) as mentioned in [16].

4.3 Jump process as a time change of a stable process on R"

We first briefly give a result by Triebel. In [24], Triebel define a Besov space on

d-set G as follows.

luIBZ* (G = _inf |lg|Batn-a2(R™)],

Trgg=u
B*(G) = Trg Batn-ay2(R®),
where o > 0. Here TrG is the trace operator given in Proposition 4.1 and the
norm of Bgy(n-g)/2(R") is the one given in Remark 4.2. In general, this Besov
space is different from the one defined by Jonsson-Wallin ([11]), but it is known
that for 0 < @ < 1, the two spaces coincide and the two norms are equivalent.

Let H, be the corresponding self-adjoint operator on G so that
(Ho*u, H *u)raa = [ulBZ*(G)I?,  Dom (HY?) = B2*(G).

Theorem 4.4 ([24]; Theorem 25.2) H, is a positive definite self-adjoint opera-
tor on L2(G, ) with pure point spectrum. Let yy, be its k-th eigenvalue (including

maultiplicities). Then there exist cs1,cs2 > 0 such that the following holds.
ca1k?? < i < cq ke forall keN.

We now give the third jump process on d-sets ([15]). It turns out that
the corresponding operator of the process is the one given by Triebel when

O<a<l.
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We construct a jump process though a time change of (2a)-stable process
on R™. Let G be a d-set on R™ with a Radon measure p which satisfies (2.1).
Also, let {Bt(a)}tzo (0 < a < 1) be a rotation invariant (2ar)-stable process on
R™ (when a = 1 it is a Brownian motion). Then, it is proved in [15] that when
2a > n — d, then p is a smooth measure w.r.t. {Bt(a)}t, i.e. u charges no set
of zero capacity w.r.t. the form corresponding to {Bt(a)}t. .Thus, by a general
theory (see [6]), there exists a unique positive continuous additive functional
{AE""}tZO which is in Revuz correspondence with p (thus, A§°‘> increases only
when B® € G). Set 7 = inf{s > 0 : A® > t} and define Z® = B@.
Then, again by a general theory, {Zt(a)}tzo is a u-symmetric jump process whose
corresponding regular Dirichlet form we denote by (€zw,Fz@). Since the
corresponding form is a trace of the Dirichlet form of the (2a)-stable process on
R™ (see Theorem 6.2.1 in [6]), we can check that the corresponding operator is

Ha—(n-d)/2 given above.
4.4 Comparison of the forms and heat kernel bounds

Define @ = ady /2 and & = a — (n — d)/2. We then have the following.

Proposition 4.5 ([21],[15])
Let G be a d-set. For(n—d)/2<a<lora= l,n‘—2 <d<n,

casEy@ (£ ) € Ez@(f, f) < caaby(f, f) forall feL*(G,p). (4.3)
Assume further that there exists a fractional diffusion on G. For0 < a <1,

casEya (f, f) < Exa (f, f) < casby(f, ) forall fEL*(G,p). (44)

In particular, under the conditions,

F gy = B¥*(G), Fxw = BE*(G).
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Remark 4.6 1) In [15], (4.4) is stated for 0 < a < 2/d,,. But the proof there
shows that it actually holds for 0 < a < 1. From this fact, we see that when G is
a d-set on which there exists a fractional diffusion, (Eyw, B>*(G)) is a regular
Dirichlet form for 0 < a < dy,/2.

2) Note that in general the three-type Dirichlet forms introduced are different
and the corresponding processes cannot be obtained by time changes of others by

positive continuous additive functionals (see [15]).

5 Heat kernel estimates for stable-like processes on d-sets

In [4], detailed estimates of heat kernels for {Y(®)} are obtained. There exists a

non-negative bounded heat kernel pi(z,y) on (¢,z,y) € (0,00) X G x G with

FOf@ = [ plen)fudy) foral z€G, felIG,p),

where PY is the heat semi oup w.r.t. Ey@), satisfying the following.
t gr

Theorem 5.1 ([4]) For 0 < a < 1, the following holds.
1) Forallz,ye G, 0<t<]1,

4 t _d 1
cs1(t™2 A W) < pe(z,y) S cs2(t™2%= A [y y|d+2a)’

2) There are constants cs3 > 0 and 3 > 0 such that for any 0 < t,s < 1 and
(zi,1:) € G x G withi=1,2, '

| y | ,
[Po(@1,31) = Pe(@2,92)] < 5.3 (¢ A 8)7F (|t = s|% + a1 — 2] + Jys — 2al)

Theorem 5.2 ([4]) For every z € F, P®-a.s., the Hausdorff dimension of
Y[0,1]:={Yi: 0<t<1}isdA(2a). |



Note that above theorems hold under a wider framework, i.e. when the form is

expressed as

5,0 = [ [ _(f@) = f@)n(z,v)du@)du(),

where n(z,y), z,y € G is a jointly measurable function such that n(z,y) =

n(y,z) for all z,y € G and satisfies

C5.4 | Csl.‘s :
— < n(zx < —
Iz — y|dtea = (2,9) < Iz — g|i+2a

In [4], it is also proved that all the parabolic functions (two variable functions

which satisfy the heat equation) satisfy the parabolic Harnack inequality.
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