Sierpińskiガスケット上の調和関数

米子工業高等専門学校 倉田 久靖 (Hisayasu Kurata)
Yonago National College of Technology

1 離散近似

 (X, \mathcal{E}) を局所有限なグラフとする. ただし、X および \mathcal{E} はそれぞれ頂点および辺の集合で、 \mathcal{E} の元は X の元の非順序対とする. さらに次の条件を満たすとする.

- (i) X は X_0, X_1, \dots に、また \mathcal{E} は $A_1, A_2, \dots, \mathcal{B}_1, \mathcal{B}_2, \dots$ に分割される.ただし、 X_0 は 1 点集合である.
- (ii) 任意の $n \ge 1$ と $x \in X_n$ について、 $(x, p(x)) \in A_n$ を満たす頂点 $p(x) \in X_{n-1}$ が 唯一つ存在する.逆に A_n の元はこの形に書ける.また、すべての $x \in X$ について x = p(y) を満たす頂点 $y \in X$ が存在する.
- (iii) \mathfrak{B}_n の元は X_n の元の対である.

これらから、 $(X, \bigcup_{n=1}^{\infty} A_n)$ が樹木構造を持つこと、また各 X_n が有限集合であることがわかる.また $\Xi = \{\{x_n\}_{n=0}^{\infty};$ すべての n について $x_n \in X_n$ 、 $(x_{n-1}, x_n) \in A_n\}$ とおく.これは上記の樹木構造の枝に沿う頂点列の全体である. $\xi = \{x_n\}_n \in \Xi$ に対し $\gamma_n(\xi) = x_n$ とおく.

 \mathcal{E} 上に正値関数 l_0 で、任意の $\{x_n\}_n\in\Xi$ について $\sum_n l_0(x_{n-1},x_n)<\infty$ となるものが与えられているとする。 2 頂点 x、y について、それらを結ぶ道の全体を $\Re(x,y)$ とする。すなわち

$$\Re(x,y) = \left\{ \{e_j\}_{j=1}^k ; e_j = (z_{j-1}, z_j) \in \mathcal{E}, z_0 = x, z_k = y, k \ge 1 \right\}$$

とする. ただし、x = yのときは空列も含めておく. 更に

$$\hat{l}\left(x,y
ight)=\inf\left\{ \sum_{j}l_{0}\left(e_{j}
ight);\left\{ e_{j}
ight\} _{j}\in\mathcal{R}\left(x,y
ight)
ight\}$$

とおけば、lはXの距離になる.

補題 1. 任意の $\xi, \eta \in \Xi$ について、 $\rho(\xi, \eta) := \lim_{m \to \infty, n \to \infty} l(\gamma_m(\xi), \gamma_n(\eta))$ が存在する.

証明. $\xi = \{x_n\}_n$ 、 $\eta = \{y_n\}_n$ とする. 任意の $\varepsilon > 0$ について、 $\sum_{j=N}^{\infty} l_0(x_j, x_{j+1}) < \varepsilon$ および $\sum_{j=N}^{\infty} l_0(y_j, y_{j+1}) < \varepsilon$ が成り立つような整数 N を取る. $m_2 > m_1 \geq N$ かつ $n_2 > n_1 \geq N$ と する. $\sum_j l_0(e_j) \leq l(x_{m_1}, y_{n_1}) + \varepsilon$ を満たす $\{e_j\}_j \in \Re(x_{m_1}, y_{n_1})$ を取る. $\{(x_j, x_{j+1})\}_{j=m_1}^{m_2-1} \in \Re(x_{m_1}, x_{m_2})$ かつ $\{(y_j, y_{j+1})\}_{j=n_1}^{n_2-1} \in \Re(y_{n_1}, y_{n_2})$ であるから、 $l(x_{m_2}, y_{n_2}) \leq l(x_{m_1}, y_{n_1}) + 3\varepsilon$ となる. 逆も同様に得られるから、主張を得る.

明らかに $\xi, \eta, \zeta \in \Xi$ について

$$\rho\left(\xi,\xi\right)=0,\quad\rho\left(\xi,\eta\right)=\rho\left(\eta,\xi\right),\quad\rho\left(\xi,\zeta\right)\leq\rho\left(\xi,\eta\right)+\rho\left(\eta,\zeta\right)$$

が成り立つ. ここで、 $\rho(\xi,\eta)=0$ のとき $\xi\sim\eta$ と定めれば、これは同値関係になる. ξ を含む同値類を $\tilde{\xi}$ とし、その全体を $\tilde{\Xi}$ とする. このとき、 $\tilde{\rho}\left(\tilde{\xi},\tilde{\eta}\right):=\rho(\xi,\eta)$ は代表元の取り方によらないことと、 $\tilde{\rho}$ が $\tilde{\Xi}$ 上の距離になることがわかる.

ここで、上記の条件を満たすネットワーク列の例を構成する。実際、与えられたコンパクト集合 $K\subset\mathbb{R}^d$ に対し、 $\tilde{\Xi}$ と K が Lipschitz 同値になるようにできる。まず、K を含む閉立方体 Q_0 を取る。簡単のため Q_0 の辺の長さは 1 であるとする。 $Q_0=\{Q_0\}$ とおく.次に Q_0 を 2^d 等分した立方体のうち K と交わるものの全体を Q_1 とする。さらに Q_1 の各立方体を 2^d 等分した立方体のうち K と交わるものの全体を Q_2 とする。以下同様に Q_n を定める。各 $Q\in\bigcup_{n>0}Q_n$ について相異なる頂点 x(Q) を取り、

$$X_n = \{x\left(Q
ight); Q \in \mathcal{Q}_n\}$$
、
$$\mathcal{A}_n = \left\{ (x\left(P
ight), x\left(Q
ight)); P は Q \mathcal{O} 2^d 等分の一つで P \in \mathcal{Q}_n \right\},$$

$$\mathcal{B}_n = \left\{ (x\left(P
ight), x\left(Q
ight)); P, Q \in \mathcal{Q}_n, P \cap Q \neq \emptyset \right\} \right.$$

とおく、さらに $(x,y) \in A_n \cup B_n$ のとき $l_0(x,y) = 2^{-n}$ と定め、l、三などを前述のように定める、任意の $\xi = \{x(Q_n)\}_{n=0}^\infty \in \Xi$ に対し $\bigcap_n Q_n$ は 1 点であるから、その点を $\pi(\xi)$ と書けば、 π は三から Kへの全射になっている。

補題 2. 任意の $\xi, \eta \in \Xi$ について

$$\rho\left(\xi,\eta\right)/6 \le |\pi\left(\xi\right) - \pi\left(\eta\right)| \le \sqrt{d}\rho\left(\xi,\eta\right)$$

が成り立つ.

証明. $\xi = \{x(P_n)\}_n$ 、 $\eta = \{x(Q_n)\}_n$ とする. まず $\pi(\xi) = \pi(\eta)$ のときを考える. このとき $\bigcap_n P_n = \bigcap_n Q_n$ であるから、特に任意の n について $P_n \cap Q_n \neq \emptyset$ である. よって $(x(P_n), x(Q_n)) \in \mathcal{B}_n$ となり、したがって $l(x(P_n), x(Q_n)) \leq l_0(x(P_n), x(Q_n)) = 2^{-n}$ となるから、 $\rho(\xi, \eta) = 0$ となる. よって与式は成り立つ.

以下 $\pi(\xi) \neq \pi(\eta)$ とする. このとき $P_N \cap Q_N \neq \emptyset$ かつ $P_{N+1} \cap Q_{N+1} = \emptyset$ となる N を取れば、 $|\pi(\xi) - \pi(\eta)| \geq 2^{-(N+1)}$ となる. n > N のとき

$$\{(x(P_{j-1}), x(P_j))\}_{j=N+1}^n \in \Re(x(P_n), x(P_N)),$$

$$\{(x(P_N), x(Q_N))\} \in \Re(x(P_N), x(Q_N)),$$

$$\{(x(Q_{j-1}), x(Q_j))\}_{j=N+1}^n \in \Re(x(Q_N), x(Q_n))$$

となるから、

$$l(x(P_n), x(Q_n)) \le 2^{-N} + 2^{-N} + 2^{-N} \le 6 |\pi(\xi) - \pi(\eta)|$$

を得る. $n \to \infty$ とすれば

$$\rho\left(\xi,\eta\right) \le 6\left|\pi\left(\xi\right) - \pi\left(\eta\right)\right|$$

となる.

第2の不等式を示すために、 $\{(x(R_{j-1}),x(R_j))\}_{j=1}^m \in \Re(x(P_n),x(Q_n))$ とする。立方体 Q の中心を c(Q) と書く。 $(x(R_{j-1}),x(R_j))\in \mathcal{A}_k\cup\mathcal{B}_k$ とすると、 $l_0(x(R_{j-1}),x(R_j))=2^{-k}$ かつ $|c(R_{j-1})-c(R_j)|\leq \sqrt{d}2^{-k}$ となるから、 $|c(R_{j-1})-c(R_j)|\leq \sqrt{d}l_0(x(R_{j-1}),x(R_j))$ となる。よって

$$|c(P_n) - c(Q_n)| \le \sum_{j=1}^m |c(R_{j-1}) - c(R_j)| \le \sqrt{d} \sum_{j=1}^m l_0(x(R_{j-1}), x(R_j))$$

を得る. 右辺の下限を考えれば

$$|c(P_n) - c(Q_n)| \le \sqrt{dl}(x(P_n), x(Q_n))$$

となる. $\pi(\xi) \in P_n$ より、 $|\pi(\xi) - c(P_n)| \le \sqrt{d}2^{-(n+1)}$ となるから、

$$\left|\pi\left(\xi\right)-\pi\left(\eta\right)\right|\leq2\sqrt{d}2^{-\left(n+1\right)}+\sqrt{d}l\left(x\left(P_{n}\right),x\left(Q_{n}\right)\right)$$

となり、 $n \to \infty$ とすれば

$$|\pi(\xi) - \pi(\eta)| \le \sqrt{d}\rho(\xi, \eta)$$

を得る.

この補題により $\xi \sim \eta$ のとき $\pi(\xi) = \pi(\eta)$ となること、従って $\tilde{\xi} \in \tilde{\Xi}$ に対し $\tilde{\pi}(\tilde{\xi}) = \pi(\xi)$ と定義できることがわかる.さらに

$$\tilde{\rho}\left(\tilde{\xi},\tilde{\eta}\right)/6 \leq \left|\tilde{\pi}\left(\tilde{\xi}\right) - \tilde{\pi}\left(\tilde{\eta}\right)\right| \leq \sqrt{d}\tilde{\rho}\left(\tilde{\xi},\tilde{\eta}\right)$$

が成り立つこともわかる. すなわち次の定理を得る.

定理 3. $\tilde{\pi}$ は $\tilde{\Xi}$ から Kへの両 Lipschitz 連続写像である.

上記で X などを構成する際、 Q_0 が立方体であることや、各立方体を 2^d 等分することは本質的ではない。

例 4 (Sierpiński ガスケット). 複素平面上の正三角形 $p_1p_2p_3$ を取り、 $z \in \mathbb{C}$ について $F_j(z)=(z+p_j)/2$ $(j\in L=\{1,2,3\})$ とおく. $\{F_1,F_2,F_3\}$ の不変集合、すなわち K=

 $\bigcup_{j=1}^3 F_j(K)$ を満たすコンパクト集合 K が唯一つ存在する.それを Sierpiński ガスケットという. $a_j \in L$ とし $F_{a_1\cdots a_n} = F_{a_1} \circ \cdots \circ F_{a_n}$ とおくと、任意の $z_0 \in \mathbb{C}$ に対し

$$K = \bigcup \left\{ \lim_{n \to \infty} F_{a_1 \cdots a_n} \left(z_0 \right);$$
すべての j について $a_j \in L \right\}$

となることが知られている。L をアルファベットとする長さ n の単語の全体を X_n とする。 $x=a_1\cdots a_n\in X_n$ と $y=b_1\cdots b_m\in X_m$ について $xy=a_1\cdots a_nb_1\cdots b_m$ 、 $x^2=xx$ 、 $x^3=xxx$ などと書く。また $A_n=\{(x,xa);x\in X_{n-1}, a\in L\}$ 、 $B_n=\{(x,y);x,y\in X_n,F_x(K)\cap F_y(K)\neq\emptyset\}$ とし、 $e\in A_n\cup B_n$ のとき $l_0(e)=2^{-n}$ とおく。 さらに長さが無限の単語の全体を三とし、 $\xi=a_1\cdots a_n\cdots\in\Xi$ に対し $\gamma_n(\xi)=a_1\cdots a_n$ 、 $\pi(\xi)=\lim_{n\to\infty}F_{\gamma_n(\xi)}(z_0)$ とおく。前述と同様に $\tilde{\rho}$ 、 $\tilde{\pi}$ を定めれば、定理 3 と同様に

$$\sqrt{3}/6 \cdot \tilde{\rho}\left(\tilde{\xi}, \tilde{\eta}\right) \leq \left|\tilde{\pi}\left(\tilde{\xi}\right) - \tilde{\pi}\left(\tilde{\eta}\right)\right| \leq \tilde{\rho}\left(\tilde{\xi}, \tilde{\eta}\right)$$

が成り立つことがわかる. すなわち、 $\tilde{\pi}$ は $\tilde{\Xi}$ から Kへの両 Lipschitz 連続写像である.

2 調和関数

まず各世代における調和関数を考える. X_n $(n \ge 1)$ 上の関数 u について

$$\Delta_{n}u\left(x\right)=\sum_{y\in X_{n},\;\left(y,x\right)\in\mathcal{B}_{n}}\frac{u\left(y\right)-u\left(x\right)}{l_{0}\left(y,x\right)}$$

とおく. u が点 $x \in X_n$ で調和であるとは $\triangle_n u(x) = 0$ を満たすこととし、 X_n の部分集合 Y で調和であるとは Y の各点で調和であることとする. $Y \subset X_n$ に対し

$$\bar{Y} = Y \cup \{x \in X_n;$$
ある $y \in Y$ について $(x,y) \in \mathcal{B}_n\}$

とおく.

補題 5 (最大値原理). Y を (X_n, \mathcal{B}_n) の連結部分グラフの頂点の集合とし、 \bar{Y} で定義された関数 u が Y で調和であるとする. $\max_{\bar{Y}} u = u(x)$ を満たす頂点 $x \in Y$ があれば、u は \bar{Y} で定数である.

証明. xで最大になることから、 $(x,y) \in \mathcal{B}_n$ を満たすすべての y について $u(y) - u(x) \leq 0$ となる. 従って、 $\Delta_n u(x) = 0$ は u が $\overline{\{x\}}$ で定数であることを意味する. この議論を繰り返せば良い.

定理 6. S_n は X_n の部分集合で、 X_n のすべての連結成分と交わるものとする. S_n 上の任意の関数 u_0 に対し

$$X_n \setminus S_n$$
 において $\Delta_n u = 0$, S_n において $u = u_0$ (1)

を満たす X_n 上の関数uが唯一つ存在する.

証明. $u_0 \equiv 0$ であれば補題 5 により $u \equiv 0$ となる。すなわち、連立方程式(1) が同次のときは、その解は唯一つである。従って、その係数行列は可逆であり、よって任意の u_0 に対し(1) は唯一つの解を持つ。

次に $\tilde{\Xi}$ 上の調和関数を定義する. $\tilde{\Sigma} \subset \tilde{\Xi}$ とし $\Sigma = \left\{ \xi \in \Xi; \tilde{\xi} \in \tilde{\Sigma} \right\}$ 、 $S_n = \left\{ \gamma_n(\xi); \xi \in \Sigma \right\}$ とする. u_n を X_n 上の関数で $X_n \setminus S_n$ で調和なものとする. これらが

- (i) 列 $\{u_n(\gamma_n(\xi))\}_n$ は $\xi \in \Xi$ について一様収束する.

を満たすとき、 $\varphi\left(\tilde{\xi}\right):=\lim_{n\to\infty}u_n\left(\gamma_n\left(\xi\right)\right)$ は $\tilde{\Xi}\setminus\tilde{\Sigma}$ において調和であるという。 φ は $\tilde{\Xi}$ 全体で定義されていることを注意する。

定理 7 (弱最大値原理). $\tilde{\Xi}\setminus \tilde{\Sigma}$ の調和関数 φ は

$$\sup_{\tilde{\Xi}} \varphi = \sup_{\tilde{\Sigma}} \varphi$$

を満たす.

証明. $\tilde{\xi} \in \tilde{\Xi}$ とし $\xi = \{x_n\}_n$ とする、十分大きなn を取れば $u_n(x_n) > \varphi(\tilde{\xi}) - \varepsilon$ となる、また補題5 より、 $u(y_n) \geq u(x_n)$ を満たす頂点 $y_n \in S_n$ が取れる、u は φ に一様収束するから、 $\gamma_n(\eta) = y_n$ となる $\eta \in \Sigma$ について $u(y_n) < \varphi(\tilde{\eta}) + \varepsilon$ としてよい、よって $\varphi(\tilde{\xi}) < \varphi(\tilde{\eta}) + 2\varepsilon$ となり、 $\sup_{\tilde{\Xi}} \varphi \leq \sup_{\tilde{\Sigma}} \varphi + 2\varepsilon$ となる.

 $\tilde{\Xi}$ における Dirichlet 問題を考える. $\tilde{\Sigma}$ 上の関数 φ_0 に対し、 $\tilde{\Xi}\setminus \tilde{\Sigma}$ の調和関数 φ で $\tilde{\Sigma}$ において $\varphi=\varphi_0$ を満たすものがあるとき、 φ を組 $\left(\tilde{\Sigma},\varphi_0\right)$ に関する Dirichlet 問題の解という.

系 8. 任意の組 $\left(\tilde{\Sigma}, \varphi_0\right)$ について、それに関する Dirichlet 問題の解は高々一つしかない.

証明. 2つの解 φ_1 と φ_2 があったとすると、簡単な考察により $\varphi_1-\varphi_2$ は $\left(\tilde{\Sigma},0\right)$ に関する Dirichlet 問題の解であることがわかる.よって定理 γ により $\varphi_1-\varphi_2=0$ となる.

次に Sierpiński ガスケット上の調和関数について考える. 記号は例 4 を参照されたい. まず X_n 上の調和関数についての評価を与える.

補題 9. $S_n = \{1^n, 2^n, 3^n\} \subset X_n$ とし $u_0(1^n) = 1$ 、 $u_0(2^n) = u_0(3^n) = 0$ とする. 方程式(1) の解をuとすると、 $(x,y) \in \mathcal{B}_n$ ならば

$$|u(x) - u(y)| \le 2(3/5)^{n-1}$$

証明. u_0 は $\bigcup_n S_n$ で定義されており、uはすべてのnについて(1)を満たすとしてよい. $Y = \{x \in X_n; x \text{ の最初の文字は1} \text{ または2}\} \setminus \{13^{n-1}, 23^{n-1}, 1^n, 2^n\}$ とし、方程式 $\triangle_n u(x) = 0$ $(x \in Y)$ を考える. するとu(x)は、ある定数 $c_i(x)$ (i = 1, 2, 3, 4)を用いて

$$c_0(x) u(13^{n-1}) + c_1(x) u(23^{n-1}) + c_2(x) u(1^n) + c_3(x) u(2^n)$$

と書ける.方程式の対称性から $c_0(12^{n-1})=c_2(12^{n-1})=c_1(21^{n-1})=c_3(21^{n-1})$ および $c_0(21^{n-1})=c_2(21^{n-1})=c_1(12^{n-1})=c_3(12^{n-1})$ が成り立つ.これと、定数関数は調和関数であることから

$$u(12^{n-1}) + u(21^{n-1}) = (u(13^{n-1}) + u(23^{n-1}) + u(1^n) + u(2^n))/2.$$
 (2)

がわかる. 同様に

$$u(23^{n-1}) + u(32^{n-1}) = (u(21^{n-1}) + u(31^{n-1}) + u(2^n) + u(3^n))/2.$$
 (3)

を得る. 更に $u_0(2^n) = u_0(3^n)$ であるから

$$u(12^{n-1}) = u(13^{n-1}), u(21^{n-1}) = u(31^{n-1}), u(23^{n-1}) = u(32^{n-1})$$

となり、従って(3)と(2)から

$$u(23^{n-1}) = u(21^{n-1})/2, (4)$$

$$u(12^{n-1}) + 3/2u(21^{n-1}) = 1 (5)$$

が得られる. 次に補題 5 を $Y=\{x\in X_n;x$ の最初の文字は $1\}$ に適用すれば、任意の $x\in Y$ について $u(x)>u(21^{n-1})\wedge u(31^{n-1})=u(21^{n-1})$ となることがわかる. 特に $u(12^{n-1})>u(21^{n-1})$ となる。 よって(5) と合わせれば

$$u\left(21^{n-1}\right) < 2/5 < u\left(12^{n-1}\right) \tag{6}$$

を得る、

次に $x \in X_{n-1}$ について

$$u(1x) = (1 - u(12^{n-1})) u(x) + u(12^{n-1}), (7)$$

$$u(2x) = u(21^{n-1}) u(x) + u(23^{n-1}) u(x_{1 \leftrightarrow 3}),$$
 (8)

$$u(3x) = u(31^{n-1}) u(x) + u(32^{n-1}) u(x_{1 \leftrightarrow 2})$$
(9)

を示す。ただし、 $x_{1\to 3}$ はx の 1 と 3 を入れ替えた単語を表す(例: $1231_{1\to 3}=3213$)。まず $u(1^{n-1})=u(1^n)=1$ と $u(2^{n-1})=u(3^{n-1})=0$ より $x\in S_{n-1}$ のとき(7) は成り立つ。更に(7) の両辺は調和関数だから両者は一致する。(8) と(9) も同様に示される。

続いて $x \in X_{n-1}$ と $a,b \in L$ について

$$|u(xa) - u(xb)| \le (3/5)^{n-1}$$

図 1:

を帰納法で示す。n=1のときは明らか。n-1のとき示されたとすると、任意の $z\in X_{n-2}$ と $a,b\in L$ について、(7) と(6) を用いて

$$|u(1za) - u(1zb)| = (1 - u(12^{n-1})) |u(za) - u(zb)| < 3/5 |u(za) - u(zb)| \le (3/5)^{n-1}$$

となる. 同様に(8)、(6)、(4)を用いて

$$|u(2za) - u(2zb)| < 2/5 |u(za) - u(zb)| + 1/5 |u((za)_{1 \leftrightarrow 3}) - u((zb)_{1 \leftrightarrow 3})| \le (3/5)^{n-1}$$

を得る. また(9)、(6)、(4)から

$$|u(3za) - u(3zb)| \le (3/5)^{n-1}$$

を得る. これらによりnのときが示される.

 $x,y \in X_n$ を $(x,y) \in \mathcal{B}_n$ となるように取る。ある w について x = wa、y = wb と書ける場合は、既に述べたように $|u(x) - u(y)| \le (3/5)^{n-1}$ となるから、定理の主張を得る。そうでないときは、x と y が図 1 のようになっているから、3u(x) = u(y) + u(y') + u(y'') となり、

$$|u(x) - u(y)| \le |u(x) - u(y')| + |u(x) - u(y'')| \le 2(3/5)^{n-1}$$

を得る.よって.この場合も主張を得る.

定理 10. $\tilde{\pi}\left(\tilde{\Sigma}\right)$ が $\{F_x(p_j); x \in X, j \in L\}$ の有限部分集合であれば、任意の $\tilde{\Sigma}$ 上の関数 φ_0 について、 $\left(\tilde{\Sigma}, \varphi_0\right)$ に関する Dirichlet 問題は解ける.

証明. $\max_{\tilde{\Sigma}} \varphi_0 = 1$ 、 $\min_{\tilde{\Sigma}} \varphi_0 = 0$ としてよい、仮定から $\xi \in \Sigma$ は、ある $x \in X$ と $a \in L$ で $\xi = xa^\infty$ と書ける、十分大きなN を取れば、すべての $\xi \in \Sigma$ について上記のx は X_N に属するとして良い、n > N とし $x \in S_n$ とすると、 $\gamma_n(\xi) = x$ を満たす $\xi \in \Sigma$ が唯一つある、そこで $u_0(x) = \varphi_0\left(\tilde{\xi}\right)$ と定める、u を方程式(1) の解とする、u は $\bigcup_{n > N} X_n$ 全体で定義されているとして良い、

 $x_0 \in X_N$ を固定する. $a \in L$ について

$$X_{n-N}\setminus\left\{1^{n-N},2^{n-N},3^{n-N}
ight\}$$
 において $\Delta v_a=0$ 、 $b\in L$ に対し $v_a\left(b^{n-N}
ight)=1_{a=b}$

を満たす v_a を取る. $u(x_0x)$ と

$$\left(u\left(x_{0}1^{n-N}\right)-u\left(x_{0}3^{n-N}\right)\right)v_{1}\left(x\right)+\left(u\left(x_{0}2^{n-N}\right)-u\left(x_{0}3^{n-N}\right)\right)v_{2}\left(x\right)+u\left(x_{0}3^{n-N}\right)$$

は共に $x \in X_{n-N} \setminus \{1^{n-N}, 2^{n-N}, 3^{n-N}\}$ において調和であり、 $\{1^{n-N}, 2^{n-N}, 3^{n-N}\}$ において一致するから、 X_{n-N} 上で一致する。よって補題9 により、 $(x,y) \in \mathcal{B}_{n-N}$ のとき $|u(x_0x) - u(x_0y)| \le 4(3/5)^{n-N-1}$ となる。補題9 の証明と同様にx = wa、y = wb と書ける場合とそうでない場合に分けて考えれば、 $(x,y) \in \mathcal{B}_n$ のとき $|u(x) - u(y)| \le 8(3/5)^{n-N-1}$ となる。

 $x \in X_n \setminus S_n$ とする。ある $y \in X_n$ と $a,b \in L$ で $yb \in S_{n+1}$ かつ $(xa,yb) \in B_{n+1}$ とできたとする。もし y = x ならば、 $yb \in S_{n+1}$ より $x \in S_n$ となるから矛盾。 $y \neq x$ のとき。N の取り方から $yb^\infty \in \Sigma$ となるが、一方 $yb^\infty \sim xa^\infty$ であるから、 $x \in S_n$ となり、やはり矛盾する。よって、 $z \in X_{n+1}$ が、ある $a \in L$ について $(z,xa) \in B_{n+1}$ とできるならば、 $z \notin S_{n+1}$ に限ることになる。u はそのような z で調和であることに注意すれば、簡単な計算により v(x) := (u(x1) + u(x2) + u(x3))/3 が x で調和であること、従って $X_n \setminus S_n$ で調和であることがわかる。

 $x \in S_n$ とすると、 $xa \in S_{n+1}$ $(a \in L)$ とできるから、 $u_0(x) = u_0(xa)$ となる. $|v(x) - u(xa)| \le 8(3/5)^{n-N}$ であるから、 $|v(x) - u(x)| = |v(x) - u_0(x)| \le 8(3/5)^{n-N}$ となる.補題 5 により、すべての $y \in X_n$ で $|v(y) - u(y)| \le 8(3/5)^{n-N}$ となり、従って $b \in L$ について $|u(y) - u(yb)| \le 16(3/5)^{n-N}$ となる.これは $\xi \in \Xi$ について $\{u(\gamma_n(\xi))\}_n$ が Cauchy 列であることを意味するから、それは収束する.また、それが一様収束であることもわかる.

最後に $\xi \sim \eta$ とすると、 $(\gamma_n(\xi), \gamma_n(\eta)) \in \mathcal{B}_n$ であるから、 $|u(\gamma_n(\xi)) - u(\gamma_n(\eta))| \leq 8(3/5)^{n-N-1}$ となる.よって $\lim_{n\to\infty} u(\gamma_n(\xi)) = \lim_{n\to\infty} u(\gamma_n(\eta))$ を得る.

木上 [1] は Sierpiński ガスケット K 上の調和関数について調べている:K 上の連続関数 ψ がすべての $x \in \bigcup_{n=0}^{\infty} X_n$ と L のすべての順列 (j_1,j_2,j_3) について

 $4\psi \left(F_x \left(\left(p_{j_1} + p_{j_2}\right)/2\right) \right)$

$$= \psi \left(F_x \left(\left(p_{j_1} + p_{j_3} \right) / 2 \right) \right) + \psi \left(F_x \left(\left(p_{j_2} + p_{j_3} \right) / 2 \right) \right) + \psi \left(F_x \left(p_{j_1} \right) \right) + \psi \left(F_x \left(p_{j_2} \right) \right)$$
 (10)

を満たすとき、 ψ を調和関数と言う. [1] において、与えられた $\psi(p_j)$ $(j \in L)$ に対し(10) の解が唯一つ存在することが示されている.

系 11. $\Sigma = \{1^{\infty}, 2^{\infty}, 3^{\infty}\}$ とし、 φ_0 を $\tilde{\Sigma}$ 上の任意の関数とする.組 $\left(\tilde{\Sigma}, \varphi_0\right)$ に関する Dirichlet 問題の解を φ とすると、 $\varphi \circ \tilde{\pi}^{-1}$ は木上の意味で調和である.

証明. まず定理 10 により φ は存在する.定理 10 の証明に現れる u を取る. $x \in \bigcup_n X_n$ のとき、(2) と同様に

$$u(x12^{n-1}) + u(x21^{n-1}) = (u(x13^{n-1}) + u(x23^{n-1}) + u(x1^n) + u(x2^n))/2$$
 (11)

となる.ここで、 $\pi\left(x12^{\infty}
ight)=\lim_{n o\infty}F_{x}\circ F_{12^{n}}\left(z_{0}
ight)=F_{x}\left(\left(p_{1}+p_{2}
ight)/2
ight)$ より、

$$\varphi \circ \tilde{\pi}^{-1} (F_x ((p_1 + p_2)/2)) = \lim_{n \to \infty} u (x \cdot 12^{n-1})$$

を得る. 同様に

$$\varphi \circ \tilde{\pi}^{-1}\left(F_x\left(\left(p_1+p_2\right)/2\right)\right) = \lim_{n\to\infty} u\left(x21^{n-1}\right),$$

$$\varphi \circ \tilde{\pi}^{-1} (F_x ((p_1 + p_3)/2)) = \lim_{n \to \infty} u (x \cdot 13^{n-1})$$

などを得る.よって $\psi=\varphi\circ\tilde{\pi}^{-1}$ とおき、(11) で $n\to\infty$ とすれば、(10) の一つの式が得られる.その他の式も同様に得られる.また補題 9 により φ は連続であるから、 ψ は木上の意味で調和である.

最後に他の例を紹介する.

例 12. 図 2 のように φ_0 を定めるとき、Dirichlet 問題の解は、長方形部分において恒等的 に 0、線分部分においては長方形からの距離に比例した値をもつ.

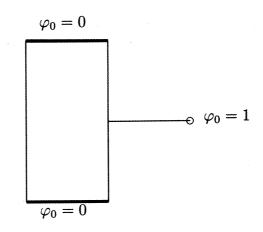


図 2: 例 12

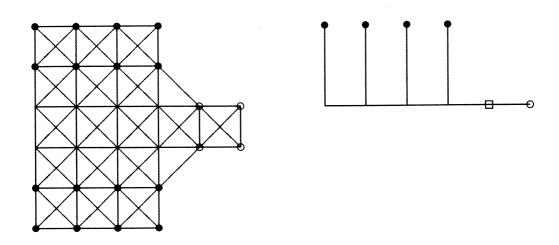


図 3: 対応するネットワーク、およびその部分グラフ

証明. 対応するネットワークは図 3 左の様になる(図は第 2 世代). その部分グラフ(図 3 右)において、 \circ に0、 \bullet に1 の電圧をかけ流れる電流を調べる. 第n 世代において各辺における抵抗は長さ 2^{-n} に比例するから、 \Box より右の抵抗と左の抵抗の比は 2^n 程度となる. したがって極限において \Box における電位は 0 となる. この部分グラフは \Box より右では元のものと同じであることに注意すれば、元のグラフにおいても同様の結果を得る. \Box

参考文献

- [1] J. Kigami, A harmonic calculus on the Sierpiński spaces, Japan J. Appl. Math. 6 (1989), 259–290.
- [2] _____, Analysis on fractals, Cambridge University Press, 2001.