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Hyperbolic Elements of Semisimple Symmetric Pairs
and Their Orbits

Jiro Sekiguchi
(REBEI R B0 KER)

§1. The motivation
We start this paper with explaining the motivation of the present study.
Let G = SL(2,R) and g = sl(2,R). There are two kinds of G-orbits of non-zero

semisimple elements of g.

(A) Take z = (_?1 (1)) Then adg(z) has eigenvalues —2i, 0, 2¢ and the centralizer

Zg(z) of z is SO(2). The G-orbit of z is identified with G/Zg(z) = SL(2,R)/SO(2).
Therefore Ad(G) - z is regarded as the upper half plane H,. Or equivalently, Ad(G) - z is
imbedded in SL(2,C)/B, where B is the Borel subgroup of SL(2, C) consisting of upper
triangular matrices.
1 0
(B) Take z = (0 1
Zo(x) of z is {( ’ 19a) e €R— {0}}. The G-orbit of z is identified with G/Zg(z)
which is imbedded into the product G/P x G/P, where P (resp. P) is the parabolic
subgroup of G consisting of upper (resp. lower) triangular matrices.

). Then adg(z) has eigenvalues —2, 0, 2 and the centalizer

In each case, the G-orbit of z is imbedded in a flag manifold as an open subset. The
purpose of this paper is to generalize the results above to the case of semisimple symmetric
pairs.

Remark 1 The main result of this paper is already obtained by T. Kobayashi (RIMS,
Kyoto University). The author thanks to T. Kobayashi for pointing out his result as well
as for showing the notes of his lectures at Harvard University.

§2. Hyperbolic elements of semisimple Lie algebras

Before entering into the main subject, we introduce some notation. Let g be a real
semisimple Lie algebra and let ¢ be its involution. Then there is a direct sum decomposi-
tion g = h+q with respect to o, namely, h = {z € g;0(z) =z} and q = {z € g;0(z) = —=z}.
The pair (g, q) is called a semisimple symmetric pair. There exists a Cartan involution #
of g commuting with o. Let g = ¢ + p be the corresponding Cartan decomposition.

Let G be the group of inner automorphisms of g. Then o is liftable to G and the lifting
is denoted by the same letter for brevity. We denote by H the identity component of the
fixed subgroup of o.
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Definition 1 An element z of q is hyperbolic if x is semisimple and adg(z) has only real
eigenvalues.

We now give examples of semisimple symmetric pairs and hyperbolic elements.

Example 1 Assume that g is a complex semisimple Lie algebra with real form gp and o
is a conjugation with respect to gg. In this case h = g and g = /—1gg.

An element © € q = /—1gg is hyperbolic if and only if adg(z) is semisimple and has
only real eigenvalues, or equivalently, adg, (v/—1z) is elliptic as an element of gg.

Example 2 Assume that g is a direct sum of two copies of a semisimple Lie algebra g,,
that is, g = g, ®g,. Take an involution o defined by o(z1,y1) = (y1, 1) for all 1, y1 € g;.
In this case, h = Ag; = {(x1,21); 1 € g1} and q = {(z1, —21); 1 € 9, }.

An element ¢ = (x1,—21) € q with T, € g, s hyperbolic if and only if adg () is
semisimple and has only real eigenvalues.

It is known [2] that the orbit of an elliptic element of a real simple Lie algebra has a
pseudo-Kahler structure and it is holomorphically imbedded in a complex flag manifold
as an open subset. (A typlical case is (A).) On the other hand, the orbit of a hyper-
bolic element of a real semisimple Lie algebra has a double foliation, called a parakahler
structure [3], [5] and it is imbedded in the product of two flag manifolds as a dense open
orbit. (A typical case is (B).) These two results imply at least the claim that if (g,5) is a
symmetric pair of Examples 1, 2 and = € q is hyperbolic, there is a parabolic subgroup P
of G such that the H-orbit of = is H-equivariantly imbedded in the flag manifold G/P as
an open subset. The purpose of this paper is, therefore, to imply a theorem which shows
an H-equivariant imbedding of the H-orbit of every hyperbolic element of q into a flag
manifold as an open subset.

§3. The main theorem
The starting point of our study is the following lemma.

Lemma 1 If x € q is hyperbolic, there is h € H such that Ad(h)z is contained in p.

For a proof of this lemma, refer to [9].

Take a hyperbolic element = € q. Then, by Lemma 1, we may assume that 6(z) = —=.
Let a be a maximal abelian subspace of p N q containing z. A non-zero linear form A on a
is a root (of (g,a)) if gy = {y € g; [2,y] = A(2)y (Vz € a)} # {0}. Let £(a) be the totality
of the roots of (g,a). Then it is known ([11]) that X(a) is a root system. Moreover, the
Cartan involution # induces a linear transformation on X(a), namely, for any A € X(a),
6(A) is the root defined by gg(») = 0(gx)- Let Spec(z) be the set of eigenvalues of ad(x)
and we put

s(c) = {y €g; [z, 4] = cy}
for any eigenvalue ¢ € Spec(z). Since [z,8(y)] = —cf(y) for any y € g(c), it follows that
6(g(c)) = g(—c) which implies that if ¢ € Spec(z), then —c € Spec(z). Put

. = Z g(c), n, = z g(c).

c€Spec(z),e>0 c€Spec(z),c>0
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Then I, is a parabolic subalgebra of g and n, is its nilradical. Let L, be the parabolic
subgroup of G with Lie algebra [,.

Let Oy (x) be the H-orbit of . Then Oy(z) is identified with H/Zg(z), where Zy(x)
denotes the centralizer of z in H. Let 3(z) be the Lie algebra of Zy(z). Then 3;(z) is
contained in g(0).

Put g = (y+0(y); y € g(c)). Then, since o(g(c)) = g(—c), it follows that by = h_g-
Moreover, the following lemma holds.

Lemma 2
h= 3h (ZIJ) S5 (@cGSpec(:c),c>0b{c])-

Proof. Take y € h and write

y= > Y
c€Spec(z)
where y. € g(c) for all ¢ € Spec(z). Since o(y) = y and o(y.) € g(—c), it follows that
0(Y:) = y—.. Then
y=v+ D (%to)
c€Spec(z),c>0

and the lemma follows.[]

Theorem 1 Retain the notation above. The map ¢ of Oy(z) to G/L, defined by
o(hZu(z) = hL. (¥he H)

18 well-defined and s injective.

Proof. Let Zg(x) be the centralizer of  in G and let N, be the analytic subgroup of G
corresponding to n,. Then L, = Zg(z)N,. Note that g(0) is the Lie algebra of Zg(z).
Lemma 2 shows that h N1, = 33(z). On the other hand, clearly Zg(z) is contained in
Zg(z). These imply the theorem. []

Remark 2 By the theorem, the closure of Og(z) in G/ L, is a compactification of Oy (x).

In special cases as in Examples 1, 2, the orbit Oy(z) has a pseudo-Kdhler structure or
a parakdhler structure. It is interesting to study what kind of geometric structure Oy ()
has in general. '

We now mention elliptic elements which is the counterpart of hyperbolic elements. An
element € q is said to be elliptic if z is semisimple as an element of g and adg(z) has
only pure imaginary eigenvalues. We recall the definitions of dual and associated pairs
to (g,q) (cf. [11]). Let (g,5)? (resp. (g,b)*) be the dual (resp. associated) pair to (g, b).
Then (g, )% = (g, p)?4. Define g°¥ and h°% by (g%, h9%) = (g, h)?%. It is known ([11])
that g*¥® = § + /—1q, h* =, ¢°¥ = /—1q. This implies in particular that z € q°% is
elliptic if and only if /—1z is contained in q and is hyperbolic. Take z € q as in Theorem
1. Then z' = /—1z is contained in ¢q°%* and is elliptic and H**-orbit Ogad.(z') of 2’ is
identified with the H-orbit Oy (z) in q. Here H%% = H.
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§4. Hyperbolic orbits as symmetric spaces
In the sequel, we treat special cases of x. We first consider the case where Spec(x) is
contained in Z.

Example 3 There are e, f € q such that

[z,e] =2e, [z,fl=-2f, [e,fl==.
Then (e, z, f) is said to be a TDS. It is known that Spec(xz) C Z in this case.

We define a linear automorphism 7 of g depending on r by

m(y) = (-1)°y (Yy € g(c), Vc € Spec(z).)

It is clear from the definition that 7 is an involution and commutes with both ¢ and 6.
In particular, if Spec(z) is contained in 2Z, then 7 is trivial.

We next treat a special case where Spec(z) has just three elements 0,%c (¢ # 0).
Then we may assume that Spec(z) = {—1,0,1} by changing x with z/c. We define an
automorphism 7 of g by

7(g) = exp(\/—_lﬂm)vyexp(—\/—_lﬂ'x) (Vg € G).

Then clearly 7 defines an involution of G commuting with both o and 8. We denote by
the same letter the involution of g induced from 7. Then

T(y) = (—1)°y (Vy € g(c), ¢ € Spec(z)).

Proposition 1 The pair (b,345()) is a semisimple symmetric pair with respect to the
involution T.

Proof. It follows from the definition that b is preserved by the action of 7 and the fixed
point set of 7 in § coincides with 3p(z). []

Remark 3 By Theorem 1 and Proposition 1, we obtain a compactification of every
semisimple symmetric space corresponding to the pair (b,gb (2)) for a hyperbolic element
z € q. The cases (A), (B) in §1 are typical examples of such compactifications. We al-
ready obtained a compactification of each semisimple symmetric space of the form G° /G"°
by a different idea in [8, Theorem 4.

We now propose problems concerning the symmetric pairs in Proposition 1 and its

imbedding.

Problem 1 Classify semisimple symmetric pairs (b,35(z)) with the condition Spec(z) =
{0,1,-1}.

Problem 2 Determine the H-orbital structure of G/L, concretely for such hyperbolic
elements = that Spec(z) = {0,1,—1}.



31

Problem 2 is already solved for the case of semisimple symmetric pairs of Example 2
by Kaneyuki (cf. [4]). The H-orbital structure of general flag manifolds is obtained by
T. Matsuki [7]. What we ask in Problem 2 is to show a more concrete description of the
H-orbital structure as in [4].

§5. Examples of imbeddings.

In this section, we restrict our attention to such symmetric pairs of the so-called ¢.-
type. We first recall some notation in [10]. Let g be a semisimple Lie algebra and let ¢
be its Cartan involution. Then we obtain the Cartan decomposition: g = ¢+ p. Take a
maximal abelian subspace a of p. Let ¥(a) be the restricted root system of g with respect
to a. For a signature ¢ of X(a) (cf. [10], p.5), we define an involution of g denoted by 6..
Then the symmetric pair (g, h) with respect to the involution o = 6. is called a symmetric
pair of ¢.-type. In [10], the subgroup H for the involution o is denoted by K..

We take a fundamental system {a;,as,...,o} of X(a). For each i (1 < i <), let ¢;
be the signature of £(a) with the condition:

gila) = -1, ei(a;) =1(j #9)
Moreover let z; be the element of a such that
ai(z:) =1, a;(z;))=0(j #19)

We now take 0 = ¢; and fix it for the moment. Clearly each x; is a hyperbolic element
of g and Spec(z;) = {0,1,—1}. This implies that the K,-orbit Ok, (z;) = K, -z; of z; is
a symmetric space realized as an open subset of the flag manifold G/L,;. The following
lemma is a direct consequence of the definition of the involution 6..

Lemma 3 The orbit Ok, (z;) is a Riemannian symmetric space.

;From now on, we focus our attention to the case where g is one of g$, <, e$ and
their real forms. The ordering of fundamental roots is same as [1] (see also [10], Table 1).
Then the orbits of the form Of, (z;) are given in the following table.

Explanation of the columns of the tables:

1. The cloumn (a) = Lie algebra g

The cloumn (b) = The type of the root system X(a)

Ll A

The cloumn (d) = The symmetric pair for 0,

o

(
(
The cloumn (c) => The signature ¢ of £(a)
(
The cloumn (e) = The element z; € a

(

6. The cloumn f) = The symmetric pair corresponding to the orbit Ok, (z;)



d)
[(@) [®)]()][(

L(e) | ()

92(2)

G2

€1

,R))
sl(2,R) @ sl(2
(92(2)a

Iy
T2

R ® R),s0(2))
o) @ (5[(22,R;,so(1, 1))
(sl(2, ;,5:(2)) s
(sl(2,R),

95

Ga

€1

(Bg ) 92(2))

I
L2

592(2;’::1%2) ®sl(2,R
92(2)»

fa(a)

F,

€1

,R))
)»5p(3, R) © s1(2
(faa)»

r1
T2
3
T4

)
), 50(2 )
D
(spg: g): gf((z,’fl;)) g g:g: v
gg(s’ R;’::(z, R)o
(sp(3,R),

fa(a)

Fy

€4

2))
sp(2,1) P su(
(fa(a)>

I
T2
I3
T4

sp(2,1),u(2 1)) S (51122%:50(2))
(59(2,]3,“22:1); ® (su(2),s0(2

( §2’1),5p(2 @ sp(l

(sp , ]

Fy

€1

(f? ’ f4(4))

1
T2
T3
T4

)
@ su(2) LR)
“““”558? R) @ sp(
(f4(4; : §0(5, 4%;
(st

Y

€1

(5, fa(—20))

I
x2
r3

T4

u(2))
’”(2’3 ® ou(2)
"4‘-231,5,,(;,1))
822:20) ’ 50&93)
(fa(—20),5%0

€6(6)

Eg

€2

(eg(6),5P(4, R))

I
T2
I3
T4

C))
R),sp(2,
(spgi R).uld)) \
(sp(4, R), u( p )
§55(4’ R)a 9[( )

¢6(6)

Eg

€6

(es(6)>5p(2,2))

T1
T2
3
T4
5
Ze

1,1))

2) 533(1,1)@@1{5;’(
(sp(§,2):5u*(4;)) |
(5p22:2),u(2, 2)
(5p(2’ 2), u(?zll) o R) )
o 2,2),su A
(2,2
(sp(2,

Eg

€2

(eg’ c6(2))

T
T2
T3
T4

o ))
€6(2)>

E¢2(2)’ §4, 2) o 5':1((22, ))
oy su(3,3) ®sl(2,R
(e6(2),

Eg

€6

('e(;:, e6(—14))

x
Z2
rs
T4
s

Ie

- s0(8,2) P so 2))

- 0( , ) [(( ’ ))
(‘6( 14) ( ,1) ( ))
(26( 14)351‘(5’ )@: (2 )I;'
(26(—14)?su(4,2)@ 1[|( 2, ))
(‘6(—14), ( ’ ) ( ))
(26(_14;,50(10) @ so0(2
(26( 14)»

32



33

L@ 10 [(9]@ [(e) [ () l
t62) | F1 | e1 | (es(2),5u(3,3) ©sl(2,R)) || w1 | (su(3,3),5(u(3) © u(3))) ® (sl(2, R),50(2))
su(3,3),50(3,3)) & (sl(2,R),s0(1,1))
z3 | (su(3,3),sl(3,C) D R)

x4 | (5u(3,3),s(3,C) ®R)

(3,
xg | (su(
5
e6(2) Fy |eq | (eg(2),5u(4,2) ®su(2)) T gsugfl ,2),50(4,2)) @ (su(2), 50(2))
(su(
(su(

z2 | (su(4,2),50(4,2)) & (su(2),s0(2))
z3 | (su(4,2),s5(u(3) ®u(1,2)))

z4 | (su(4,2),s(u(4) ©u(2)))

et6(—14) | BC2 | €1 | (eg(—14),50(8,2) ® 50(2)) || 1 | (50(8,2),50(8) D s0(2))

z2 | (s0(8,2),50(6,2) @ s0(2))

eg(—14) | BC2 | €2 | (e6(—14),50"(10) ® 50(2)) || =1 | (s0*(10),u(4,1))

T2 | (s0%(10),u(5)))

eg(—26) | A2 | €1 | (eg(—26)> fa(—20)) z1 | (fa(—20),50(9))

T2 (fi(—20)75°(87 1))

References

[1] N. Bourbaki, Groupes et algébres de Lie, Chaptres 4, 5 et 6, Hermann, 1968.

[2] J. Dorfmeister and Z. D. Guan, Fine structure of reductive pseudo-Kahlerian spaces.
Geom. Dedicata, 39(1991), 321-338.

[3] Z. Hou, S. Deng, S. Kaneyuki and K. Nishiyama, Dipolarizations in semisimple Lie
algebras and homogeneous parakiahlerian manifolds, J. Lie Theory, 9(1999), 215-232.

[4] S. Kaneyuki, On orbit structure of compactifications of parahermitian symmetric
spaces, Japan. J. Math., 13(1987), 333-370.

[5] S. Kaneyuki, Homogeneous symplectic manifolds and dipolarizations in Lie algebras,
Tokyo J. Math., 15(1992), 313-325.

[6] S. Kaneyuki, Geometry of double foliations of symmetric hyperbolic orbits of
semisimple Lie groups, in Lie Groups and the Theory of Manifolds, 5-7 March 2001,
pp-21-22.

[7] T. Matsuki, Orbits on affine symmetric spaces under the action of parabolic sub-
groups, Hiroshima Math. J., 12(1982), 307-320.

[8] T. Nagano and J. Sekiguchi, Commuting involutions of semisimple groups, Tokyo J.
Math., 14(1991), 319-327.

[9] T. Oshima and T. Matsuki, Orbits on affine symmetric spaces under the action of
the isotropy groups, J. Math. Soc. Japan 32(1980), 399-414.



34

[10] T. Oshima and J. Sekiguchi, Eigenspaces of invariant differential operators on an
affine symmetric space, Inventiones Math., 57(1980), 1-81.

[11] T. Oshima and J. Sekiguchi, The restricted root system of a semisimple symmetric
pair, Advanced Studies in Pure Math., 4(1984),433-497.

Department of Mathematics

Tokyo University of Agriculture and Technology
Koganei, Tokyo 184-8588

Japan

E-mail address: sekiguti@cc.tuat.ac.jp



