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1. Introduction

We studied some bifurcation problems in nonlinear vibrations ([K1-3}). In this
article, we will explain mainly how we use computer algebra in establishing our results.
In [K1-3] we did not explain it in detail. The computer algebra actually plays, however,
a very important role in our study. We show that we can obtain quickly the computation
results with good precision if we appropriately use the computer algebra. Though we
mainly mention a bifurcation problem in forced vibration, our method works well for
the problem in self-excited vibration (see Section 5).

We design our article.in the following way. In Section 2 we summarize our problem
and result in nonlinear forced vibration. In Section 3 we mention how to use the
computer algebra in our computer simulations. In Section 4, we explain our numerical
verification method with the computer algebra. In Section 5 we consider the self-excited
vibration. This study is now in progress. We explain that we can prove the existence of
period doubling bifurcation points essentially in the same way as in the forced vibration
case. Therefore, for this case we can use the computer algebra extensively.

2. Our problem and result

Let f(A, u) := ug — cUgzz + pus +ud — X cost sinz. Here, ¢, u > 0 are constants
and A > 0 is a parameter. We consider the bifurcation phenomena of periodic solutions
for the following dissipative semilinear wave equation:

u)=0 in 7r +
W) {f(/\, )=0 (0,m) x R7,
u(0,t) = u(m,t) =0 for t>0.

This problem has some deep relations to the ordinary differential equation called the
Duffing equation:
d’y dy
D AY) = —= — 3 _ Xcost = 0.
(D) g(\y):= o5 +ug +
‘By some numerical simulations (see Section 3) we can observe rich bifurcation
phenomena (such as the existence of turning points, symmetry-breaking bifurcation,
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chaos) for our problem (W) and (D). The system (W) has some symmetry. Let S be
the transformation defined by

(2.1) S: u(z,t) — —u(z,t + ).

Then we have f(A,Su) = Sf(\ u). The symmetric periodic solution (resp. the
asymmetric periodic solution) is a solution satisfying Su = u (resp. Su # u).

In what follows, we will consider (W) with ¢ := 1.5, y := 0.05. (The values of
these constants have no special meaning.) Let us move the value of A gradually larger
from 0. Then we can observe by numerical simulations that a branch of asymmetric
2n-periodic solutions bifurcates from a branch of symmetric 2n-periodic solutions at a
certain value A = Ay € (2.8,2.9). We can give a mathematically rigorous proof to this
observation.

Proposition 2.1. Let ¢ = 1.5, p = 0.05. Then, (W) has a symmetry-breaking
bifurcation point (Ao, Up) where a branch of 2w-symmetric solutions and a branch of 2x-
asymmetric solutions intersect with each other. The bifurcation point (Ag, Up) satisfies

|Ag — Xo|? + ||Uo — ug; HY(D)||® < (0.000708)2.

Here, D := (0,7) x (0,27), Ao := 2.8828613 and ug := 1.2897865cost sinz + --- +
0.14470778 x 10~ 7 sin 5t sin 9z has the form of a finite Fourier expansion consisting of
55 terms. We omit here the complete form of ug.

In what follows, we give the outline of the proof. We refer [K1-3] for the details. Let
X be a closed linear subspace in H!(D) defined by

X:={ Z GmnPmn ; Z (m? + n? + 1)|amn|? < 00}.
ne’r;gz—l neﬂ;]&qZ_I

Here, we set ¢ := €™ sinnz. Let S be a transformation defined by (2.1). We define
the symmetric subspace X, and the anti-symmetric subspace X,:

Xs :={UEX§SU=U}={ Z AmnPmn ; Z (m2+n2+1)|amn|2<00}1

me2Z—1 me2zZ—-1
neE2N-1 neE2N-1
X, :={ue X;Su=—-u} ={ Z QmnPmn | Z (m® +n? + 1)|amal® < oo}
me2Z me22Z
ne2N-1 ne€E2N-1

Then, we have X = X, & X,. We also define

Y = YLz(D) = { Z amn¢mn; Z |amn|2 < 00}7

mezZ mez
. nE2N-1 nE2N-1
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Y, = X:L ®) and Y, = X_aL ®) \We define two Hilbert spaces V := Rx X, x X, and

W:=RxY, xY,. Let Dy := {h € X; hyt — c>hye € L?(D)}. We define an extended

system:
A lp—1
F (u = ( F(A u) ) = 0.
¢ Dy f(A u)¢

Here, F : YV — W with D(F) := R x Dy and | € X is a functional defined by

2
lp := ;'z'(d” sin2tsinz) for ¢ € X,,

i.e. I- is Fourier coefficient of sin 2t sinz. To obtain Proposition 2.1 it suffices to prove
the following (2.2) and (2.3) in view of our bifurcation theorem [K2, Theorem 3.1].

(2.2) F(\u,¢$) = 0 has an isolated solution (Ag,Up, Py) in a neighborhood of
(AOaU‘O;d’O)’

(2.3)  fu(Ao, Uo)(DoN X,) =Y.

Here, ¢o € X, is a function satisfying l¢y = 1 and approximately D, f(Ao, uo)Po = 0.
We can apply the convergence theorem of Newton’s method ([K2, Theorem 1.1]) to
obtain (2.2). For this purpose, we show the existence of DF(Ag, Up, ®9) ! and estimate
its operator norm. To obtain (2.3) we show the existence of f, (Ao, Up) 1.

3. Numerical simulations
3.1. Derivation of a truncated ordinary differential equation
We set ¢x(z) = sin(2k — 1)z (k € N) and

n

un(xat) = Z ak(t)¢k(x)'

k=—n

We constructed a truncated ordinary differential system of (W) with respect to ax
(k = 1,---,n). We use the Galerkin method. By using computer algebra, we can
obtain the Fourier sine expansion of f(A,uy):

FA up) =) Axr(2).
=

Here, Ag is a polynomial of a;(t), aj(t) and ay(t) (1 < 4,5,k < n). We regard the
following system as a truncated system of (W):

(3.1) A =0 (k= -n,---,n).



If we set n = 5, it is sufficient to observe our symmetry-breaking bifurcation phenomena
in Section 2 by using our truncated system. Of course, we can use another method
(e.g. the finite difference method) to observe our bifurcation phenomena. From our
experience, however, our truncation method seems to be better in precision and in
computation time for the simulation of our problem than the other methods.

3.2. Construction of approximate solutions with high precision

By using a truncation method in Section 3.1 and the digital Fourier analysis, we
can obtain an approximate solution of (W) for each A. We explain how to find another
approximate solution with much higher precision. Here, we describe the method for (D)
for simplicity. (For (W) the algorithm is essentially same but is more complicated.) Let
yd =3"1__. cYe*t be an approximate solution of (D). We use the Galerkin method to
obtain another approximate solution y, with much better precision:

n
(3.2) Yn = Z crekt.
k=—n

Let g(A, yn) = Y. Hike'*® be the Fourier expansion of g(),y,). Here, H (k € Z) are
polynomials of ¢; (I = —n,---,n). We have

3g(\, yn) Hy ik |
. R AR ALV N —n<l<n).
(3.3) o6 ;Bc;e (—n <1< n)
We solve the system:

by the Newton’s method. We set ¢ := (c_p, - +,¢,) and H:= (H_,,---, Hy). Then,
we compute

(3.5) c1 =Cp— %(co)_lH(co).

Here, we simply write H(cg) := H|c=c, and so on. We see that (3.2) with ¢ = ¢,
is in general our approximate solution with higher precision. We need not find H
explicitly. (It takes too long time!) Actually, it suffices to find H(cy) and %‘-(co).
We easily expand g(),y2) by computer algebra and find the Fourier coefficients H(cy).
In the same way, we easily find 2% (co) by using (3.3). It is also possible to find
the approximate Fourier coefficients of g(),y2) without using computer algebra (e.g.
see [UR]). However, it needs the complicated procedure and the answers contain the
approximate errors.
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Remark 3.1. We actually use a kind of the least square method in finding an
approximate solution with high precision (see [K3]). It is, however, similar to the
Galerkin method case with respect to how to use the computer algebra. Therefore, we
described the latter case to which the readers are familiar. U

4. Numerical verification

In this section we briefly write how to control our numerical computations and to
estimate the norms of functions.

4.1. Control of numerical computations

We approximate z € R by finite decimal numbers in some fashions. First we
approximate a number by an integer plus n-digit decimal number of the decimal form:

m.a10s - - - Ay,

Here, m € Z and 0 < a; < 9 is a figure (1 < j < n). Let Z, := NU {0} and n € Z,.
For z > 0 we define

ceil(z,n) := min{m € Z, ; m > 10"z} x 107",

floor(z,n) := max{m € Z, ; m < 10"z} x 107",
floor(z,n) if z —floor(z,n) < 0.5x 1077,
round(z,n) := .
ceil(z,n) if z — floor(z,n)>0.5x10"".
Next, we approximate z > 0 by n-digit floating point form:
0.a1az:--ayn X 10™ with 1 <a < 9,

i.e. 0.a1az - - - ay, is the mantissa with length n. We set &g := 1072%. We define

round(10™~™z,0) x 10™™" if |z| > e,

0 if |$|<60,

float(z, n) := {

where m := max{k € Z; k > log, |z|}. We expand the domain of ceil(:,n), floor(-,n),
round(-,n) and float(-, n) so that they are odd functions. We can realize these functions
on the computer without difficulty.

In our proof of Proposition 2.1 we construct big matrices to show the existence of
inverses for linearized operators. For this purpose, we need to show explicitly the way
of unique construction of an approximate inverse matrix for a given big square matrix.
In [K1] we use classical Gauss-Jordan method with partial pivot selection. We realize
the complete control of numerical computations by using the function float(-, -).
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4.2. Estimate of norms

Let h(t, z) be a 27-periodic function with respect to t-variable and z-variable which
has the form of finite Fourier series:

h(t,z) = Z Crn€™1"®  with I=2N-1 or I=2N.

meZ
nel

Then, by Parseval equality, we have

||h"L2(D) = \/iﬂ.(z ICmnlz)l/z'

mecZ
necl
We define
|Rl2,n := V21 D ceil(|Cmal?, n) ]2
mezZ
nel

Then, we have ||h||L2(py < |h|2,n. By using the computer algebra, we can easily find

the explicit value of |h|2,. We also define and use L*-version of | - |2 5.

5. Analysis for self-excited vibration

We briefly mention how we can prove the existence of bifurcation points in self-
excited vibrations. Though our method also works well for partial differential systems,
we consider here the following self-excited ordinary differential system for the simplicity
of description:

(56.1) y=f(\y) with y, f(\,y) e R".

In this case, the period of a solution varies as the value of A changes. Since we have
the difficulty in treating (5.1) directly, we study the following transformed extended
system: F(A\,w,z) =0. We define F : Rx X —» Y by

(5.2) F:(z\,(:))r———)<2_wl:()‘,z)).

Here, we set X := R x Hper(0,27) and Y := R x L?(0,2n), and assume that
! : Hper(0,27) — R is an appropriate functional. We need ! to normalize z.
Indeed, if z(t) is a solution of z — wf(A,z) = 0 then z(t + 7) also satisfies the
same equation for a fixed 7 € R. We verify that (A\,w,2) is a solution of F' = 0 if
and only if (A,y) with y(t) = z(t/w) is a periodic solution of (5.1) with the period
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2nw. As an important case, we will consider the period doubling bifurcation. We set
l:z={(21,"-",21) = (21,008 2t)[2(0,2x). Then, F has the following symmetry:

(5.3) F(A,S(Z)):SF(A,(‘:)) with S(z‘(‘;)> = (z(t‘iw)).

A period doubling bifurcation point of (5.1) corresponds to a symmetry-breaking
bifurcation point of FF = 0. We can find the latter in the same way as in Section
2. As an application to a concrete example, our method guarantees the existence of
a period doubling bifurcation point in self-excited vibration described by a truncated
Navier-Stokes system in [BF]. We will write the details in a near future work ([K4]).
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