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Abstract

We give an alternative definition of comprehensive Grébner bases in terms of Grébner bases in polyno-
mial rings over commutative Von Neumann regular rings. Our comprehensive Grobner bases are defined
as Grébner bases in polynomial rings over certain commutative Von Neumann regular rings, hence they
have two important properties which do not hold in standard comprehensive Grobner bases. One is that
they have canonical forms. Another one is that we can define monomial reductions which are compatible
with any instantiation.

1 Introduction

Let R be a commutative ring and S be any non-empty set. Then the set of all functions from S to
R denoted by RS becomes a commutative ring by naturally defining an addition and a multiplication of
functions. Furthermore, this ring becomes a commutative Von Neumann regular ring if R is a commuta-
tive Von Neumann regular ring. Therefore, in case it is computable, we can construct Grébner bases in
polynomial rings over RS. For such Grdbner bases, we have the following theorem.

Theorem. Let G = {g1,---,9x} be a reduced Grébner basis of an ideal (f1,..., fi) in a polynomial
ring RS[X], then for each element a of S, {g1(a),...,gk(a)} becomes a reduced Grébner basis of the
ideal (fi(a), ..., fi(a)) in a polynomial ring R[X]. Where h(a) denotes a polynomial in R[X] given from
a polynomial h of RS[X] with replacing its each coefficient ¢ by c(a). (see theorem 2.3 of [5])

This observation leads us to have an alternative definition of comprehensive Grobner bases. Let K be a
field and fi(A1,...,Am, X), ..., fi(A1,...,Am, X) be polynomials in K[A, ..., Am, X] with parameters
Ai,...,A,. Considering each polynomial f(Aj,...,Ap,) in K[A1,...,An] as a function from K™ to
K, fi(A1,...,Am, X), ..., fx(A1,...,Am, X) become polynomials in K§™)[X]. If we can construct a
reduced Grébner basis G of the ideal (fi(4y,...,Am,X), ..., fe(A1,---,4m, X)) in a polynomial ring
K®&™)[X] over a commutative Von Neumann regular ring K(X™) somehow, we can consider G as a
kind of comprehensive Grobner basis of (fi(Ay,...,Am,X), ---, fx(A1,...,Am, X)) with parameters
Ai,...,Apn, since an instantiation of A,,..., A,, with any elements a;,...,an of K becomes a reduced
Grébner basis of the ideal (fi(a1,...,8m,X), ..., fi(a1,...,am, X)) in K[X] by the theorem above.

In order to enable the above computation, it suffices to establish a way to handle the smallest com-
mutative Von Neumann regular ring that includes K[Ay,...,Ay]. If the quotient field K(4,,...,Am)
corresponds to it, the situation would be very nice. Unfortunately, however, it does not work. Consider
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the inverse A7} of A; in the commutative Von Neumann regular ring KX™). Since A4, (a1, ...,an) =
a; for any a;,...,anp in K, Al"1 should be the function ¢ from K™ to K such that ¢(0,az,...,am) =0
and p(ay,...,am) = 1/ay if a1 # 0. Certainly ¢ is not a member of K(A;,...,An).

In order to overcome this situation, we define a new algebraic structure called a terrace, which enables
us to handle the smallest commutative Von Neumann regular ring that includes K{Ay, ..., A,]. Using ter-
races we can compute a Grobner basis in a polynomial ring over K(X™). We call it an ACGB(Alternative
Comprehensive Grobner Basis). ACGB have the following two nice properties, which do not hold in
standard comprehensive Grobner bases.

1. There is a canonical form of an ACGB.

Since an ACGB is already in a form of a Grébner basis in a polynomial ring over a commutative Von
Neumann regular ring, we can use a stratified Grobner basis as a canonical form of an ACGB.

2. We can use monomial reductions of an ACGB.

Because of the same reason above, we can use monomial reductions of an ACGB. Moreover, it will be
shown that monomial reductions are compatible with any instantiation of parameters.

In this paper we introduce our work on ACGB. We concentrate on the case that K is algebraically
closed. We give some algorithms to handle terraces using classical Grobner bases technique.

Our plan is as follows. In section 2, we give a definition of terraces with several algorithms to handle
them. In section 3, we give a definition of ACGB. We prove several nice properties they have. In section
4, we give some computation examples we got through our implementation.

We assume the reader is familiar with Grobner bases of polynomial rings over commutative Von
Neumann regular rings. The reader is referred to [5], [2], or [3].

2 Terrace

In this section, we define a computable ring T and operations on T which witness that T forms a Von
Neumann regular ring. For an arbitrary polynomial f € K[A;,...,A,], we can consider it as a mapping
f: K® o5 K, ie., f € KX7). So we can define the canonical embedding

¢: K[A1,---,Ap] = K&,

Let T be the closure of the image ¢[K[Ay,...,Ay]] under addition, multiplication, and inverse in the
Von Neumann regular ring K(X™), hence T becomes a Von Neumann regular ring. We show a way to
describe each element of T' and define computable operations on T'.

In the rest of this section, we fix an algebraically closed field K and a natural number n. We use
the symbols A;, ..., A, as variables. For each finite set of polynomials {fi,..., fi} in K[A4,...,Aj), we
denote the affine variety by V({f1,--., fi}), i.e.,

V{fi,---,fi}) = {(a1,...,an) € K* : fi(ar,...,82) = --- = fi(a1,...,an) = 0}

We set V(@) = K™ and V({1}) = 0 for convenience.
In order to handle elements of T such as t -t~1, we define an algebraic structure called a terrace.
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2.1 Definition of preterraces

Definition 1
A triple (s,t,r) is called a preterrace on K[Ay,...,A,] if s and t are finite sets of polynomials in
K[Ay,...,Ay] and r = g/h for some g,h € K[Ay,...,Ay] which satisfy

1. V(s) CV(t),

2 (V{gh uVHRD) N (V) \ V(s)) = 0, ie., glai,-..,an) # 0 and h(ai,...,a,) # 0 for any
(a1,-..,a,) €V (@) \ V(s).

For a given preterrace p = (s, t,r), the support of p (supp(p)) is the set V(t)\V (s) C K™. For a preterrace
p={(s,t,g/h) on K[Ay,...,A,] and (ay,...,a,) € K", we define p(a,,...,a,) € K by

. g(ai,...,an) .
=2 if(ay,...,an) €su ,
p(ala---;an)= h(al,...,a,,) ( 1, n) pp(p)
0, otherwise.

(v can be considered as a member of T').

For an arbitrary polynomial f € K[A;,..., A,], we define the corresponding preterrace pre(f) as
follows:

pre(f) = ({f},0, f/1).

Note that supp(pre(f)) = V(®) \V({f}) = {(a1,...,an) € K™ : f(a1,...,as) # 0}. Then we can easily
see that f(ai,...,a,) = pre(f)(ai,...,a,) for any (a,,...,a,) € K™.

Next we define the inverse and multiplicative operations on preterraces. The inverse p~! of a preterrace
p = (s,t,9/h) is defined by p~! = (s,t,h/g) without changing the support. Note that we have

p(ah . ’a‘n)_l = p_l(ala e 7an)’ lf (a11 R 7a'n) € Supp(p) = supp(p‘l)
plai,-..,a,) =p~Yay,...,a,) =0, otherwise.

Hence p~! represents the inverse of p in T'.
In order to define the multiplication p; - p» of preterraces py = (s1,t1,71) and p2 = (s2,%2,72) to
represent the multiplication as elements of T', we need that

(01 - p)(an,... an) = { pay,... ,a.n) -p2(ay,...,an), if (a1,-..,a,) € supp(p1) Nsupp(p2),
0, otherwise.

Note that we have supp(p1) N supp(p2) = V(1 U ts) \ V(Prod(s; U t3,s2 U t1)), where, for finite set
s,t of polynomials, Prod(s,t) = {f-g : f € s,g9 € t}. So we define the multiplication by p; - p2 =
(Prod(s; Uts,82 Uty),t; Uta, 7y - r2).

We can easily check that py - p2 = p2 - p1, (P1 - p2) - p3 = p1 - (p2 - p3), and p; - {{1},0,1) = p, for any
preterraces p1, p2, and ps. Note that, for a preterrace p = (s,t,r), we have p-p~! = (s,t,1), which might
not be equal to ({1},0,1) in general.

2.2 Definition of terraces

A sum of two preterraces as an element of T is not generally represented by a preterrace. We need
another definition.
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Definition 2

A finite set {p1,...,m} is called a terrace on K[A,,...,A,] ifeach p; (i = 1,...,1) is a preterrace on
K[A,,...,A,;) such that supp(p;) # @ and supp(p;) Nsupp(p;) = O for any distinct 1,5 € {1,...,1}. The
support of a terrace t is defined by

supp(t) = |_J supp(p) C K™
pEt

For a given terrace t and a sequence (ai,...,an) € K", we define

t(a a )= r(ala'--aan)1 if(3p=(s,t,1‘)€t) (al,...,an)€supp(p),
bretn 0, otherwise.

(The well-definedness is derived from the definition of terraces.) Hence, we consider ¢ as an element of
K&™) | actually it is an elements of T' since ¢t represents p; + --- + p; in T. Intuitively a terrace is a
representation of an element of T as a finite set of pairs of a rational function and a partition of K™ such
that the rational function is not equal to 0 everywhere on its partition.

For a given finite set of preterraces, we can judge whether it forms a terrace or not by using the
following algorithm PreterraceIsZERO. Indeed, for given two preterraces p and g, supp(p)Nsupp(g) = 0
iff PreterraceIsZERQO(p - q) returns True.

Algorithm PreterraceIsZERO

Specification: PreterracelIsZERO(P)

check whether a preterrace P satisfies supp(P) = 0 or not
Input: P is a preterrace on K[A,,...,A;)
Output: return True if supp(P) =0

return False otherwise

(S,T,R):=P

IF V(S) = V(T) THEN

RETURN True
ELSE

RETURN False

For a given preterrace p, we see that p(ai,...,a,) # 0 for some (a,...,a,) € K" if and only if
supp(p) # @ by the definition of preterraces. So the previous algorithm works as we desire.

The addition ¢, + ¢5, the multiplication ¢, - t2, and the inverse ¢;° ! of terraces t; and t, as elements of
T are given as follows:

L (t1 +t2)(a1,...,8n) = t1(a1,...,an) +t2(as,--.,an),
2. (tl 't2)(a17"'aaﬂ) = tl(ala"',an) 't2(a11"')an)’

1/t1(a1,...,a,,), iftl(al,...,a,,) #0,

3. ty'(a1,-.-,a0) =
1 (a1 an) { 0, if ti(a1,-..,an) = 0.

We will define ¢, + t2, t; - t2, and t]'! as terraces to preserve the above properties
We first concentrate on the case that ¢; and t» are singletons of preterraces, say t1 = {p1} and
to = {p2} where p; = (s1,t1,71) and p2 = (s2,t2,72). Note that supp(t1) = supp(p1) and supp(tz) =
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supp(pz). Present r, + 7, as an irreducible form g/h as an element of K(A;,...,A4,). Let Do o =
(Prod(Prod(s; U tz,s2 Ut1),g), 1 Utz, g/h), pylp = (Prod(s,t U ta),t1,71), P = (51U 82,81 U

82,T1). p,\,;(,},)1 = (Prod(sz2,t; U t3),t2,72), and p,\,;(,z;,)1 = (81 U s2,t2 U 81,72). Then the finite set ¢t =

{p € {pgl,m,Pz\:i(j))zaPx\ai(,%)z’P;’z(,;a)x,P;\n;(,i)l : supp(p) # 0} of preterraces forms a terrace and satisfy
t(ai,---,an) = ti(ay,-..,an) + t2(a1,...,a,) for any (ai,...,an) € K™

Using these notations, we define an additive operation on the set of the terraces. The following
algorithm compute the addition of two terraces,

Algorithm TerraceAdd

Specification: T +TerraceAdd(T,,T?)
Input: T),T; are terraces on K[A,,...,An]
Output: T is a terrace on K[A,;,...,A,]

T:=9
FOR each pair (p1,p2) € Ty x T» DO

IF PreterraceIsZERO(p; - p2) does not hold THEN

(1 (2 (1 (2
S = {PQ, ,p,’P;\n(,p)z,Pz\n(,p)z»Pz\n(,p)x ,pl\’z(yp)l

FOR each p€ S DO
IF PreterracelsZERO(p) does not hold THEN
T:=TU{p}
ENDIF
END
ENDIF
END
RETURN T
We define a terrace t; + t2 as an output of TerraceAdd(t;,t2). It is easy to check the property 1
holds.
The definition of multiplication is rather simpler. The following algorithm compute the multiplication
of two terraces.
Algorithm TerraceMul
Specification: T «+TerraceMul(T},T3)
Input: T),T; are terraces on K[A,,...,Ay)
Output: T is a terrace on K[A;,...,Ap]
T:=0
FOR each p, € Ty and p» € T> DO
b:=p1-p2
IF PreterraceIsZERO(p) does not hold THEN
T:=TU{p}
ENDIF
END
RETURN T
We define a terrace t; - t as an output of TerraceMul(t;,t2). It is easy to check the property 2
holds.
For an arbitrary terrace ¢, the inverse =1 of ¢ is defined by t~! = {p~! : p € t}. It is trivial that
t~! forms a terrace and the property 3 holds. Now we have defined computable algorithms to compute
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operations on the terraces satisfying property 1, 2, 3.

We let TER = TER(K[A4,...,An]) be the set of terraces on K[A;,...,A,]. We should note that, for
a terrace t € TER, there are infinitely many terraces t' € TER such that t(ay,...,as) = t'(as,...,a,) for
any (ay,...,a,) € K™,

We define a binary relation ~ on TER by

t~t <= t+{pre(-1)}-t'=0.

Then the relation ~ is a computable equivalence relation on TER.

Proposition 3
For arbitrary two terracest and t' on K[A;,...,Ay], t ~ t' if and only if t(ay,...,a,) = t'(a,...,an)
for any (@i,...,a,) € K™,

It should be noted that there is only one terrace namely {} which represents 0. We denote the set of the
equivalence class TER(K[A1,...,An])/ ~ by T(4,,...,a,)- For a equivalence class [t]~ € T(4,,..,4,) and
a sequence (ay,...,a,) € K™, we define [t]~(a1,...,as) = t(a1,...,an) € K. The previous Proposition
witnesses the well-definedness of [t]~(ai1,...,a,) € K. Moreover, using the Proposition, we can define
addition, multiplication, and inverse on T(4,,.. 4,) by [t]~ + [t']~ = [t +t']<, [t]~ - [t']~ = [t - t']~, and
[t)zF = [t~ for t,t' € TER(K[Ay,..., Ay)).

We can easily check that T(4;,...,4,) is a Von Neumann regular ring, actually it is isomorphic to T'
which defined at the beginning of this section.

For a given polynomial f € K[A,,..., Ay], we define the corresponding equivalence class on terraces
terr(f) € T(a,,...,a,) bY

[{pre(N})~, if f € K[Ay,...,An]\ {0},

terr(f) = { [0]-, if £ =0.

Note that f(a1,...,a,) = terr(f)(a1,...,a,) for any (ai,...,a,) € K™.

3 ACGB

In this section, we give an alternative comprehensive Grobner bases. Let K be an algebraically closed
field, TER be the set of the terraces on K[A,,..., Ay] where A;,..., A, are variables, T = TER/ ~,
and terr: K[A;,...,Am] = T be the corresponding embedding. As we have seen in section 2, T is a
commutative Von Neumann regular ring.

Definition 4 )

We extend terr to the embedding terr: K[A1,...,Am,X1,...,Xn] = T[X1,...,X4s])- by terr(fron +
-+ + fiog) = terr(fi)on + -+ - + terr(fi)ay where fi,..., fi € K[A,...,Ay] and ay,...,a; are terms of
X1,y Xn

Definition 5

For each f(Xl,...k,Xn) = aa +---+qoy € T[X1,...,X,] and elements ay,...,a, € K, we de-
fine f(a,,..am)(X1,---,Xm) € K[X1,..., Xmm] by fiay,...am)(X15---3Xn) = c1(a1,...,am)ar + -+ +
cfai,-..,am)oy where c; € T and «; are terms of Xi,..., X,
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We redescribe some definitions and results which we need for our comprehensive Grobner bases. The
detailed argument is given in [5, 3].

Definition 6
A polynomial f is called boolean closed if (Ic(f))*f = f. (where a* is an element defined by a-a™1)

Then we have the following property.

Theorem 7

Let G be a reduced Grébner basis, then any element of G is boolean closed.

Definition 8
A reduced Grébner basis G in a polynomial ring over a commutative Von Neumann regular ring is called
stratified Grobner basis, when it satisfies the following two properties:

e lc(g) = le(g)* for each g € G,
o lt(f) # lt(g) for any distinct elements f and g in G.

We can calculate the stratified Grobner basis for a given finite set of polynomials over a computable
commutative Von Neumann regular ring. Now we prove the following theorem.

Theorem 9

For an algebraically closed field K, let T be the canonical set of equivalence classes on the terraces on
K[A,,...,An), and let terr: K[Ay,...,Am, X1,...,Xn] = T[X1,...,Xn] be the corresponding embed-
ding. For a given set F = {f1(A1,...,Am,X1,...,Xn),

cois fe(ALy ooy Ay X1y, Xn)} C K[A1, ..., Am, X1, . .., Xy, welet terr(F) = {terr(fi) :i=1,...,k} C
T[X1,...,X5)], and let G = {g1(X1,..-,Xn),.--,91(X1,-..,Xn)} be a Grobner basis of terr(F) in
T[X1,...,X,] such that each element g; is boolean closed. Then we have the following properties:

1. For eachelementsay,...,am € K, Ga,,....am) = {91(ay,....am) (X151 Xn)s 25 Gi(as,...am) (X1 - -, Xn) 1\
{0} is a Grobner basis of the ideal generated by F(ai,...,am)= {fi(@1,---,8m;X1,.-, Xn)s--+,
fe(as,...,am, X1,...,X5)} in K[Xy,...,X,]. Moreover, Gq,,...q,.) becomes a reduced Grobner ba-
sis, in case (3 is stratified.

2. For any polynomial h(Xi,...,X,) € T[Xi,...,X,], we have (h wLG)((M....,a...)()(h---,)(ﬂ) =
h(al,...,a,.)(Xla-- -)Xn) J'G(al ,,,,, am) °

By property 1, G can be considered as a kind of comprehensive Grébner basis where A,,..., A, are
parameters, and so we call G an ACGB (Alternative Comprehensive Grobner Basis.) Note that in the
standard comprehensive Grobner bases, we can not define monomial reductions before instantiation. In
our algorithm, we can define monomial reductions, furthermore they are preserved by any instantiation.

4 Examples of computation

We implemented the algorithm to compute ACGB in the case K is the field of the complex numbers
C. In this section, we give some examples of our implementation.
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Find the reduced Grobner basis for the ideal generated by the following system of polynomials of the

variables z,y with parameters a, b:
ar’y +1,

bxy + abz + b.

In order to solve them simultaneously, compute a Grobner basis of the ideal z in T, p)[z,y] where
T(a,5) is the Von Neumann regular ring of equivalence classes on the terraces on Cla,b]. Our program

written in Risa/Asir [1] produces the following Grébner basis in the graded reverse lexicographic order

with z > y:

[C(vlal-V¥[1],1)],
[(V[0]-VIb*a],1))ex+[(VIO]-V[b*a], (1) /(a~2))]sy+
[(V{01-V(b*a], (2)/(a))],
[(V[0]-V[b*a],1)]+y~2+[(V[0]-V[-bea],3+a)]*y+
[(V[0]-V[-b#*a],a"2)],
[(V[b*al-V[al,1)]*y*sx~2+[(V[b*a]-V[al,(1)/(a))]]

Above output means that the reduced Grobner basis is

(1),

2
(z+ a1_2y+ —y’ +3ay+a®), ifab#0,
if ab=0,a #0.

1
2 —
(yz* + a),

Example 2.

Find the reduced Grobner basis for the ideal generated by the following system of polynomials of the

variables z,y with parameters a, b, c:

az’y +a + 3b?,
a(b — c)zy + abz + 5c.

Then our program produces the following Grobner basis which has six polynomials:

[L(V[a"2+3%b"2¢a]-V[a+3+b~2],1), (V[b"2%a,cebsa,cra+tIscsb"2,c"2¢a,
2-2]-V[b~2#a,a"2,c],1)],
[(VI(c*b-c"2) +al-V[(b~2-c"2) sas2+(3sb~4-3sc"4) *a, (c¥b-c"2)a] 1),

(VI(c*b"2-c~2%b) #a~2+(3¢c*b"4-3%c"24b"3) #a] -V[(c*b"2-c"2sb) #a],1),

(VL[(b"2-c#b) *a~2+(3#b"4-3#c"~3+b) #a, (c#b"2-c“2#b) *a) -
VI(b"2-c"2)*a~2+(3+b"4-3%c"4) *a, (c*b-c"2) *a],1),
(VI(b-c)*al-V[b*a,c*a) ,1)]«y+[(V[(c*sb-c"2)*a]l-V[(b"6-c"6)*a"4+
(9*b"8-9+c~8)*a~3+(27+b"10-27+c"10) #a"2+(27+b"12-27#c"12) *a,
(c*b-c~2)#al, (b)/(b-c)), (V[(b~2-c*b) *a"~2+(3*b"4-3¢c"3+b) *a,
(c*b~2-c~2+b) *a]-V{(b"2-c~2) sa~2+(3+b"4-3%c"4) *a, (c*b-c"2) *a],
(-25%¢c~2)/((-b~242¢c*b-c"~2) #a"2+(-3+%b"4+6+c*b"3-3%c"2+b"2) *a) ),
(VL[ (b-c)*a)-V[-c*a"2-3%c"3*a, (b-c)*a],
(-1/25+b"2+a"2-3/26%b"4+a) /(-c~2))],

[(V{(b"2-c*b) *a~2+(3%b"4-3#c"~3+b) *a, (c¢b~2-c"2%b) *a]-
VI(b"2-c"2)*a~2+(3+b"4-3%c"4) *a, (c*b~c~2)*a),1),

(c*b"2-c~2#b)*al-V[(b~2-c"2)*a"2+(3*b"4-3%c"4) sa, (c*¥b-c~2) *a],
((1/5%b-1/5%c) »a+3/5+b"3-3/5%c*b"2)/(-¢c))],
[(VL[(c*b~4-2#c"~2+b"3+c"3+b"2) #a"4+(6*csb"6-124c~2+b"5+6+c"3+b"4)
*a"3+(9%c*b"8-18#c"24b"7+9#c"3+b"6+25+c~3+b"2-25%c"4+b) *a"2+
(76%c"3%b"4-75%c"4+b"3) #a]-V[(c#b"2-c"2+b)»a"2+
(3*c*b"4-3%c"~2sb"3) *al,1),

+(752c"3%b"4-752c"4sb"3) #a]-V[(csb~2-c~2sb) #a~2+
(3%c*b"4-3#c"2sb"3) #a], ((-b"3+c*b"2) #a~2+(-3+b"5+3%c*b"4)*
a-50#c"2%b)/ ((b"3-3*c*b"2+3+c"2#b-c"3) *a"2+
(3#b"5-9%csb"4+9%c"2+¢b"3-3%c"3#b"2)*a))],

[(VI(b~2-c~2)*a~2+(3%b"4-34c"4) *a, (c*b-c~2) *a)-V[(b-c) #al 1)} *y*x+

[(VI(b~2-c"2)*a~2+(3+b"4-3#c"4) *a, (csb-c"2) *a]l-V[(b~2-c"2) *a,
(c#b-c"2)+a], (b)/(b-c))]*x,
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[(V[(c*b~2-c"2#b)*al-V[(b"2-c*b)*al,1)]#x"2+
[(VL(c*b~2-c~2#b)*a]l-V[(b~"2-c*b)*a~2+(3*b"4-3%c"3*b) *a,
(c*b~2-c"2+b)*#a], ((b-c)*a+3+b"3-3+c*b"2) /(~b*a))],
[(V[b*a,c*a]-V[a],1))*y*x~2+[(V[b*a,c*al-V[a], (a+3%b"2)/(a))]]
Looking at the first line of the output above, we can see that the ideal contains 1 if and only ifa = 0, # 0

ora=0,b=0,c#0.

5 Conclusion and Remarks

Our algorithm of ACGB does not have a canonical representation in a completely syntactic form.
There are infinitely many forms of equivalent terraces, although there is only one form (i.e. an empty
set) to represent 0 as is mentioned in section 2. In this paper we employed rather naive methods to handle
terraces. We did not use any sophisticated technique such as polynomial factorizations or computations
of radical ideals or prime(primary) ideal decompositions. We did not use even ideal intersections but
used ideal products. We need further computational experiments to find the most effective way.

We described our work under the assumption that K is algebraically closed. But this is not indispens-
able. What we actually need is computability of terrace. If we can compute terraces, then we can define
and calculate ACGB. For example, when K is a real closed field, we can handle terraces using standard
quantifier elimination technique. '

Our ACGB gives us a direct information of a given system of polynomial equations with parameters.
If we consider the following system of polynomial equations

fl(Alv"'7Am;X) =0

fe(A1, ..., Am, X) =0

in K(K™)[X], that is we consider each X; as a function from K™ to K, an easy extension of Hilbert
Nullstellensatz tells us that it has a solution if and only if

(A(A1, -y Ay X)), oo oy fi(Ar,y ey Ay, X)INKE™) = . Our ACGB gives us a direct answer to the ques-
tion whether the system has a solution. It has a solution if and only if the ACGB of
(fi(A1,-.., Am, X), ..., fi(A1,..., A, X)) does not contain a constant.
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