On the Number of Poles of the First Painlevé Transcendents and Higher Order Anlogues

SHUN SHIMOMURA

Department of Mathematics, Keio University

Let w(z) be an arbitrary solution of the first Painlevé equation

$$(PI) w'' = 6w^2 + z.$$

Then, w(z) is a transcendental meromorphic function, and every pole is double. Denote by n(r, w) the number of poles inside the circle |z| < r. In this note, we prove the following:

Theorem A. The growth order of w(z) is not less than 5/2, namely

(1)
$$\limsup_{r \to \infty} \frac{\log n(r, w)}{\log r} \ge \frac{5}{2}.$$

For another proof of this result, see [2].

It is known that the equations

$$(PI_4) w^{(4)} = 20ww'' + 10(w')^2 - 40w^3 + 16z,$$

(PI₆)
$$w^{(6)} = 28ww^{(4)} + 56w'w^{(3)} + 42(w'')^2 - 280(w^2w'' + w(w')^2 - w^4) + 64z$$

are higher order analogues for (PI). Denote by $w_4(z)$ (resp. $w_6(z)$) an arbitrary meromorphic solution of (PI₄) (resp. (PI₆)). It is easy to see that $w_4(z)$ (resp. $w_6(z)$) is transcendental and every pole is double. The following result is proved by the same argument as in the proof of Theorem A.

Theorem B. We have

(2)
$$\limsup_{r \to \infty} \frac{\log n(r, w_4)}{\log r} \ge \frac{7}{3},$$

(3)
$$\limsup_{t \to \infty} \frac{\log n(r, w_6)}{\log r} \ge \frac{9}{4}.$$

Remark. For solutions of (PI), a more precise result is known (see [3], [4]):

(4)
$$\frac{r^{5/2}}{\log r} \ll n(r, w) \ll r^{5/2}.$$

(We write
$$f(r) \ll g(r)$$
 if $f(r) = O(g(r))$ as $r \to \infty$.)

1. Proof of Theorem A

In what follows, for simplicity, we use the abbreviation n(r) := n(r, w). To prove (1), we suppose the contrary:

(5)
$$\limsup_{r \to \infty} \frac{\log n(r)}{\log r} < \frac{5}{2},$$

namely, for some $\varepsilon > 0$,

$$(6) n(r) \ll r^{5/2 - \epsilon}.$$

Starting from this supposition, we would like to derive a contradiction. By $\{a_j\}_{j=1}^{\infty}$ we denote the distinct poles of w(z) arranged as $|a_1| \leq \cdots \leq |a_j| \leq \cdots$ (by a Clunie resoning ([1, §9.2]), w(z) has infinitely many poles). By virtue of (6), w(z) is written in the form

(7)
$$w(z) = \Phi(z) + \phi(z),$$

(8)
$$\Phi(z) = \sum_{a_j} ((z - a_j)^{-2} - a_j^{-2}),$$

where $\phi(z)$ is an entire function; in the right-hand side of (8), if $a_1 = 0$, the term $(z - a_1)^{-2} - a_1^{-2}$ should be replaced by z^{-2} . Under supposition (6), we have the following lemmas whose proofs will be given afterward:

Lemma 1.1. For arbitrary r > 1, there exists z_0 such that

$$0.7r \le |z_0| \le r,$$

$$\sum_{|a_j| < 2r} |z_0 - a_j|^{-2} \ll r^{1/2 - \epsilon/2}.$$

Lemma 1.2. We have, for $|z| \leq r$,

$$\sum_{|a_j| \ge 2r} \left| (z - a_j)^{-2} - a_j^{-2} \right| \ll r^{1/2 - \epsilon}, \qquad \sum_{|a_j| \ge 2r} |z - a_j|^{-4} \ll 1,$$

and

$$\sum_{|a_j|<2r} |a_j^{-2}| \ll r^{1/2-\varepsilon}.$$

Lemma 1.3. There exists a set $E^* \subset (0, \infty)$ with finite linear measure such that

$$\sum_{a_j} |(z - a_j)^{-2} - a_j^{-2}| \ll |z|^9 \quad \text{for } |z| \in (0, \infty) \setminus E^*.$$

Observing that 6w(z) = w''(z)/w(z) - z/w(z), we have

$$m(r, w) \ll m(r, w''/w) + \log r \ll \log r$$

where

$$m(r, w) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |w(re^{i\theta})| d\theta, \quad \log^+ x = \max\{0, \log x\}$$

(for the notation and basic results in the Nevanlinna theory, see [1]). By Lemma 1.3, for $r \in (0, \infty) \setminus E^*$,

$$T(r,\phi) = m(r,\phi) = m(r,w-\Phi) \le m(r,w) + m(r,\Phi) \ll \log r.$$

This implies that $\phi(z) \in \mathbf{C}[z]$. Note that $|\Phi(z)| \leq \left|\sum_{|a_j| < 2r}\right| + \left|\sum_{|a_j| \geq 2r}\right|$. By Lemmas 1.1 and 1.2, for every r > 1, there exists z_0 , $0.7r \leq |z_0| \leq r$ such that

$$|\Phi(z_0)| \ll r^{1/2 - \epsilon/2}, \qquad |\Phi''(z_0)| \ll r^{1 - \epsilon}.$$

Combining $w(z_0) = (w''(z_0) - z_0)^{1/2} / \sqrt{6}$ with these estimates, we have

$$|\phi(z_0)| \ll |\Phi(z_0)| + (|w''(z_0)| + |z_0|)^{1/2} \ll r^{1/2} + |\phi(z_0)|^{1/2},$$

which implies that $\phi(z) \equiv C \in \mathbb{C}$. Hence, from $z_0 = w''(z_0) - 6w(z_0)^2$, it follows that

$$0.7r \le |z_0| \ll |w''(z_0)| + 6|w(z_0)|^2 \ll r^{1-\epsilon},$$

which is a contradiction. We have thus proved Theorem A.

2. Proofs of the lemmas

2.1. Proof of Lemma 1.1. Put $D_r = \{z \mid |z| < r\}$ and $\Delta_0^{\delta} = \mathbf{C} \setminus (\bigcup_{j \geq 0} U_j^{\delta});$ where $U_j^{\delta} = \{z \mid |z - a_j| < \delta |a_j|^{-1/4}\}$ if $a_j \neq 0$, and $U_0^{\delta} = \{z \mid |z| < \delta\}$ if $a_0 = 0$. Since, by (6),

$$\sum_{0<|a_j|< r} |a_j|^{-1/2} = \int_0^r \rho^{-1/2} dn(\rho) = \left[\rho^{-1/2} n(\rho)\right]_0^r + \frac{1}{2} \int_0^r \rho^{-3/2} n(\rho) d\rho \ll r^2,$$

we can take δ so small that $3\pi r^2/4 \leq \mu(\Delta_0^{\delta} \cap D_r) < \pi r^2$ for every r > 1, where $\mu(X)$ denotes the area of a domain X. It is easy to see that

$$\iint\limits_{D_r \setminus U_j^{\delta}} \frac{dxdy}{|z - a_j|^2} \le \iint\limits_{\substack{\delta |a_j|^{-1/4} \le \rho \le 3r \\ 0 < \theta < 2\pi}} \rho^{-1} d\rho d\theta \ll \log r,$$

if $|a_j| < 2r$, and if r > 1; and hence

(9)
$$\iint_{\Delta_0^{\delta} \cap D_r} \sum_{|a_j| < 2r} |z - a_j|^{-2} dx dy \ll n(2r) \log r \le K_0 r^{5/2 - \varepsilon/2},$$

where K_0 is some positive number. Now consider the set

$$E_r = \{ z \in \Delta_0^{\delta} \cap D_r \mid \sum_{|a_j| < 2r} |z - a_j|^{-2} \le 4\pi^{-1} K_0 r^{1/2 - \varepsilon/2} \}.$$

Suppose that $\mu(E_r) < \pi r^2/2$. Then

$$\iint_{\Delta_0^{\delta} \cap D_r \setminus E_r} \sum_{|a_j| < 2r} |z - a_j|^{-2} dx dy > 4\pi^{-1} K_0 r^{1/2 - \epsilon/2} \left(\frac{3\pi r^2}{4} - \frac{\pi r^2}{2} \right) = K_0 r^{5/2 - \epsilon/2},$$

which contradicts (9). Hence $\mu(E_r) \ge \pi r^2/2$. Since $\mu(\{z \mid |z| < 0.7r\}) = 0.49\pi r^2$, we have $\{z \mid 0.7r \le |z| \le r\} \cap E_r \ne \emptyset$, which implies the conclusion.

2.2. Proof of Lemma 1.2. For $|a_j| \ge 2r$, and for $z \in D_r$, observe that $|z/a_j| \le 1/2$. Since

$$|(z-a_j)^{-2}-a_j^{-2}|=2|z||a_j|^{-3}|1-(z/a_j)/2||1-z/a_j|^{-2} \le 10r|a_j|^{-3}$$

we have, by (6), that

$$\sum_{|a_j| \ge 2r} \left| (z - a_j)^{-2} - a_j^{-2} \right| \ll r \sum_{|a_j| \ge 2r} |a_j|^{-3} \ll r \int_{2r}^{\infty} t^{-3} dn(t)$$

$$\ll r \int_{2r}^{\infty} t^{-4} n(t) dt \ll r^{1/2 - \varepsilon},$$

and that

$$\sum_{|a_j| < 2r} |a_j^{-2}| = \int_0^{2r} t^{-2} dn(t) \ll r^{1/2 - \epsilon} + \int_0^{2r} t^{-3} n(t) dt \ll r^{1/2 - \epsilon}.$$

2.3. Proof of Lemma 1.3. We put

$$E^* = (0, |a_1| + 1) \cup \left(\bigcup_{j=2}^{\infty} (|a_j| - |a_j|^{-3}, |a_j| + |a_j|^{-3}) \right).$$

By (6), the total length of E^* is finite. If $|z| \notin E^*$, then

$$\left(\sum_{0<|a_j|<2|z|}+\sum_{|a_j|\geq 2|z|}\right)\left|(z-a_j)^{-2}-a_j^{-2}\right|\ll (|z|^6+1)n(2|z|)+|z|^{1/2}\ll |z|^9.$$

REFERENCES

- 1. Laine, I., Nevanlinna theory and complex differential equations, de Gruyter, Berlin, New York, 1993.
- 2. Mues, E. and Redheffer, R., On the growth of the logarithmic derivatives, J. London Math. Soc. 8 (1974), 412-425.
- 3. Shimomura, S., Growth of the first, the second and the fourth Painlevé transcendents, Math. Proc. Camb. Phil. Soc., to appear.
- 4. Shimomura, S., Lower estimates for the growth of Painlevé transcendents, Funkcial. Ekvac., to appear.