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On the Number of Poles of the First Painlevé
Transcendents and Higher Order Anlogues
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Let w(z) be an arbitrary solution of the first Painlevé equation
(PI) w" = 6w? + 2.

Then, w(z) is a transcendental meromorphic function, and every pole is double.
Denote by n(r,w) the number of poles inside the circle |z| < r. In this note, we
prove the following:

Theorem A. The growth order of w(z) is not less than 5/2, namely
log n(r,w 5

(1) liﬂs;p —ngér———l > 3

For another proof of this result, see [2].

It is known that the equations

(P1,) w® = 20ww” + 10(w")? — 40w® + 16z,

(PIg) w® = 28ww® + 56w w® + 42(w")?
— 280(w?w"” + w(w')? — w?*) 4 64z

are higher order analogues for (PI). Denote by w4(z) (resp. we(z)) an arbitrary
meromorphic solution of (PIy) (resp. (Plg)). It is easy to see that ws(z) (resp.
we(z)) is transcendental and every pole is double. The following result is proved
by the same argument as in the proof of Theorem A.

Theorem B. We have

. logn(r,ws) _ 7
lim — >
@) v logr — 3
) logn(r,ws) _ 9
1 — >
(3) lﬁs;fp log r — 4

Remark. For solutions of (PI), a more precise result is known (see [3], [4]):

5/2
(4) logr
(We write f(r) < g(r) if f(r) = O(g(r)) as r = o0.)

L n(r,w) K r3/2.
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1. Proof of Theorem A
In what follows, for simplicity, we use the abbreviation n(r) := n(r,w). To prove
(1), we suppose the contrary:

, logn(r) 5
1 bt
(5) 1?18;}) log r < 2’
namely, for some ¢ > 0,
(6) on(r) € r¥/tE,

Starting from this supposition, we would like to derive a contradiction. By {a i}i2
we denote the distinct poles of w(z) arranged as |a;| < -+ < |a;| < --- (by a
Clunie resoning ([1, §9.2]), w(z) has infinitely many poles). By virtue of (6), w(z)
is written in the form

(7) w(z) = ®(z) + ¢(2),
(8) ®(z) = Z((z —a;)7? - a;z),

where ¢(z) is an entire function; in the right-hand side of (8), if a; = 0, the term
(z — a3)™2 — a7? should be replaced by 272, Under supposition (6), we have the
following lemmas whose proofs will be given afterward:

Lemma 1.1. For arbitrary r > 1, there exists zg such that

0.7r < |z0] <1, Z |20 — aj| 72 « r1/27e/2,
laj|<2r

Lemma 1.2. We have, for |z| < r,

Z I(z—aj)‘z—a;2|<<r1/2_€, Z |z —aj|™* <1,

laj[>2r laj[>2r

and
Z |a1—2!<< ,',.1/2—5.
laj|<2r

Lemma 1.3. There exists a set E* C (0,00) with finite linear measure such that

Y l(z—aj)?—a7?| < |2f°  for |2| € (0,00) \ E*.

aj

Observing that 6w(z) = w'(2)/w(z) — z/w(z), we have
m(r,w) € m(r,w” /w) + logr < logr,
where

27
m(r,w) = %/{; log™ |w(re*®)|df, log™ z = max{0,logz}



(for the notation and basic results in the Nevanlinna theory, see [1]). By Lemma
1.3, for r € (0,00) \ E*,

T(r,¢) = m(r,¢) = m(r,w — @) < m(r,w) + m(r,®) < logr.
This implis that $(z) € C[zJ. Note that [005)] < [Eiypcn] + Sy ol By
Lemmas 1.1 and 1.2, for every r > 1, there exists zg, 0.7r < |20| < r such that
1®(20)| < r1/27/2, |®"(20)] <« 7175,

Combining w(z) = (w"(20) — 20)1/?/+/6 with these estimates, we have

[#(20)] < 1@(20)] + (Jw" (20)| + |20])*/* <« /% + |(0)['/2,

which implies that ¢(z) = C € C. Hence, from 29 = w”(z) — 6w(zp)?, it follows
that
0.7r < |20| < |w"(20)] + 6|w(20)|> < r17¢,

which is a contradiction. We have thus proved Theorem A.

2. Proofs of the lemmas

2.1. Proof of Lemma 1.1. Put D, = {z]||z] < r} and A{ = C\ (UJ.>0 UJ‘?);
where U! = {z | |z — qj| < 8laj|71/%} if a; # 0, and U = {z|2| < 6} if ap = 0.
Since, by (6),

—_ " —- _ r 1 r _
Z lajl 1/2 _ / p 1/2dn(p) = [P I/Zn(p)]o + 5/ o 3/2n(p)dp < 7‘2,
0<|aj|<r 0 . 0

we can take § so small that 37r2/4 < u(A$.N D,) < nr? for every r > 1, where
p(X) denotes the area of a domain X. It is easy to see that

dwdy -1
<
[[7=ems [ oo <o

D \U} §laj|~ Y 4<p<3r
0<6<2m

if |aj| < 2r, and if » > 1; and hence

®) / Z |z —a;|™ 2dedy < n(2r)logr < Kor 5/2— 5/2
A5nD laj|<2r

where Ky is some positive number. Now consider the set

Bolreddnn X,

Suppose that u(E,) < nr?/2. Then

|z — ajl"z. < 477*1K0r1/2_€/2}.

2

// Z |z — a;|"2dedy > dn " Kort/? 5/2(37Z — %) = Kor3/?~¢/2
Aé‘nD \E, laj|<2r

which contradicts (9). Hence u(E,) > nr?/2. Since pu({z||z| < 0.7r}) = 0.497r2,
we have {2 |0.7r < |z| £ r} N E, # 0, which implies the conclusion.
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2.2. Proof of Lemma 1.2. For |a;| > 2r, and for z € D,, observe that |z/a;| <
1/2. Since

(2 —a;)™* = a7 = 2|zla; (1 = (2/a,) /2|11 — 2/a;|7% < 10r]a;[™,
we have, by (6), that

Z |(z — a;)7? —a]~_2| Lr Z |a |73 <<r/ t~3dn(t)

laj|>2r laj|>2r 2

oo
K r/ t~4n(t)dt < r1/?7e,
2r
and that

2r 2r
Z laj—zl = / t~2dn(t) <« r1/?=¢ +/ t73n(t)dt < rt/?7e,
0 0

laj|<2r

2.3. Proof of Lemma 1.3. We put

oo

"= (0 Jal + 1)U (|J (el = la172 lajl + la;17)).

Jj=2
By (6), the total length of E* is finite. If |z| € E*, then

(X + X )e-a = a7 < (el + Dnel) + 22 <ol

0<|a;|<2|z| |a;[22]2]
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