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UNIFORM NON-SQUARENESS
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Recently the strict convexity and the uniform convexity of the i-direct
sum X @y Y of Banach spaces X and Y were characterized in [15, 12]. We
shall characterize the uniform non-squareness of X @y Y.

W‘Let N, denote the family of all absolute nomalized norms on
C?, that is,

1(z, w)ll = [I(I2], [0l and [[(1,0)] = {|(0, ]| = 1,

and let ¥ denote the family of all continuous convex functions
¥ on [0,1] with ¥(0) = ¢(1) = 1 satisfying max {1 —¢,t} <
¥(t) <1 (0 <t <1). According to [3], the norms in NNV, and the
convex functions in ¥ correspond in a one-to-one way under the
equation ¥(t) = ||(1—¢,t)||. Namely, for every element ||-|| € N,
the function 1 (t) defined by ¥(t) = ||(1 — t,t)|| belongs to V;
and conversely for every element ¢ € ¥, define

(121 + o)y (i) i (z,w) # (0,0),

0o if (2, w) = (0,0).

Then ||(-,-)||¢ is a norm in N, and satisfies ¥(¢) = |[(1 —¢,%)||4.
In [15], the y-direct sum X @4 Y of two Banach spaces X

and Y was introduced as the direct sum X @ Y with the norm
Iz, e = Izl lylDlls(x € X, y € Y). Recently the strict

Wl (z,w)lly =
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convexity and the uniform convexity of X @, Y were character-
ized in [15, 12]. In this note we characterize the uniform non-
squareness of X @, Y. As an application we give an example
of Banach spaces which are not uniformly convex but uniformly
non-square.

Now recall that a Banach space X is called uniformly non-
square ([6]; cf. [2, 10]) provided there exists a § (0<é < 1) such
that, whenever ||(z — y)/2|| > 1 -6, ||z|| = |ly|]| = 1, one has
l(z+y)/2|| < 1-6. X is called strictly convex provided, if ||z|| =
lyll =1, z # y, then || Z¥|| < 1. X is called uniformly convez if
any € > 0 thereis a § (0 < § < 1) such that, whenever ||z —y| >
6 |lz|l <1, lyll <1, onehas || 22| < 1—-6. Asis well known, the
notion of uniform non-squareness lies between uniform convexity
and super-reflexivity. Also, it is well known that there exists a
Banach space which is neither uniformly convex nor uniformly
non-square but surper-refrexive. (cf. [7], [1].) A function 1 on
[0, 1] is called strictly convez if, for any s, t € [0,1], s # t, and for
any c (0 < ¢ < 1), one has ¥((1—c)s+ct) < (1—c)y(s)+cyp(t).

THEOREM A ([15, 12]). Let X and Y be Banach spaces and
let € U. Then |

(i) X @y Y is strictly convex if and only if X and Y are
strictly convex, and 1 is strictly convez ([15, Theorem 1]).

(i) X @y Y is uniformly convez if and only if X and Y are
uniformly convex, and 1) is strictly convez ([12, Theorem 1]).

Saito-Kato-Takahashi [13] gave the following characterization
of the absolute norms on C? which are uniformly non-square.
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Proposition 1 ([13]). Let ¥ € V. Then the following are
equivalent.
(i) (C2 || - |lp) %s uniformly non-square.

(i) ¢ # Y1 and ¢ # Yoo.

1. Monotonicity Property of Absolute Norms

We discuss the monotonicity property of absolute norms on C?
for later use. Recall the following fundamental facts. Propostion
2 played an essential role in the proof of Theorem A.

Lemma 1 ([2, p.36, Lemma 2]). Let || - || € N,.
(1) Iflp| < |r| and |q| < s, then ||(p, 9|l < I|(r, s)I|-
(if) If [p| < |r| and |g| < |s|, then ||(p, q)|l < ||(r, s)|I-

Proposition 2 (Takahashi, Kato and Saito [15]). Lety € V.
Then the following assertions are equivalent:

(1) If |z| < |u| and |w| < |v|, or |2| < |u| and |w| < |v|, then
Iz il < 10l

(ii) ¥ (t) > Yoo(t) for all t € (0,1).

A more precise (component-wise) result is given in [15]. Next
we present a condition on (z,w) and (u,v) for which the above
assertion (i) is valid (component-wise) for a general v € .

Proposition 3. Let ¢ € ¥ and let (z,w), (u,v) € C2.

(i) Let |2 < |u| and |w| = |v]. Then ||(z,w)lly = [|(u,v)|ly i
and only i | (2,0 = .

(ii) Let |2| = |u| and |w| < lv]. Then [|(z,w)lly = (2, v)|l¢ ¥
and only if | (2, w)lly = |2I

Propostion 3 is important in the proof of the uniform non-
squareness of X @, Y.
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3. Uniform Non-squareness of X ®©y Y

We need the following lemma.

Lemma 2. Let {z,} and {y,} be sequences in a Banach
space X whose norms are convergent to non-zero limits.
(i) limpoo |[Zn + ynll = limnoo(l|Zall + [|lynll)-
ey 7 In Yn
(ii) lim + = 2.
n—oo || [|Zn]|  [|ynll

By Proposition 3 and Lemma 2, we obtain the following main
theorem. :

Theorem 1. Let X and Y be Banach spaces and ¢ € V.
Then the following are equivalent.

(i) X ®y Y is uniformly non-square.

(ii)) X and Y are unformly non-square and v # Y1, Yoo-

Now consider the Lorentz £, -norm || - ||p,q
1<g¢g<p<Loo, g<oo:

1 4a) /4
(1, 22)llpq = {217 +20P 1557},

where {2z}, 23} is the non-increasing rearrangement of {|z1/, |22|}.
(Note that in case of 1 < p < ¢ < 00, || - ||p,¢ is Dot a norm but
a quasi-norm (cf. [8], [16, p.126]). Clearly || - ||5,¢ is an absolute
normalized norm and the corresponding convex function ;4 is
given by

{(1 —t)74 20/~ 149}a if 0 <t <1/2,

(2) psipg(t) =
{ta +29/7-1(1 —t)9}Y7 if 1/2 <t < 1.
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Then vy, yields the £, ;-sum X ®,,Y":

P 1/q
@, 9)llpg = {max(llall®, g9 + 2971 minz], |ly)7) }

(3)

COROLLARY 1. Let 1 <¢g<p< o0 and notp=q =1, co.
Then, £y q-sum X1 ®pq X2 is uniformly non-sqaure if and only if
X1 and Xy are uniformly non-sqaure.

In particular, £yp-sum X; ®p X2, 1 < p < 00, is uniformly
non-sqaure if and only if X1 and X» are uniformly non-sqaure.

Theorem A and Theorem 1 easily gives an example of Ba-
nach spaces which are not uniformly convex but uniformly non-
square.

EXAMPLE 1 (cf. [12,13]). Let X and Y be uniformly convex
Banch space and let 1/2 < a < 1. Now we define ¢, € ¥ by

2lit1if 0<t<o,
(4) 2ﬁoz(t):
' t if a<t<l1.

Then the norm of X @y, Y is given by

6) @9l =max{llel + @~ sl Iyl

X @y, Y is an example of uniformly non-square Banach spaces
without uniform convexity.
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