ON DIRECT SUM BANACH SPACES AND UNIFORM NON-SQUARENESS

九州工業大学工学部 新潟大学理学部

千葉大学社会文化科学研究科 田村高幸(Takayuki TAMURA) 加藤幹雄(Mikio KATO) 斎藤吉助(Kichi-Suke SAITO)

Recently the strict convexity and the uniform convexity of the ψ -direct sum $X \oplus_{\psi} Y$ of Banach spaces X and Y were characterized in [15, 12]. We shall characterize the uniform non-squareness of $X \oplus_{\psi} Y$.

Let N_a denote the family of all absolute nomalized norms on \mathbb{C}^2 , that is,

$$\|(z,w)\| = \|(|z|,|w|)\|$$
 and $\|(1,0)\| = \|(0,1)\| = 1$,

and let Ψ denote the family of all continuous convex functions ψ on [0,1] with $\psi(0)=\psi(1)=1$ satisfying max $\{1-t,t\}\leq$ $\psi(t) \leq 1 \ (0 \leq t \leq 1)$. According to [3], the norms in N_a and the convex functions in Ψ correspond in a one-to-one way under the equation $\psi(t) = \|(1-t,t)\|$. Namely, for every element $\|\cdot\| \in N_a$ the function $\psi(t)$ defined by $\psi(t) = \|(1-t,t)\|$ belongs to Ψ ; and conversely for every element $\psi \in \Psi$, define

$$(1)||(z,w)||_{\psi} = \begin{cases} (|z| + |w|)\psi\left(\frac{|w|}{|z| + |w|}\right) & \text{if } (z,w) \neq (0,0), \\ 0 & \text{if } (z,w) = (0,0). \end{cases}$$

Then $\|(\cdot,\cdot)\|_{\psi}$ is a norm in N_a and satisfies $\psi(t) = \|(1-t,t)\|_{\psi}$. In [15], the ψ -direct sum $X \oplus_{\psi} Y$ of two Banach spaces Xand Y was introduced as the direct sum $X \oplus Y$ with the norm $\|(x,y)\|_{\psi} = \|(\|x\|,\|y\|)\|_{\psi}(x \in X, y \in Y)$. Recently the strict convexity and the uniform convexity of $X \oplus_{\psi} Y$ were characterized in [15, 12]. In this note we characterize the uniform non-squareness of $X \oplus_{\psi} Y$. As an application we give an example of Banach spaces which are not uniformly convex but uniformly non-square.

Now recall that a Banach space X is called uniformly non-square ([6]; cf. [2, 10]) provided there exists a δ ($0 < \delta < 1$) such that, whenever $\|(x-y)/2\| > 1 - \delta$, $\|x\| = \|y\| = 1$, one has $\|(x+y)/2\| \le 1 - \delta$. X is called strictly convex provided, if $\|x\| = \|y\| = 1$, $x \ne y$, then $\|\frac{x+y}{2}\| < 1$. X is called uniformly convex if any $\epsilon > 0$ there is a δ ($0 < \delta < 1$) such that, whenever $\|x-y\| \ge \epsilon$, $\|x\| \le 1$, $\|y\| \le 1$, one has $\|\frac{x+y}{2}\| < 1 - \delta$. As is well known, the notion of uniform non-squareness lies between uniform convexity and super-reflexivity. Also, it is well known that there exists a Banach space which is neither uniformly convex nor uniformly non-square but surper-refrexive. (cf. [7], [1].) A function ψ on [0,1] is called strictly convex if, for any $s,t\in [0,1], s\ne t$, and for any c (0 < c < 1), one has $\psi((1-c)s+ct) < (1-c)\psi(s)+c\psi(t)$.

THEOREM A ([15, 12]). Let X and Y be Banach spaces and let $\psi \in \Psi$. Then

- (i) $X \oplus_{\psi} Y$ is strictly convex if and only if X and Y are strictly convex, and ψ is strictly convex ([15, Theorem 1]).
- (ii) $X \oplus_{\psi} Y$ is uniformly convex if and only if X and Y are uniformly convex, and ψ is strictly convex ([12, Theorem 1]).

Saito-Kato-Takahashi [13] gave the following characterization of the absolute norms on \mathbb{C}^2 which are uniformly non-square.

Proposition 1 ([13]). Let $\psi \in \Psi$. Then the following are equivalent.

- (i) $(\mathbb{C}^2, \|\cdot\|_{\psi})$ is uniformly non-square.
- (ii) $\psi \neq \psi_1$ and $\psi \neq \psi_{\infty}$.

1. Monotonicity Property of Absolute Norms

We discuss the monotonicity property of absolute norms on \mathbb{C}^2 for later use. Recall the following fundamental facts. Propostion 2 played an essential role in the proof of Theorem A.

Lemma 1 ([2, p.36, Lemma 2]). Let $\|\cdot\| \in N_a$.

- (i) If $|p| \le |r|$ and $|q| \le |s|$, then $||(p,q)|| \le ||(r,s)||$.
- (ii) If |p| < |r| and |q| < |s|, then ||(p,q)|| < ||(r,s)||.

Proposition 2 (Takahashi, Kato and Saito [15]). Let $\psi \in \Psi$. Then the following assertions are equivalent:

- (i) If $|z| \le |u|$ and |w| < |v|, or |z| < |u| and $|w| \le |v|$, then $||(z, w)||_{\psi} < ||(u, v)||_{\psi}$.
 - (ii) $\psi(t) > \psi_{\infty}(t)$ for all $t \in (0, 1)$.

A more precise (component-wise) result is given in [15]. Next we present a condition on (z, w) and (u, v) for which the above assertion (i) is valid (component-wise) for a general $\psi \in \Psi$.

Proposition 3. Let $\psi \in \Psi$ and let (z, w), $(u, v) \in \mathbb{C}^2$.

- (i) Let |z| < |u| and |w| = |v|. Then $||(z, w)||_{\psi} = ||(u, v)||_{\psi}$ if and only if $||(z, w)||_{\psi} = |w|$.
- (ii) Let |z| = |u| and |w| < |v|. Then $||(z, w)||_{\psi} = ||(z, v)||_{\psi}$ if and only if $||(z, w)||_{\psi} = |z|$.

Propostion 3 is important in the proof of the uniform non-squareness of $X \oplus_{\psi} Y$.

3. Uniform Non-squareness of $X \oplus_{\psi} Y$

We need the following lemma.

Lemma 2. Let $\{x_n\}$ and $\{y_n\}$ be sequences in a Banach space X whose norms are convergent to non-zero limits.

- (i) $\lim_{n\to\infty} ||x_n + y_n|| = \lim_{n\to\infty} (||x_n|| + ||y_n||).$
- (ii) $\lim_{n \to \infty} \left\| \frac{x_n}{\|x_n\|} + \frac{y_n}{\|y_n\|} \right\| = 2.$

By Proposition 3 and Lemma 2, we obtain the following main theorem.

Theorem 1. Let X and Y be Banach spaces and $\psi \in \Psi$. Then the following are equivalent.

- (i) $X \oplus_{\psi} Y$ is uniformly non-square.
- (ii) X and Y are unformly non-square and $\psi \neq \psi_1, \psi_{\infty}$.

Now consider the Lorentz $\ell_{p,q}$ -norm $\|\cdot\|_{p,q}$, $1 \le q \le p \le \infty$, $q < \infty$:

$$\|(z_1, z_2)\|_{p,q} = \left\{z_1^{*q} + 2^{(q/p)-1}z_2^{*q}\right\}^{1/q},$$

where $\{z_1^*, z_2^*\}$ is the non-increasing rearrangement of $\{|z_1|, |z_2|\}$. (Note that in case of $1 \le p < q \le \infty$, $\|\cdot\|_{p,q}$ is not a norm but a quasi-norm (cf. [8], [16, p.126]). Clearly $\|\cdot\|_{p,q}$ is an absolute normalized norm and the corresponding convex function $\psi_{p,q}$ is given by

(2)
$$psi_{p,q}(t) = \begin{cases} \{(1-t)^q + 2^{q/p-1}t^q\}^{1/q} & \text{if } 0 \le t \le 1/2, \\ \{t^q + 2^{q/p-1}(1-t)^q\}^{1/q} & \text{if } 1/2 \le t \le 1. \end{cases}$$

Then $\psi_{p,q}$ yields the $\ell_{p,q}$ -sum $X \oplus_{p,q} Y$:

$$\|(x,y)\|_{p,q} = \left\{ \max(\|x\|^q, \|y\|^q) + 2^{(q/p)-1} \min(\|x\|^q, \|y\|^q) \right\}^{1/q}$$
(3)

COROLLARY 1. Let $1 \le q \le p \le \infty$ and not $p = q = 1, \infty$. Then, $\ell_{p,q}$ -sum $X_1 \oplus_{p,q} X_2$ is uniformly non-square if and only if X_1 and X_2 are uniformly non-square.

In particular, ℓ_p -sum $X_1 \oplus_p X_2$, $1 , is uniformly non-square if and only if <math>X_1$ and X_2 are uniformly non-square.

Theorem A and Theorem 1 easily gives an example of Banach spaces which are not uniformly convex but uniformly non-square.

EXAMPLE 1 (cf. [12, 13]). Let X and Y be uniformly convex Banch space and let $1/2 < \alpha < 1$. Now we define $\psi_{\alpha} \in \Psi$ by

(4)
$$\psi_{\alpha}(t) = \begin{cases} \frac{\alpha - 1}{\alpha}t + 1 & \text{if } 0 \le t \le \alpha, \\ t & \text{if } \alpha \le t \le 1. \end{cases}$$

Then the norm of $X \oplus_{\psi_{\alpha}} Y$ is given by

(5)
$$||(x,y)||_{\psi_{\alpha}} = \max\{||x|| + (2 - \frac{1}{\alpha})||y||, ||y||\}.$$

 $X \oplus_{\psi_{\alpha}} Y$ is an example of uniformly non-square Banach spaces without uniform convexity.

References

- [1] J.-B. Baillon and R. Schoneberg, Asymptotic normal structure and fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 81 (1981), 257–264.
- [2] B. Beauzamy, Introduction to Banach Spaces and their Geometry, 2nd ed., North-Holland, 1985.
- [3] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10 (1973).
- [4] R. Bhatia, Matrix Analysis, Springer, 1997.
- [5] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1967.
- [6] C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
- [7] L. A. Karlovitz, Existence of fixed points of nonexpansive mappings in a space without normal structure, Pacific J. Math., 66 (1976), 153-159.
- [8] M. Kato, On Lorentz spaces $\ell_{p,q}\{E\}$, Hiroshima Math. J. 6 (1976), 73-93.
- [9] M. Kato, K.-S. Saito and T. Tamura, On the ψ -direct sums of Banach spaces and convexity, submitted.
- [10] R. E. Megginson, An Introduction to Banach Space Theory, Springer, 1998.
- [11] K. Mitani, K.-S. Saito and T. Suzuki, Smoothness of absolute norms on \mathbb{C}^n , to appear in J. Convex Analysis.
- [12] K.-S. Saito and M. Kato, Uniform convexity of ψ -direct sums of Banach spaces, to appear in J. Math. Anal. Appl.
- [13] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^2 , J. Math. Anal. Appl. **244** (2000), 515-532.
- [14] K.-S. Saito, M. Kato and Y. Takahashi, On absolute norms on \mathbb{C}^n , J. Math. Anal. Appl. **252** (2000), 879-905.
- [15] Y. Takahashi, M. Kato and K.-S. Saito, Strict convexity of absolute norms on \mathbb{C}^2 and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), 179-186.
- [16] H. Triebel, Intepolation Theory, Function spaces, Differential Operators, North-Holland, 1978.