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Abstract: In this paper, we consider minimax problems for a vector-valued
function, which are the following questions: If we give reasonable definitions
for minimax and maximin values of a vector-valued function in an ordered
vector space, what minimax equation or inequality holds? Also, if we give
a suitable definition for saddle points of a vector-valued function, what re-
lationship holds among such minimax, maximin and saddle values? We will
give interesting answers to such questions and introduce a recent problem in
minimax problems in this paper.
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1 Introduction

Saddle point theorem for a real-valued function is used well in game theory and other
wide fields. It says: a real-valued function possesses a saddle point if and only if minimax
and maximin values of the function are coincident. This fact is valid based on the total
ordering of R, but if we consider more general partial orderings on vector spaces, then
what kind of results on minimax and maximin values of a vector-valued function are
obtained? This kind of researches have been studied from game theoretical aspect and
general aspect of saddle point concept; see [1, 5, 6].

Minimax, maximin and saddle values for a vector-valued function are sets under
suitable definitions in general. Then, a kind of saddle point theorem for a vector-valued
function holds under some conditions. It says: there exists some minimax and maximin
values of a vector-valued function such that their values are ordered by a partial ordering
and dominated each other whenever the vector-valued function has a saddle point. In
this paper, we will give this theorem in more detail.

Accordingly, the organization of the paper is as follows. In Section 2, we give
the preliminary terminology used throughout the paper, and then define vector-valued
minimax and maximin values and saddle point. In Section 3, we introduce a saddle point
theorem for a vector-valued function. In Section 4, we investigate difference between
two concepts of minimax and maximin values for a vector-valued function. In Section 5,
we shall introduce a recent result in a minimax problem.
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2 Preliminary terminology and definitions

We give some settings for mathematics on vector optimization. Throughout this paper,
let Z be an ordered vector space with the following partial ordering, for all z,y € Z,

r<cy<=y—z€C, x<cy<=>yfx€C\{0},
zfcye=>y—3¢C, zsoy=y-—z¢C\{0}

where C is a solid (intC # @) pointed (C N (—C) = {#}) convex cone. By intC # 0,
C° := (intC) U {6} is a pointed convex cone and induces another vector ordering <co
weaker than <¢ in Z. For these orderings, we define minimal and maximal elements of
a subset A of Z, i.e., lower efficient points and upper efficient points with respect to C
and C?, respectively.

Definition 1 zy € A C Z is said to be a C-minimal point of A if z £, 2o for all z € A,
and a C-mazimal point of A if zg £,z for all z € A, respectively. We denote the set
of such all C-minimal (resp. C-mazimal) points of A by MinA (resp. MaxA). Also,
C°-minimal and C°-mazimal points of A are deﬁned similarly, and denoted by Min,, A
and Max, A, respectively.

Under these definitions, we can define (weak) C-saddle point of a vector-valued
function as follows, which is an extended notion of usual saddle points.

Definition 2 Let f : X x Y — Z be a vector-valued function, where X and Y are
sets. A point (z¢,y0) is said to be a C-saddle point of f with respect to X XY if
f(zo,0) € Maxf(zo,Y) N Minf(X,yo), and a point (Zo,yo) is said to be a weak C-
saddle point of f with respect to X x Y if f(xo,%0) € Maxy f(zo,Y) N Miny (X, 40),
respectively.

We denote the set of all C-saddle and weak C-saddle values of f as follows,

SV(f) = {f(:co,yo)l(aso,yo) € X x Y is a C-saddle point of f} and
SVu(f) == {f (2o, v0)|(zo, o) € X x Y is a weak C-saddle point of f}

respectively.
Moreover, by using concepts of efficient points, we can define the following subsets
of Z as analogues of minimax and maximin values for real-valued functions.

Definition 3 Let f : X x Y — Z be a vector-valued function, where X andY are sets.
Subsets of Z

Minimaxf := Min | J Maxf(z,Y) and Maximinf := Max (] Minf(X,y)
z€X 7 yey

are called the set of all minimaz values for f and the set of all mazimin values for f,
respectively.



Also, we can consider sets of minimax and maximin values for a weak concept in the
same way as efficient and C-saddle points, i.e., subsets of Z

Minimax, f := Min | Max, f(z,Y) and Maximin,f := Max | J Min, f(X,y)
rzeX yeY

are weaker concepts than those in Definition 3.

Example 1 Let Z and C be a 2-dimensional Euclidean space and its nonnegative or-
thant of Z, respectively. Also, let X and Y be sets of convex hulls generated by (1, 0)*
and (0, 1)! in another 2-dimensional Euclidean space. We consider a matrix type vector-
valued function f(z,y) = (z'Ay, z'By)* where A and B are 2 x 2 matrices.

We consider the image of f for specific ma-
trices. The image of f for

0 1Y\ (11
A=(10) and B_(Ol)

forms itself into a figure with an envelope;
see Figure 1.

Figure 1: An image set with an envelope
(Example 1).

Let :

f(0,%0) € Maxqy f(zo,Y)} and

f(an yO) € Min(w)f(X7 yO)} .

D® := D)D" is the set of all (weak) C-saddle points of £, and f(D™)) = SV, (f).
In this example, we get

D%’”) = {(z0,%0) E X XY
Dgw) = {(zo,%0) € X XY

D={(:c,y)|a:1=0, OSyls%}U{(x,y)'O§x1<%, %<y151},
D*= {(z,9)| 21=0, 0<y <3} U{(@y)|0<z <}, E<m<1}u

{(.'E,y)IOSIL']_ Sl’ ylzo}u{(xay)lxlzl, %Syl S]-}
where z = (z1,1 — 71)}, y = (v1,1 — y1)*. Hence,

SV(f) = {f(=zy)| (z,9) € D}

= {(u)v)tlu=y11v=_yl+1,OSyIS%}
¢l U=2Z1+ Y1 — 2030, v=—n + T + 1,
U{(u,v) 0<z; <3 3<m<1 }’
SVu(f) = {f(z,v)| (z,y) € D*}
= {(u,v)t|u=z1,v=1,0§z1§1}
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U{(uvv)t'u:yh U:—y1+1, OSyIS%}
U{(u v)t u=1z +y — 201y, v=—Y1 + 1y + 1, }

0<z <3 <<l
Sets of minimax and maximin values for f in this example are as follows;

Minimaxf = Minimax, f = {(u,v)! |u=1, v=1—-y;, 0<y; <1},
Ma.ximinf:{(u,v)‘lu2+4v2—6u—8v+4uv+5=0, F<u<l, 05v<%},
Maximin, f = {(1,1)%}.

3 Vector-valued saddle point theorem

A real-valued function possesses a saddle point if and only if minimax and maximin
values of the function are coincident and its value is coincident with the saddle value,
but its analogy for a vector-valued function can not be expected in general. However, it is
well-known that a certain minimax inequality holds under some conditions. If a vector-
valued function has weak C-saddle points defined in Section 2, the following saddle point
theorem for a vector-valued function is obtained by existence for vector-valued minimax
and maximin values.

Theorem 1 Let X and Y be nonempty compact sets in two topological spaces, respec-
tively. Assume that a vector-valued function f : X XY — Z is continuous and the
pointed convex cone C satisfies the condition clC + (C\{68}) Cc C. If f has a weak
C-saddle point (zo,y0) € X X Y, then there exist

z € Min |J Max, f(z,Y), 22 € Max |J Min, f(X,y)
zeX yeyY

such that zy <c f(Zo,%0) and f(zo, %) <c 2.

Refer to [6] about existence of minimax and maximin values and saddle points for a
vector-valued function and a proof of the theorem. This theorem can be interpreted in
the following way: Minimax and maximin values are lower efficient points and upper
efficient points of saddle values, respectively, in the sense of <c. Moreover, we can get
the following vector-valued inequality on the partial ordering from Theorem 1,

21 <c 22.

This inequality is called “minimax inequality”. This result means that there exists a
maximin value which is greater than a minimax value in the sence of <c. It seems that
this result is similar to the case of a real-valued function.

4 Difference in vector-valued minimax and maximin
values for two concepts

In this section, we investigate difference between normal and weak type vector-valued
minimax and maximin values defined in Section 2. As to weak type, the corresponding



result in Section 3 always holds under some conditions. As to normal type, what kind of
thing is said 7 An answer for its question is that the vector-valued saddle point theorem
does not always hold under the same conditions because sets of minimax and maximin
values do not always exist in the normal type. We show the following example.

Example 2 We consider the same settings as in Example 1 in Section 2.

We consider the image of f for the
following matrices

a=(53)e=(4 )

The image of f forms itself into a fig-
ure with an envelope, which is similar
to but more complex than Example 1;
see Figure 2.

Figure 2: An example of Minimaxf = 0 (Exam-
ple 2).
Sets of minimax and maximin values for f in this example are as follows;

Minimaxf = 0,

Maximin f = (u 'u)t 100u? + 81v2 + 620u — 768v — 180uv + 1276 = 0,
aximinj = ’ -I<u<-5 3<v< ’

Mlnlmaxwf = {(—%a —%)t7 _%7 g)t} )

Maximin,, f = (u v)t 100u2 + 8192 + 620u — 768v — 180uv + 1276 = 0,

wl = ’ -I<u<-I 3<v<

U {(—17 %)t9 (*%’ %)t} .

5 Recent result

The saddle point theorem for a vector-valued function only guarantees that there exist
some minimax and maximin values of the function such that their values are ordered
by <¢ and dominated each other whenever the function has a weak C-saddle point.
An interesting recent question in minimax problems is under what kind of conditions
minimax and maxmin values are coincident. As to this question, the following theorem
holds.

Theorem 2 Let f : X XY — Z be a vector-valued function and X and Y be con-
vez hulls generated by (1,0)' and (0,1)* in 2-dimensional Euclidean space. Assume
that f is a bilinear function with respect to ¢ € X and y € Y, SV(f) # 0 and
Minimax f, Maximinf C SV (f). If either

Vze X, d, e CU(-C) or VyeY, d, e Cu(-C),
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Minimax f = Maximin f

where d, = f(z,(1,0)%) — f(z,(0,1)!) and d, = f((1,0)%,y) — f((0,1)%,y), which are
called direction vectors. '

We introduce one of the fundamental properties used in the proof of Theorem 2. This
property is called “dominance property”, which is important in problems on efficient
points.

Lemma 1 (See Lemma 5.2 in [5]) Let Z be an ordered vector space with an ordering
defined by a solid pointed convex cone C, and A a subset of Z. If the convex cone C of
Z satisfies the condition

clC + (C\{6}) c C

and if A is nonempty and compact, then MinA # 0, A C MinA + C and MaxA # 0,
A C MaxA - C.

As to dominance property, more complex one has been proposed, but it is sufficient with
this lemma in our setting because Z is the finite-dimensional vector space. We show the
proof of Theorem 2 in the following.

Proof of Theorem 2. We assume that d, € C U (—C) for any x € X. For any
z € Minimax f, there exist o € X and yo € Y such that z = f(zo,y) and

7 4oz and z £ f(xo0,y), V2 € Maxf(z,Y), z€ X, yeY.

Therefore, we have z € Maxf(zo,Y). Since we assume that the set of minimax values
is a subset of SV(f),

z= f(.’L‘o,yo) S Maxf(a:o, Y) A Minf(XryO)’

ie., f(z,%) ¢c2 Yz € X. Since d;, € C U (—C), we obtain Maxf(zo,Y) = {z}.
Moreover, C satisfies the condition in Lemma 1 because C is a closed set, and f(z, Y)isa
bounded closed set for each z € X, and then it is a compact set. Hence, f(2o,Y) C 2—C
by Lemma 1. Here, for given y € Y, let Zpfin(y) be an element of Min f (X,y). We suppose
that ZMin(y) € 2 t+ C\{O}, then

f(xo,y) <cz= f(wo,yo) and z = f(fvo,yo) <C ZMin(y)-

Hence, we obtain f(Zo,y) <c 2Zmin(y)- This is contradictory to zain() € Min f(X,y).
Therefore, we have zrin(y) ¢ z + C\{0}. Since z is also a saddle value,

f(z,90) £z and z £ Zumin(y), VeMin(y) € Minf(X,y), € X, y €Y.

So, we obtain z € Maximinf and hence Minimaxf C Maximinf.
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On the other hand, for any z € Maximinf, there exist o and y, such that z =
f (xOJ yO) and

f(z,9) £czand z £,2/, V'€ Minf(X,y), z€ X, yeY.

Therefore, we have z € Minf(X, ). Since we assume that the set of maximin values is
a subset of SV(f), we have

z = f(a:anO) € Ma.Xf(ZL‘(), Y) N Minf(X’yO)a

ie, 2 £o f(z0,y), Yy € Y. Here, for given z € X, let 2paqs(;) be an element of
Maxf(z,Y). Then, from d, € CU(—C), we obtain Maxf(z,Y) = {2maz(z)}. Moreover,
f(z,Y) is a compact set for each z € X so f(z,Y) C Zumasz(s) — C by Lemma 1. We
suppose that 2uas(z) € 2 — C\{6}, then

f(xyyO) <c ZMaz(x) and ZMaz(z) <C 2 = f(a:O’yO)'

Hence, we obtain f(zr,y0) <c¢ 2 = f(zo,y0). This is contradictory to z € Minf(X, yp).
Therefore, we have zpq4q(z) € 2 — C\{0}. Since z is also a saddle value,

ZMazx(zx) {CZ and 2 ¢C f(xo,y), VZMaz(z) € Ma.xf(x, Y)) T € X7 ye Y.

So, we obtain 2z € Minimax f and hence Minimaxf D Maximinf.
Consequently, we obtain

Minimax f = Maximinf.

When we also assume that d, € C U (—C) for any y € Y, we can prove similarly. This
completes the proof. a
Note that Theorem 2 does not hold for weak type minimax and maximin values.

Example 3 We consider the same settings as in Example 1 in Section 2.

The image of f for the following matrices

a=(53)e-(3 7)

is shown in Figure 3, whose figure is called
‘Fix-Point type’ because it has an intersec-
tion point of line segments in the image
set; see [7].

Figure 3: An example of Minimaxf =
Maximinf but Minimax,, f # Maximin,, f (Ex-
ample 3).
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In this example, f(z,Y) and f(X,y) for z € X and y € Y are line-segments which
forme the image of f, respectively, because f is a bilinear function with respect to z
and y, and vectors d, and d,, are direction vectors for f(z,Y’) and f(X,y), respectively.
Moreover, d, for all z € X is contained in CU(—C). Therefore, from Theorem 2, sets of
minimax and maximin values are coincident in this example. In the concrete, we obtain

Minimax f = Maximin f
:{(u,v)tl u="6zr,—95, v=—-3r;+2, %le < 1},
Minimax, f = Minimax f,
Maximin,, f = {(u, v)t‘ u=6z; -5 v=-3z1+2, 3 <1 < 1} U {(-2,3)}.
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