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1 Introduction

In the paper [4], Ebert, Egner, Hollmann and Xiang constructed a four-class symmetric associ-
ation scheme by using the set of secant lines with respect to an elliptic quadric O of PG(3,q)
for ¢ > 4 a power of 2. We can regard this association scheme as defined on the set of external
lines by taking the orthogonal complement with respect to O. In this paper, we consider an
analogous construction by hyperbolic quadric. We construct a four-class symmetric association
scheme by using the set of external lines with respect to a hyperbolic quadric of PG(3,q). Each
relation is invariant under the action of the orthogonal group O*(4,q) but the set of relations
is not the set of orbitals on the set of external lines. Indeed, there are more orbitals than rela-
tions. Moreover, a quotient of this association scheme forms a strongly regular graph with Latin
square type parameters. We also prove that this strongly regular graph is isomorphic to the
one constructed from a direct product of a pseudo-cyclic symmetric association scheme defined
by the action of SL(2,q) on the right cosets SL(2,q)/O~(2,q), which is a generalization of the
construction given by Mathon [6]. This isomorphism is obtained by an isomorphism between
SL(2,q)? and Q*(4,q).

2 Association schemes, strongly regular graphs and projective
spaces

Let X be a finite set and let {R;}o<i<a be relations on X, that is, subsets of X x X. Then
X = (X, {R:}o<i<aq) is called a d-class symmetric association scheme if the following conditions
are satisfied.

1. {Ri}o<i<q is a partition of X x X.
2. Ry is diagonal, that is, Ry = {(z,z) | z € X}.
3. {(y,2) | (z,y) € R} = R; for any 1.

4. For any i,j,k € {0,1,...,d}, p¥ := [{z € X | (z,2) € Ry, (y,2) € R;}| is independent of
the choice of (y, z) in R.
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Fori € {0,...,d}, let A; be the adjacency matrix of the relation R;, that is, A; is indexed by

X and I i (o) € R
L 1 T,Y) € Iy,
Wn={ o ¢ Ghgn

Then we have

d
AA; =) pl Ay
k=0
foranyi,j € {0,...,d}. So Ao, A1, -+, Aq form a basis of the commutative algebra generated by
Ag, Ay, - -+, Aq over the complex field (which is called the Bose-Mesner algebra of X’). Moreover
this algebra has a unique basis Ey, Ey,- -, E4 of primitive idempotents. One of the primitive
idempotents is |X|™1J where J is the matrix whose entries are all 1. So we may assume
Eg=|X|"1J. Let P = (pj(4))o<; j<a be the matrix defined by

(Ap Ay -+ Ag) =(Ep Ey --- Ey)P.

We call P the first eigenmatrix of X. Remark that {p;(¢) | 0 < ¢ < d} is the set of eigenvalues
of A;. The first eigenmatrix satisfies the orthogonality relation:

4 1 . ¢
;; 5, PP (d) = |~m—i'<5ij,
where k; = p); and m; = rank E;. We say that X is pseudo-cyclic if there exists an integer
m such that rank E; = m for all ¢ € {1,---,d}. Remark that in this case, |X| = dm + 1 and
ki=pY=mforallie {1, ---,d} (see [1, p.76]).

Let G be a finite group and K be a subgroup of G. Then G acts naturally on the set
G/K x G/K with orbitals Rg, Ry, ..., R4, where we let Ry = {(z,z) | £ € X}. If all orbitals
are self-paired, then X = (G/K, {R;}o<i<q) forms a symmetric association scheme. We denote
this association scheme by X (G, K).

For a strongly regular graph with parameters (n, k, A, 1), one of the eigenvalues of its adjacency
matrix is k, and the others 6y,0; are the solutions of z2 + (u — M)z + (u — k) = 0. We can
identify the pair of a strongly regular graph and its complement with a two-class symmetric
association scheme whose first eigenmatrix is

1 k£ n—-k-1
1 6, —-1-96, (1)
1 6 —1-26

In the paper [6], Mathon constructed a strongly regular graph from the pseudo-cyclic sym-
metric association scheme X (SL(2,8),07(2,8)). The next lemma is a generalization of this
construction.



87

Lemma 2.1 Let X = (X, {R;}o<i<a) be a pseudo-cyclic symmetric association scheme on dm+
1 points. Then the graph A(X) whose verter set is X x X, where two distinct vertices (z,y)
and (z',y') are adjacent if and only if (z,2'),(y,y') € R; for some i # 0, is a strongly regular
graph with Latin square type parameters (] X|2, m(|X| — 1),|X| + m(m — 3),m(m — 1)).

Proof) The direct product of X is (X x X, { R;j}o<i,j<a), Where

Rij = {((&,9),(@,¥)) | (z,@') € Ri, (y,¥) € R;} .

If P is the first eigenmatrix of X, then P ® P is the first eigenmatrix of (X x X, {R;j}o<i,j<d)-
d

The edge set of A(X) is defined to be U R;;. Then the eigenvalues of the adjacency matrix of

j=1
A(X) are

d
{ij(i)pj(i’) ‘ 0<4,i' < d}.
j=1
Since X is psuedo-cyclic, kg = mg = 1, k; = m; = m for i,j # 0. Hence the orthogonality
relation implies

m(|X|—-1) ifi=1=0,
éz'z"—m:{ | X|-m ifi=1i#0,

™ -m if £

m|X|

d
Y pi(@)p;() =
j=1

Therefore A(X) has three eigenvalues. This implies that A(X) is strongly regular. The param-
eters of A(X) can easily be calculated. O

In Lemma 2.1, if X = X(G, K) for some finite group G and its subgroup K, then A(X) has the
following geometric interpretation.

Lemma 2.2 Suppose the a finite group G and its subgroup K form a pseudo-cyclic symmetric
association scheme X = X(G,K). Then the graph A(X) of Lemma 2.1 is isomorphic to the
collinearity graph of the coset geometry (G2/K?,G?/D(G), *) where D(G) := {(z,z) | = € G}
and for z1,22,y1, 92 € G, (z1,22)K*(y1,y2) D(G) if and only if (z1,22)K* N (y1,92) D(G) # 0.
Proof) Since each relation of X'(G, K) is an orbital of the action of G on G/K x G/K, two pairs
(x1K, 11 K), (22K, y2K) are adjacent in the graph A(X(G, K)) if and only if there exists w € G
such that y1 K = wz1 K, yoK = wzoK. On the other hand, two pairs (z1,y1)K?2, (z2,y2)K*? are
adjacent in the collinearity graph of (G%/K?,G?/D(G),«) if and only if (z7 2o, y7 ty2) is in
K2D(G)K? (cf. [3, p.15]).
For z1,z2,y1,92 € G,
(z7 29, y7 y2) € K2D(G)K? &  a7'as, yi'ys € KwK for some w € G,

& xl‘lzg € Ky7'yeK

& yikay! = yok'zy! for some k, k' € K,

& y € wr K, y2 € wroK for some w € G,
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Hence the mapping G/K x G/K 3 (zK,yK) — (z,y)K? € G?/K? is an isomorphism between
the above two graphs. a

For the rest of this section, we recall some terminologies on finite projective spaces. In this
paper, let ¢ be a power of 2 and let PG(3,q) be the three-dimensional projective space over
GF(q). For a non-degenerate quadratic form Q on GF(q), we say that a point p = (v) is
singular if Q(v) = 0, and we say that a line [ is external (resp. secant) if the number of singular
points in ! is 0 (resp. 2). For a point p, denote by p the orthogonal complement of p with
respect to the symmetrlc bilinear form obtained from Q. Define for a line [ or a plane ,

= ﬂpelp , h o= ﬂpewp We say that a plane 7 is tangent if the point 71 is singular.
Otherw1se we say that 7 is oval.

It is well known that there are two types of non-degenerate quadratic forms on GF(g)*, which

are called elliptic type or hyperbolic type. A canonical form of hyperbolic type is

Q(z1, T2, 23, 24) = 2174 + ToT3.

Denote by Q% (4, g) the commutator group of the orthogonal group defined from the above Q.

3 Main results

For an elliptic type quadratic form, a four-class symmetric association scheme on the set of
secant lines was constructed:

Theorem 3.1 ([4]) Let ¢ = 2f > 4. Then the following relations on the set of secant lines of
PG(3,q) with respect to an elliptic type quadratic form

Ry = {(I,m)|lNnm: a singular point }

Ry = {(l,m)|lNm: a nonsingular point }
Ry = {(L,m)|I*nm 0}

Ry = ﬂhmnlnm=mJlnm=0}

and the diagonal relation Ry define a four-class symmetric association scheme.

For an elliptic type quadratic form, a line [ is secant if and only if [* is external. So we can regard
the above association scheme as defined on the set of external lines. The relations Ry, Ro, R3
and R4 correspond to the following relations on the set of external lines

{(l,m) | (I, m) : a tangent plane},

{(Z,m) | ({,m) : an oval plane },

{@m) 1t nm#0},

{(l,m) [iNnm=20, l‘Lﬂm=@},
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respectively.

For a hyperbolic type quadratic form, we can construct a four-class symmetric association
scheme similar to the above one. Let L be the set of external lines with respect to a hyperbolic
type quadratic form in PG(3,q).

Theorem 3.2 Let g = 2 > 4. Then the following relations on the set L of external lines of
PG(3,q) with respect to a hyperbolic type quadratic form

Ri = {(I,m)|lNnm: a point }

Ry = {(l,m) | 1 : external , m=lJ‘}
Ry = {(z,m)ulnm:apm'nt-}

Ry = {(l,m)]lﬂm=(0, llﬂm=0}

and the diagonal relation Ry define a four-class symmetric association scheme.

Moreover we can construct a strongly regular graph from this symmetric association scheme by
taking a quotient.

Theorem 3.3 Let T =T, (¢ = 2f > 4) be the graph with vertez set {{l, It} | I € L}, where
two distinct vertices of T, {l I+}, {m,m*} are adjacent if and only if INm # 0 oriNmt # 0.
Then T is a strongly regular graph with Latin square type parameters

1 1 1
v= Zq2(q— 1)? k= 3@ —2)(g+ )2, A= 5(3q2 —3¢—4), p=gq(g+1).

Remark that INm # @ is equivalent to IX Nm<L # 0, and INm' # 0 is equivalent to I- Nm # 0.
So the adjacency in I' is well-defined.

4 Proof of Theorem 3.2

To prove Theorem 3.2, we recall some facts about PG(3,q) with a hyperbolic type quadratic
form from Hirschfeld’s book [5, §15]. From now on, put ¢ = 2f > 4.

Proposition 4.1 For a hyperbolic type quadratic form in PG(3,q), the following statements
hold.

(i) A plane contammg an external line is oval.

(ii) The number of external lines is g>(q — 1)?/2 and there are ¢ + 1 oval planes containing a
given external line.

(iii) The number of oval planes is q(q> — 1) and there are q(q — 1)/2 external lines in a given
oval plane.

(iv) For an oval plane m, there is no external line through 7L on 7. For a nonsingular point p
of ™ distinct from wt, thene are q/2 external lines through p on .

(v) There are q(q — 1)/2 external lines through a given nonsingular point.
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Call 7+ in (iv) the nucleus of m. (Remark: when ¢ is an odd prime power, (i),(ii),(iii) and (v)
also hold. For an oval plane 7, 7 is not in 7.)

First we show that the relations Ryp,..., R4 form a partition of L x L. It is clear that any
pair (I,m) of L x L is in one of {R;}o<i<a. Since any external line ! is skew to 1, Ry and Ry
have no intersection. Suppose that I,m € L satisfy that [ meets m. Then the nucleus of the
oval plane (I, m) is on I, so m is skew to [+ by Proposition 4.1 (iv). Hence R; and Rj3 have no
intersection. Therefore {R;}o<i<4 is a partition of L x L.

Next we show that each relation is symmetric. It is clear that R;, Ry and R4 are symmetric.
For (I,m) € Rs, the nucleus of the oval plane (I, m*) is I+ Nm. So I* meets m in a point, hence
(m,l) € R3. Therefore Rj3 is also symmetric.

Finally we show that for any %,j,k € {0,---,4},

pl = {n €L | (L,n) € Ri,(n,m) € R}

is independent of the choice of (I,m) € Ri. The assertion is clear when k = 0. For the moment,
we put pi;j(l,m) = |{n € L | (I,n) € R;,(n,m) € R;}|. We can easily see that when (I,m) € Ry,
poj(l,m) = é;. Since each relation is symmetric, pj;;(l,m) = p;; (m,1). Since Ry,..., R4 form a
partition of L x L, we have

4 1
> pi=ILl=5¢(g~ 1)?,
=0
and

4
> pij(l,m) = Py
=0

for any i € {0,...,4} and for any pair (,m). Let o be the permutation (0, 2)(1,3) on {0,---,4}.
Then since (I,m) € R; if and only if (I, mt) € R, iy,

pij(1,m) = Pio(j) (L MY) = DPo(iyors) (M) (2)
Hence we only need to show that p¥, (1 < k < 4) are independent of the choice of (I,m) € R.

Lemma 4.2 For 1 <k < 4, p¥| is independent of the choice of (I,m) € Ry, and
1 3 1 1
Ph=50@-2@+1?% phi=¢"-50-2 phi =0, ph = 3¢* Pl = 5alg +1).

Proof) Fix [ € L. Any line which meets [ in a point is in an oval plane through !, and conversely
any line in an oval plane through ! meets [ in a point. Hence by Proposition 4.1 (ii) and (iii),

pii = HneL]|(l,n)e R}
= Zl{neLlnCW,n;él}l
welly

= (¢g+1)x (%Q(q-l)—l>

= Sla-D(g+1)



91

where II; is the set of oval planes through [.
For (I,m) € Ry, if n € L meets both [ and m, then n has a point {Nm or n is in the plane
(I, m). Hence by Proposition 4.1 (iii)—(v),

pii = HneL|(,n),(n,m)€ R}
= |{n€L|n§(l,m),n#l,m}|+l{neL|lﬂmEnQ(l,m)H
= (%q(q—l)—2>+(%q(q—1)—%q)
3
2

= —Eq—Q.

From (2), we have p?, = 0. For (I,m) € R3 U Ry, we have

H{neL| (,n),(n,m) € R} = Z {neL|mnrmenCn}.
n€ell;

If (I, m) € Rs, then there is just one plane mg = (I, I+ Nm) € II; such that m N is the nucleus
of mo. By Proposition 4.1 (iv), there is no line of L through m N mo and in o, and for other
plane 7, there are g/2 lines of L through m N7 and in 7. Hence

phh = HneL|(n),(n,m) € R}
= Z HneL|mnmenCw}
nell\{mo}

_ 1
- q 2q‘

For (I,m) € Ry, any plane 7 of II; has ¢/2 lines of L through mN . So

1
phi={neL]|(n),(n,m) € Ri}|=(g+1) X 5¢

; o
Therefore (L, {R;}o<i<4) becomes a symmetric association scheme. For i € {0,...,d}, let
B, := (pi'cj)OSj,kﬂ- Then By is the identity matrix,

0 1 0 0 0
ph ¢—-3/2¢-2 0 /2 q(g+1)/2
Bi=| 0 0 0 1 0 :
0 q*/2 Pd ¢®>—3/2¢-2 q(g+1)/2
0 ¢*q-3)/2 0 ¢*g-3)/2 (g+1)(¢*®—3¢—2)/2
00100
00010
B,=| 10000,
01000
00001
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0 0 0 1 0
0 q*/2 P ¢#-3/2q-2 qlg+1)/2
Bi=| 0 1 0 0 0 ,
P #-3/2¢-2 0 q*/2 q(g+1)/2
0 ¢*(¢-3)/2 0 ¢*q-3)/2 (g+1)(¢°—3¢—2)/2
and
0 0 0 0 1
0 ¢*(q—3)/2 0 ¢*(g - 3)/2 (g+1)(¢* -3¢ —2)/2
Bi=| 0 0 0 0 1
0 ¢*(q - 3)/2 0 ¢*(q —3)/2 (g+1)(¢> - 3¢ —2)/2

Pl a(g-3)(?-3¢-2)/2 ply alg—3)(® —3¢—-2)/2 q(¢® —6¢° + 5q+16)/2

where p), = q(q — 2)(q — 3)(q + 1)/2. The first eigenmatrix of this association scheme is given
by | __

1 (g—-2)(g+1)%/2 1 (¢—2)(g+1)%/2 ¢(g—2)(g—3)(g+1)/2
1 (g—-2)(g+1)/2 -1 —(g—2)(g+1)/2 0
P=11 —(g+1) -1 qg+1 0
1 —(g+1) 1 —(g+1) 2q
1 (®-3¢-2)/2 1 (¢®-3¢-2)/2 —q(g-3)

5 Proof of Theorem 3.3

In this section, we prove Theorem 3.3 by uSing Theorem 3.2. The number of vertices of the
graph T is |L|/2 = ¢?(¢ — 1)?/4. For a pair {[,I1+} € VT,

{{m,m*} € VT | {m,m} is adjacent to {I,I1}}
{{m,m*} € VT'| m meets [ in a point. }
= {{m,m*} eVT | (,m) € Ry}

So, the size of this set is Y = (g — 2)(g + 1)2/2, which is just k in the definition of strongly
regular graph. Next choose {l,!1},{m,m*} € VT which are adjacent in . We may suppose
that [ meets m in a point. Then

{{n,nt} € VT | {n,n!} is adjacent to both {/,i*+} and {m,m*}}
= {{n,n'} € VT'| n meets both [ and m in a point.}
U{{n,n} € VT' | n meets both I and m* in a point. },
= {{n,nt} € VT | (l,n) € Ry, (m,n) € Ry URs3}.

Hence the size of this set is p}; + pl3 = (3¢ — 3¢ — 4)/2. This is just A in the definition of
strongly regular graph.
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Similarly, for {,+}, {m, m*} € VT which are not adjacent in T, since ({,m) € Ry,
H{n, nt} € VI'| {n,n'} is adjacent to both {1,I*+} and {m,mL}H =p} + i3 =qlg+1).

This is just u in the definition of strongly regular graph.

Alternatively, we can prove Theorem 3.3 by using the quotient association scheme (cf. [1,
p.139, Thm.9.4]). In the association scheme of Theorem 3.2, Ro U R3 is an equivalence rela-
tion on L. So we can define a quotient association scheme on the set of equivalence classes
{{l,ll} |l e L} whose relations are

{({l,ll}, {m,m*}) | (I,m) € Ry U Rg} = the edge set of T,
{({4 14} {m.m*}) | (,m) € Ra},

and the diagonal relation. The first eigenmatrix of this association scheme can be computed
from P (cf. [1, p.148)):

1 (g—2)(g+1)%/2 q(qg—2)(g—3)(g+1)/4
1 —(¢+1) q
1 (¢*-3¢-2)/2 —q(g—3)/2

The first relation forms a strongly regular graph whose parameters are calculated from the
second column of the above first eigenmatrix.

6 Another construction of I';

In this section, we will give another construction of the strongly regular graph I'q. This con-
struction uses a method which generalizes a construction of Mathon ({6, p-137], see also [2,
pp-96-97)).

Let G = SL(2,q), K = O~ (2,q). Then X(G, K) is a (¢ — 2)/2-class pseudo-cyclic symmetric
association scheme (cf. [2, p.96]). By Lemma 2.1, we can construct a strongly regular graph
A(X(G, K)) with parameters ’

(=17 3a-D0a+ 1% 36F 3=, aa+D)

which are the same as those of I'y. We shall prove that these graphs are isomorphic.

To show this, we use the isomorphism G2 ~ Q+(4,¢) which maps (X,Y) to X ®Y (see [7,
p.199]). Let lo be the external line generated by vy = t0,1,1,0),v2 = *(1,1,0,a), where a is
an element of F, such that the polynomial z2 + z + « is irreducible over F,. For an external
line I, there are 2(q + 1) basis (uj,u2) of I such that Q(zu1 + yug) = z2 + zy + ay? for any
z,y € Fy. Indeed, by Witt’s Theorem, K acts regularly on the set of basis (u1,u2) of I with the
above condition. It follows that the size of this set is equal to |K| = 2(g + 1). Let P be the set
of nonsingular points in PG(3,q) and let £ = {{Ul* | I € L}. Then the following lemma holds.
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Lemma 6.1 The group Q(4,9) = {X QY | X,Y € G} is flag-transitive on the incidence
structure (P,L,€). Under the isomorphism G* ~ Q% (4,q), the groups D(G), K2 are the
stabilizers of an element of P, L, respectively.

PI‘OOf) Let X = (xij)ISi,jS% Y = (yij)lsi,jsz € GG. Since
T11¥11 ZTuyYi12 ZTi12Y11 Ti12Y12
X®Y = T11Y21 ZT11Y22 Ti12Y21 T12Y22

T21Y11 T21Y12 ZT22Y11 T22Y12
T21Y21 T21Y22 T22Y21 T22Y22

X ®Y fixes v; if and only if

Y12 + T12Y11 = Ta1y22 + Tooyor = O,
T11Y22 + Z12Y21 = T21y12 + Tooyn = 1.
This implies
Q*(4,9)v, = {X ® X |X € G} ~ D(G). (3)
For X € G, X ® X fixes vq if and only if
x%l + z11212 + axﬁ = 1,
Z11Z21 + T12Z21 + axT12T22 = O,

2 2
T3 + T21T22 + axyy =

From these, we have

+ ‘ _ . a b
Q (4,q),,1,,,2_{X®X'X_<ab a+b>ea}

which is of order ¢ + 1. Hence

H(Mv, Mv) | M € QY (4,9)} = |97(4,9)|/(g+1)
= ¢(g-D¥q+1).
Since Q(zv1 + yv2) = 2% + zy + ay? for any z,y € Fy,
H(ul,ug) | Q(zug + yug) = 2% + zy + ay? Va:,y € Fq}’ = |L|x2(g+1)
= ¢*(g—-1)%(g+1).

Hence 2% (4, g) acts transitively on the set of pairs (u1, ug) such that Q(zu; +yus) = z2+zy+ay?
for any z,y € F,. In particular, Q% (4, g) is flag-transitive on (P, L, €).
The equality (3) means that the stabilizer of (v1) € P is isomorphic to D(G). Let

(10 [ ao bo
A'—(l 1)’3'—<ab0 a0+b0>€G
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such that B is of order g+ 1. Then the group (A, B) is isomorphic to K. A®I,I® A interchange
lo and (&, while B® I,I ® B fix [y and l5. So {X®Y | X,Y € (A,B)} is a subgroup of
Q+(4’q)lould" Since Q+(4,q)loulol has order 4(¢ + 1)?> = |K|?, we have that Q7 (4, Dioutt 18
isomorphic to K2. O

Theorem 6.2 The graph T is isomorphic to A(X(SL(2,q),07(2,9)))-

Proof) The graph I'y is isomorphic to the collinearity graph of the dual of the incidence
structure (P, L, €). From Lemma 6.1, the dual of (P, L, €) is isomorphic to the coset ge-
ometry (G2/K2,G?/D(G), *) defined in Lemma 2.2. From Lemma 2.2, the collinearity graph of
(G%/K?,G?/D(G), ) is isomorphic to A(X(G, K)). Therefore T'y is isomorphic to A(X(G, K)).
O
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