Perfect codes in $SL(2, 2^f)$

Sachiyo Terada (寺 田 幸 代)
Division of Mathematics and Information Science
Graduate School of Natural Science and Technology
Kanazawa University
(金沢大学 自然科学研究科 計算科学講座)

Abstract

We show that the Cayley graph $\Gamma(SL(2,2^f),X)$ of the finite special linear group $SL(2,2^f)$ does not have any perfect code if X is closed under conjugation for a natural integer $f \geq 2$. Moreover, as a case where X is not closed under conjugation, we consider the orbits X of involutions by conjugation of a Singer cycle of $SL(2,2^f)$ and determine whether they divide $\lambda SL(2,2^f)$ non-trivially or not.

1 Introduction

We study a combinatorial problem below in the finite special linear groups $SL(2, 2^f)$.

Problem. Determine the existence of perfect codes in a Cayley graph.

Perfect codes have been mainly studied over finite fields. Recently perfect codes are studied in distance-transitive graphs and distance-regular graphs. As a case of a graph which is not

distance-regular, we choose a Cayley graph and consider perfect codes in it. Rothaus and Thompson [RT] considered the existence of perfect codes in the Cayley graph $\Gamma(S_n, T_0)$ of the symmetric group S_n with respect to the set T_0 of transpositions. They gave a necessary condition on n for the existence of perfect codes in $\Gamma(S_n, T_0)$ by using representation theory. N. Ito [It] gave more conditions on n by computing the distribution of character values. In this note, we treat a problem below which extends the problem above.

Problem. For a finite group G, determine the pairs of subsets X and natural integers λ such that X divide λG .

If there exists a perfect code in the Cayley graph $\Gamma(G, X)$, then the union $X \cup \{1\}$ divides G. Thus we can settle the existence problem of perfect codes in a Cayley graph if the pairs of X and λ above are determined.

For a finite group G and its non-empty subset Ω , the Cayley graph $\Gamma(G,\Omega)$ is the graph with the vertex set $V\Gamma=G$ and the edge set $E\Gamma=\{(g,h)\mid gh^{-1}\in\Omega\}$. A subset C of the vertex set $V\Gamma$ of a graph Γ is called a perfect e-code if, for any vertex v of Γ , there is a unique codeword c in C such that $\partial(v,c)\leq e$, where $\partial(v,c)$ is the 'distance' from c to v; the shortest length of directed paths from c to v. Perfect e-codes in the Cayley graph $\Gamma(G,\Omega)$ are perfect one-codes in the Cayley graph $\Gamma(G,X)$, where X is the set of vertices x with

 $\partial(x,1) \leq e$ in $\Gamma(G,\Omega)$. So when we consider perfect e-codes in a Cayley graph, we may assume that e=1.

For a non-empty subset X of a group G and a natural integer λ , we say X divides λG (with code Y) and write $X \cdot Y = \lambda G$ if there is a subset Y of G such that each element g of G is written in exactly λ ways as g = xy with $x \in X$ and $y \in Y$. Note that if X divides λG with code Y, then $\lambda = |X||Y|/|G|$. We say X trivially divides λG with code Y if $\lambda = |X|$ or X = G; equivalently, Y = G or $Y = \{y\}$ for some $y \in G$. As X always divides |X|G trivially, we may assume that $\lambda = 1, 2, \ldots, |X| - 1$. If X is a subgroup of G or a set of representatives of left cosets for some subgroup of G, then X divides G obviously. Suppose that a subset X divides X with code X. Then $X \cdot (Y \cdot g) = X \cdot G$ for any X of X and X divides X with code X. Then $X \cdot (Y \cdot g) = X \cdot G$ for any X of X such that $X \cdot (X \cdot g) = X \cdot G$ with code X. The $X \cdot (X \cdot g) = X \cdot G$ is a disjoint union, then X divides $X \cdot G$ with code X.

Lemma 1. If a subset X divides λG with code $Y \neq G$, then the Cayley graph $\Gamma(G,X)$ has eigenvalue 0. If in addition X contains the identity, the Cayley graph $\Gamma(G,X\setminus\{1\})$ has eigenvalue -1.

Proof. Let A be the adjacency matrix of $\Gamma(G, X)$. For a subset Z of G, let Φ_Z be the column vector indexed by the elements of G whose entries are 1 or 0 according as the vertex belongs to Z or not. Then we have $A\Phi_Y = \lambda \Phi_G$ and $A\Phi_G = |X|\Phi_G$. Thus $A(\Phi_Y - \lambda |X|^{-1}\Phi_G) = \mathbf{0}$. Moreover, $\Phi_Y \neq \lambda |X|^{-1}\Phi_G$

since $Y \neq G$. Hence A has eigenvalue 0.

Lemma 2 ([BI, Thm. 7.2, pp. 117], [It]). Let G be a finite group and $\{C_i\}_i$ the set of conjugacy classes. Let X be a subset of G closed under conjugation of G: $X = \bigcup_{i \in \mathcal{I}'} C_i$. The eigenvalues of the Cayley graph $\Gamma(G, X)$ are $\sum_{i \in \mathcal{I}'} |C_i| \vartheta(c_i) / \vartheta(1)$, where c_i is a representative of the conjugacy class C_i and ϑ runs through irreducible characters of G.

For example, the character table of the symmetric group S_3 is given in Table 1, where \mathcal{U} and \mathcal{S} are the conjugacy classes corresponding to the partitions 2^11^1 and 3^1 , respectively. Let

Table 1: The character table of S_3 .

Class name	1	\mathcal{U}	${\cal S}$
Size	1	3	2
χ_1	1	1	1
χ_2	1	-1	1
χ_3	2	0	-1

X be a subset of S_3 closed under conjugation. If X divides λS_3 then we can easily deduce that $X = \mathcal{U}$, $S_3 \setminus \mathcal{U}$ or S_3 by Lemma 1 and Lemma 2. In fact, the subset \mathcal{U} and its complement $S_3 \setminus \mathcal{U}$ divide S_3 with code $Y = \{id, (1 2)\}$.

Note that X divides λG with code Y if and only if the complement $G \setminus X$ divides $(|Y| - \lambda)G$ with code Y.

Theorem 3 (An analogue to [RT]). Let X be a subset (not necessarily closed under conjugation) of a finite group

G and λ a natural integer. Assume that G has a subgroup H with the property that

- (1) the order |X| of X does not divide $\lambda |H|$, and
- (2) the matrix P_H(X) is non-singular, where P_H is the permutation representation of G acting on the cosets H\G and X is the sum of elements of X in the group algebra C[G].

Then X does not divide λG non-trivially.

Proof. Assume that X divides λG with code Y non-trivially; that is, $X \cdot Y = \lambda G$. Then $P_H(\widehat{X})P_H(\widehat{Y}) = P_H(\lambda \widehat{G}) = \lambda P_H(\widehat{G})$. By the assumption (2), there exists the inverse matrix $P_H(\widehat{X})^{-1}$, which can be described as a polynomial of $P_H(\widehat{X})$. Since $P_H(\widehat{G}) = P_H(x)P_H(\widehat{G})$ for any x in G, we have $P_H(\widehat{Y}) = P_H(\widehat{X})^{-1}\lambda P_H(\widehat{G}) = a\lambda P_H(\widehat{G})$ for some rational integer a. Then, by multiplying the last equation by $P_H(\widehat{X})$ from left, we have $a = |X|^{-1}$. Hence we have

$$P_H(\widehat{Y}) = \frac{\lambda}{|X|} P_H(\widehat{G}) = \frac{\lambda |H|}{|X|} J,$$

where J is the matrix with all entries 1. This equation contradicts the fact that the matrix $P_H(\widehat{Y}) = \sum_{y \in Y} P_H(y)$ has integral entries.

Corollary 4. Let X divide λG with code Y. Assume that there exists a subgroup H of G such that the matrix $P_H(\widehat{X})$ is non-singular. Then the integer λ is divisible by

$$|X|/\gcd(|X|,|H|).$$

Note that the matrix $P_H(\widehat{X})$ is non-singular if and only if $R(\widehat{X})$ is non-singular for each irreducible representation R appearing in P_H .

We consider which X divides G = SL(2,q) for a power q of 2. Note that the special linear group SL(2,2) is isomorphic to the symmetric group S_3 , and so, the argument for q=2 is over. In the following, assume that q is a power of 2 greater than 2. Let \mathcal{I} and \mathcal{J} be the index sets

$$\mathcal{I} = \{1, 2, \dots, (q-2)/2\}$$
 and $\mathcal{J} = \{1, 2, \dots, q/2\}.$

The character table of SL(2,q) is given in Table 2, where δ (resp. ε) is a primitive (q-1)st (resp. (q+1)st) root of unity in the complex number field \mathbb{C} .

Table 2: The irreducible characters of $SL(2, 2^f)$.

Table 2:	THEIL	educible	characters (or $SL(2,2^{\circ})$.
Class name	1	$\mathcal U$	\mathcal{T}_{i} $_{(i\in\mathcal{I})}$	$\mathcal{S}_{j \;\; (j \in \mathcal{J})}$
Size	1	$q^2 - 1$	q(q+1)	q(q-1)
χ_0	1	1	1	1
χ_1	q	0	1	-1
$\psi_{m\ (m\in\mathcal{I})}$	q+1	1	$\delta^{mi} + \delta^{-mi}$	0
$arphi_{n \ (n \in \mathcal{J})}$	q-1	-1	0	$-\left(\varepsilon^{nj}+\varepsilon^{-nj}\right)$

Using Table 2, we have the decomposition of the permutation character $1_H^{SL(2,q)}$ into irreducible characters as shown in Table 3 for each subgroup H of SL(2,q), since $1_H^{SL(2,q)} = |H|^{-1} \sum_{\vartheta} (\sum_{x \in H} \vartheta(x)) \vartheta$ (the first summation runs over all irreducible characters ϑ of SL(2,q)) by the Frobenius reciprocity.

Table 3: The decompositions of $1_H{}^G$ $(G = SL(2, q) \text{ and } q \ge 4)$.

	,		<u> </u>				1/ 1 = /
$H \ H $	The decomposition						
\overline{I}	γ0	+	<i>a y</i> 1	+	$(q+1) \sum_m \psi_m$	+	$(q-1)\sum_{n}\varphi_{n}$
1	10	LU I	1/1		(1 : -) = :: : : : : : : : : : : : : : : : : :		
S	1/0	X 0		+	$\sum_m \psi_m$	+	$\sum_{n} \varphi_{n}$
q+1	XO			Т			
$\overline{N_G(S)}$	2,	χ0		1	$\sum_{m}\psi_{m}$		
2(q + 1)	X_0			+			
T = q-1	χ0	+	$2\chi_1$	+	$\sum_m \psi_m$	+	$\sum_{n} \varphi_{n}$
$\frac{1}{N_G(T)}$ $2(q-1)$	χ0	+	<i>X</i> 1	+	$\sum_m \psi_m$		
$egin{array}{c} U \ q \end{array}$	χ0	+	<i>X</i> 1	+	$2\sum_m \psi_m$		
B = q(q-1)	χ_0	+	χ1				

where S is a Singer cycle of G, T the subgroup of diagonal matrices, U the standard unipotent radical, $B = N_G(U)$ the standard Borel subgroup, and the summations run over $m \in \mathcal{I}$ and $n \in \mathcal{J}$.

2 The results

We first assume that the subset X is CLOSED under conjugation. Then, for an irreducible representation R of a finite group G, the matrix $R(\widehat{X})$ is a scalar by Schur's lemma and so the condition (2) of Theorem 3 can be checked easily.

Theorem 5. Assume that X is a non-trivial subset closed under conjugation of SL(2,q) $(q=2^f\geq 4)$ and divides $\lambda SL(2,q)$. Then X is one of the following with λ divisible by λ' in the table. In the case where $\psi_m(\widehat{X}) \neq 0$ for some $m \in \mathcal{I}$, we have better evaluations for λ' as in the raund brackets (()).

$$\begin{array}{c|c} Subset \ X & \lambda' \\ \hline \mathcal{U} & \\ SL(2,q) \setminus \mathcal{U} & \\ |(\cup_{i \in \mathcal{I}_0} \mathcal{T}_i) \cup (\cup_{j \in \mathcal{J}'} \mathcal{S}_j) \\ SL(2,q) \setminus (\cup_{i \in \mathcal{I}_0} \mathcal{T}_i) \cup (\cup_{j \in \mathcal{J}'} \mathcal{S}_j) \\ |(\cup_{i \in \mathcal{I}'} \mathcal{T}_i) \cup (\cup_{j \in \mathcal{J}_0} \mathcal{S}_j) \\ SL(2,q) \setminus (\cup_{i \in \mathcal{I}'} \mathcal{T}_i) \cup (\cup_{j \in \mathcal{J}_0} \mathcal{S}_j) \end{array} \right\} |X|/(p'q) \quad ((|X|/2)),$$

where \mathcal{I}_0 (resp. \mathcal{J}_0) is a subset of the index set \mathcal{I} (resp. \mathcal{J}) such that

$$\sum_{i \in \mathcal{I}_0} \left(\delta_0^{mi} + \delta_0^{-mi} \right) = 0 \quad \left(resp. \sum_{j \in \mathcal{J}_0} \left(\varepsilon_0^{nj} + \varepsilon_0^{-nj} \right) = 0 \right)$$

for some $m \in \mathcal{I}$ and $n \in \mathcal{J}$, \mathcal{I}' (resp. \mathcal{J}') is a subset (possibly empty) of \mathcal{I} (resp. \mathcal{J}),

$$p_0 := \gcd(|\mathcal{I}_0|, q-1)$$
 if $\mathcal{I}_0 \neq \emptyset$, or $q-1$ otherwise, $p' := \gcd(|\mathcal{I}'|, q-1)$ if $\mathcal{I}' \neq \emptyset$, or $q-1$ otherwise.

Proof. We shall first list up subsets X for which the Cayley graph $\Gamma(SL(2,q),X)$ have eigenvalue 0, and then consider conditions on λ by taking suitable subgroups H in Theorem 3. Let

$$\widehat{X} = a\widehat{\mathcal{U}} + \sum_{i \in \mathcal{I}} b_i \widehat{\mathcal{T}}_i + \sum_{j \in \mathcal{J}} c_j \widehat{\mathcal{S}}_j,$$

where $a, b_i \ (i \in \mathcal{I}), c_j \ (j \in \mathcal{J})$ are 0 or 1.

Assume that the eigenvalue corresponding to χ_1 is equal to 0; that is, $\chi_1(\widehat{X}) = 0$. Then we have

$$0 = 0 + \sum_{i \in \mathcal{I}} \frac{b_i q(q+1) \cdot 1}{q} + \sum_{j \in \mathcal{J}} \frac{c_j q(q-1) \cdot (-1)}{q}$$

= $(q+1) \sum_{i \in \mathcal{I}} b_i - (q-1) \sum_{j \in \mathcal{J}} c_j$.

By considering this equation modulo q-1, we have $\{i \in \mathcal{I} \mid b_i = 1\} = \emptyset$ since $\sum_{i \in \mathcal{I}} b_i \leq |\mathcal{I}| = (q-2)/2$. This implies that the index set $\{j \in \mathcal{J} \mid c_j = 1\}$ is also the empty set. Therefore, we have

$$X = \mathcal{U}$$
, or \emptyset .

To determine for $X = \mathcal{U}$, let us set H = S. The irreducible representations R appearing in P_S are those affording χ_0 , ψ_m $(m \in \mathcal{I})$ and φ_n $(n \in \mathcal{J})$ by Table 3. Since each of the scalar matrices $R(\widehat{\mathcal{U}})$ is not zero by the character table, the matrix $P_S(\widehat{\mathcal{U}})$ is non-singular. If \mathcal{U} divides $\lambda SL(2,q)$, then the integer λ is divisible by $|\mathcal{U}|/|S| = |\mathcal{U}|/(q+1)$ by Corollary 4.

In the case where $\psi_m(\widehat{X}) = 0$ for some $m \in \mathcal{I}$, we have $0 = (q^2 - 1)a + q(q + 1) \sum_{i \in \mathcal{I}} (\delta^{mi} + \delta^{-mi}) b_i$. This equation modulo q implies that a = 0. Thus we have $\sum_{i \in \mathcal{I}} (\delta^{mi} + \delta^{-mi}) b_i = 0$ and so $\{i \in \mathcal{I} \mid b_i = 1\} = \mathcal{I}_0$ for some \mathcal{I}_0 . Therefore, we have

$$X = (\cup_{i \in \mathcal{I}_0} \mathcal{T}_i) \cup (\cup_{j \in \mathcal{J}'} \mathcal{S}_j).$$

To determine the integer λ for this subset X, let us set H = B. Then the matrix $P_B(\widehat{X})$ is non-singular by Table 3, Table 2 and by the argument for the case where $\chi_1(\widehat{X}) = 0$. If X divides $\lambda SL(2,q)$, then λ is divisible by $|X|/\gcd(|X|,|B|) = |X|/(qp_0)$ since $|X| = q((q+1)|\mathcal{I}_0| + (q-1)|\mathcal{I}_0'|)$ and |B| = q(q-1). Hence we have the third row of the list.

In the case where $\varphi_n(\widehat{X}) = 0$ for some $n \in \mathcal{J}$, we have

$$X = (\cup_{i \in \mathcal{I}'} \mathcal{T}_i) \cup (\cup_{j \in \mathcal{J}_0} \mathcal{S}_j)$$

by an argument similar to the previous case. Suppose that $\psi_m(\widehat{X}) = 0$ for some $m \in \mathcal{I}$. Then we get the condition on λ by an argument as before. If $\psi_m(\widehat{X}) \neq 0$ for any m, let us set $H = N_{SL(2,q)}(S)$ and $H = N_{SL(2,q)}(T)$ in turn. Then the matrix $P_H(\widehat{X})$ is non-singular for each H by Table 3 and Table 2. Assume that X divides $\lambda SL(2,q)$. Set $r_0 := \gcd(|\mathcal{J}_0|, q+1)$ if $\mathcal{J}_0 \neq \emptyset$, or q+1 otherwise. Then the the integer λ is divisible by $|X|/\gcd(|X|, 2(q+1)) = |X|/(2r_0)$ and $|X|/\gcd(|X|, 2(q-1)) = |X|/(2p')$ as $|X| = q((q+1)|\mathcal{I}'| + (q-1)|\mathcal{J}_0|)$. In order to take the least common multiple of these two integers, we calculate the greatest common divisor of $2r_0$ and 2p'. The integer 2 is, however, the greatest common divisor of the two

integers since $\gcd(q-1,q+1)=\gcd(q-1,2)=1$. Therefore, the integer λ is divisible by |X|/2.

The case where X contains the identity, the detailed proof is left to the reader. The argument is similar to the above, or uses Lemma 6.

Lemma 6. Keeping the assumptions of Corollary 4, suppose that X is closed under conjugation. Then $\mu|H|$ is divisible by |G| - |X|, where $\mu = |Y| - \lambda$.

Proof. Note that each irreducible component of $P_H(G \setminus X)$ is a scalar by Schur's lemma. Since $\vartheta(G \setminus X) = -\vartheta(\widehat{X}) \neq 0$ for each non-trivial irreducible character ϑ appearing in the character of P_H , the matrix $P_H(G \setminus X)$ is non-singular. Thus this lemma follows from Theorem 3.

Problem. For each X in the table of Theorem 5, determine whether X divides $\lambda SL(2,q)$ or not.

The list in Theorem 5 settles the perfect e-code problem in SL(2,q) with $\lambda=1$ when SL(2,q) acts on the Cayley graph by conjugation:

Theorem 7. For a subset X closed under conjugation and a power q of 2, the special linear group SL(2,q) is divided by X non-trivially if and only if q=2 and X is \mathcal{U} or $SL(2,2)\setminus \mathcal{U}$. Moreover, for a Cayley graph $\Gamma = \Gamma(SL(2,q),X)$ on which SL(2,q) acts by conjugation, there exists a perfect

code in Γ if and only if q = 2 and $X = SL(2,2) \setminus (\mathcal{U} \cup \{1\}) = \mathcal{S}$.

We next consider the orbit X of an involution by conjugation of a Singer cycle as a case where X is NOT closed under conjugation.

Let $q \geq 4$ and $GF(q^2)$ the finite field of q^2 elements. Let ρ be a primitive (q+1)st root of unity in the multiplicative group $GF(q^2)^{\times}$ and denote $\rho^j + \rho^{-j}$ by η_j . Note that η_j belongs to GF(q). For each $\alpha \in GF(q)$ with $\alpha \neq 0$, take matrices

$$u_{\alpha} := \left[\begin{array}{cc} 1 & \alpha \\ 0 & 1 \end{array} \right]$$

and

$$s_1 := \left[egin{array}{cc} \eta_1 & 1 \ 1 & 0 \end{array}
ight] = \left[egin{array}{cc}
ho & 1 \ 1 &
ho \end{array}
ight] \left[egin{array}{cc}
ho & 0 \ 0 &
ho^{-1} \end{array}
ight] \left[egin{array}{cc}
ho & 1 \ 1 &
ho \end{array}
ight]^{-1}.$$

Lemma 8. By definition of η , we have the following.

- (1) We have $\eta_j = \eta_{-j}$, $\eta_{q+1} = \eta_0 = 0$, $\eta_j^2 = \eta_{2j}$, $\eta_i \eta_j = \eta_{i+j} + \eta_{i-j} \quad and \quad \eta_i + \eta_j = (\eta_{i+j})^{1/2} (\eta_{i-j})^{1/2},$ where, for $\alpha \in GF(q)$, $\alpha^{1/2}$ is the element of GF(q) whose square equals α .
- (2) If $\eta_i = \eta_j$, then we have $i \equiv \pm j \mod q + 1$.
- (3) The order of s_1 is q + 1; that is, s_1 is a generator of a Singer cycle.

(4) We have
$$s_1^j = \eta_1^{-1} \begin{bmatrix} \eta_{j+1} & \eta_j \\ \eta_j & \eta_{j-1} \end{bmatrix}$$
.

(5) The field GF(q) coincides with the set $\{\eta_j^{-1}\eta_{j+1} \mid j = 1, 2, ..., q\}$, since the generator s_1 of a Singer cycle acts on the projective line PG(1,q) regularly.

Theorem 9. Let X_{α} be the orbit of the involution u_{α} by conjugation of $\langle s_1 \rangle$:

$$X_{\alpha} := \{s_1^{j} u_{\alpha} s_1^{-j} \mid j = 0, 1, 2, \dots, q\}.$$

Then X_{α} does not divide $\lambda SL(2,q)$ non-trivially if $\alpha \neq \eta_1$.

Proof. Let P be the permutation representation of SL(2,q) acting on the projective line PG(1,q). If the matrix $P(\widehat{X}_{\alpha})$ is non-singular, then X_{α} does not divide $\lambda SL(2,q)$ non-trivially by Theorem 3 with the subgroup H to be the standard Borel subgroup B of order q(q-1). Therefore, it is sufficient to show that $P(\widehat{X}_{\alpha})$ is non-singular.

The elements of PG(1,q) can be arranged as

$$\mathbf{v}_0 = \left\{ \gamma \begin{bmatrix} 1 \\ 0 \end{bmatrix} \middle| \gamma \in \mathrm{GF}(q)^{\times} \right\}$$

and

$$\mathbf{v}_{i} = s_{1}^{i} \mathbf{v}_{0} \text{ for } i = 1, 2, \dots, q.$$

Then the (i, j)-entry $P(\widehat{X}_{\alpha})_{i,j}$ of the matrix $P(\widehat{X}_{\alpha})$ is the number of k's such that $s_1^k u_{\alpha} s_1^{-k} \mathbf{v}_j = \mathbf{v}_i$. Note that the matrix $P(\widehat{X}_{\alpha})$ is circulant: $P(\widehat{X}_{\alpha})_{i,j} = P(\widehat{X}_{\alpha})_{i-j,0}$ since $s_1 \widehat{X}_{\alpha} s_1^{-1} = \widehat{X}_{\alpha}$, where we understand the index modulo q + 1.

For k = 0, 1, 2, ..., q, let j be the index such that

$$s_1^k u_\alpha s_1^{-k} \mathbf{v}_0 = \mathbf{v}_j.$$

We have j = 0 if and only if k = 0. Assume that $j \neq 0$. Then, denoting \mathbf{v}_j by $\left\{ \gamma \begin{bmatrix} b_j \\ 1 \end{bmatrix} \middle| \gamma \in \mathrm{GF}(q)^{\times} \right\}$, we have

$$b_j = \alpha^{-1} \eta_k^{-2} (\eta_2 + \alpha \eta_{k+1} \eta_k)$$
 (1)

since $s_1^k u_{\alpha} s_1^{-k} = \eta_1^{-2} \begin{bmatrix} \eta_2 + \alpha \eta_{k+1} \eta_k & \alpha \eta_{k+1}^2 \\ \alpha \eta_k^2 & \eta_2 + \alpha \eta_{k+1} \eta_k \end{bmatrix}$. If the number of indices k satisfying the equation (1) is even for each $b_j \in \mathrm{GF}(q)$, then the matrix $P(\widehat{X}_{\alpha})$ has entries 1 on diagonal and even integers off diagonal. Hence the determinant of $P(\widehat{X}_{\alpha})$ is odd, in particular, $P(\widehat{X}_{\alpha})$ is non-singular.

Note that equation (1) is equivalent to (2) below

$$\alpha(b_j \eta_{2k} + \eta_{2k+1} + \eta_1) + \eta_2 = 0 \tag{2}$$

by multiplying each terms of (1) by $\alpha \eta_k^2$ and using $\eta_{k+1} \eta_k = \eta_{2k+1} + \eta_1$.

Now we would like to show that the number of k satisfying (2) is even for each $b_j \in GF(q)$. Assume that k satisfies equation (2) and take the index i such that $b_j = \eta_i^{-1}\eta_{i+1}$ by Lemma 8. Then $b_j\eta_i + \eta_{i+1} = 0$ and $0 = (b_j\eta_i + \eta_{i+1})\eta_{i-2k} = b_j(\eta_{2i-2k} + \eta_{2k}) + \eta_{2i-2k+1} + \eta_{2k+1}$. Thus

$$0 = \{\alpha(b_{j}\eta_{2k} + \eta_{2k+1} + \eta_{1}) + \eta_{2}\} + \alpha\{b_{j}(\eta_{2i-2k} + \eta_{2k}) + \eta_{2i-2k+1} + \eta_{2k+1}\}$$
$$= \alpha(b_{j}\eta_{2(i-k)} + \eta_{2(i-k)+1} + \eta_{1}) + \eta_{2};$$

that is, $i-k \pmod{q+1}$ also satisfies equation (2). If $i-k \equiv k \mod q+1$, then $\eta_i = \eta_{2k}$ and $\eta_{i+1} = \eta_{2k+1}$ by definition of η . Hence we have $\alpha \eta_1 + \eta_2 = 0$ since $b_j = \eta_{2k}^{-1} \eta_{2k+1}$. This contradicts that $q \geq 4$ if $\alpha \neq \eta_1$. Therefore, we have the number of k satisfying equation (2) is even if $\alpha \neq \eta_1$. Thus the theorem is proved.

In the case where $\alpha = \eta_1$, the set X_{η_1} divides SL(2,q) since X_{η_1} is a set of representatives of the cosets SL(2,q)/B, where B is the standard Borel subgroup of SL(2,q). Furthermore, Theorem 9 implies the theorem below by taking conjugation.

Theorem 10. Let X be the orbit of an involution by conjugation of a Singer cycle. Then X divides $\lambda SL(2,q)$ nontrivially if and only if X is conjugate to X_{η_1} ; that is, X is a complete set of representatives of left cosets for a Borel subgroup in SL(2,q).

3 In another groups

Finally, we note the known examples for X to divide the symmetric group S_n .

Theorem 11 ([RT]). Let T_0 be the set of transpositions of S_n .

(1) If 1+n(n-1)/2 is divisible by a prime exceeding $\sqrt{n}+2$, then $T:=T_0 \cup \{id\}$ does not divide S_n .

(2) If a prime exceeding $\sqrt{n} + 2$ divides n(n-1)/2, then T_0 does not divide S_n .

Remark ([RT]). The numbers n = 1, 2, 3, 6, 91, 137, 733 and 907 are the only integers less than 1,000 which do not have any prime satisfying the assumption of Theorem 11 (1); that is, n is one of the above if T divides S_n ($n \le 1000$).

Note that the symmetric group S_3 is not divided by T since the sphere packing condition fails with |T| = 4 and $|S_3| = 6$. Moreover, we can prove that T does not divide S_6 , using a combinatorial argument or the fact that the graph $\Gamma(S_6, T)$ does not have eigenvalue 0; that is, the graph $\Gamma(S_6, T_0)$ does not have eigenvalue -1.

Theorem 12 ([Ta]). For a natural number n, let X be the union of three-cycles and the identity in the symmetric group S_n and let $n_0 := \max\{i \mid n \geq (3i-1)i\}$. If a prime exceeding $1 + n/n_0$ divides 1 + n(n-1)(n-2)/3, then the set X does not divide S_n .

Remark ([Ta]). The numbers n = 2, 3, 4, 14 and 4,065 are the only integers less than 40,000 which do not have any prime satisfying the assumption of Theorem 12; that is, n is one of the above if X divides S_n ($n \le 40000$). For n = 4 and 14, however, X does not divide S_n by the sphere packing condition. For n = 3, X divides S_3 as in Theorem 7.

As shown in the examples above, we can easily conjecture that a subset X does not divide G except for the cases in Introduction. We would like to know an example that X divides G with code Y on condition that neither X nor Y is a subgroup of G.

References

- [BI] E. Bannai and T. Ito, Algebraic combinatorics I: Association schemes, Benjamin-Cummings, California, 1984.
- [Bi] N. Biggs, Algebraic graph theory, Cambridge University Press, 1974.
- [It] N. Ito, The spectrum of a conjugacy class graph of a finite group, Math. J. Okayama Univ., 26(1984), 1–10
- [RT] O. Rothaus and J. G. Thompson, A combinatorial problem in the symmetric group, *Pacific J. Math.*, **18**(1966), 175–178.
- [Ta] T. Takematsu, A combinatorial problem in the symmetric group, in preparation.
- [Te] S. Terada, Perfect codes in $SL(2, 2^f)$, preprint 2001, submitted.