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Abstract

We show that the Cayley graph T'(SL(2,27), X) of the fi-

nite special linear group SL(2,2f) does not have any perfect
code if X is closed under conjugation for a natural integer
f > 2. Moreover, as a case where X is not closed under
conjugation, we consider the orbits X of involutions by con-
jugation of a Singer cycle of SL(2,2f) and determine whether

they divide ASL(2,27) non-trivially or not.

1 Introduction

We study a combinatorial problem below in the finite special
linear groups SL(2,27).

Problem. Determine the existence of perfect codes in a Cay-
ley graph.

Perfect codes have been mainly studied over finite fields. Re-
cently perfect codes are studied in distance-transitive graphs
and distance-regular graphs. As a case of a graph which is not



distance-regular, we choose a Cayley graph and consider per-
fect codes in it. Rothaus and Thompson [RT] considered the
existence of perfect codes in the Cayley graph I'(S,,, Ty) of the
symmetric group S, with respect to the set Ty of transposi-
tions. They gave a necessary condition on n for the existence
of perfect codes in I'(S,,Tp) by using representation theory.
N. Ito [It] gave more conditions on n by computing the distri-
bution of character values. In this note, we treat a problem
below which extends the problem above.

Problem. For a finite group GG, determine the pairs of subsets
X and natural integers A such that X divide \G.

If there exists a perfect code in the Cayley graph I'(G, X),
then the union X U {1} divides G. Thus we can settle the
existence problem of perfect codes in a Cayley graph if the
pairs of X and A above are determined. ’

For a finite group G and its non-empty subset (2, the Cayley
graph T'(G, Q) is the graph with the vertex set VI' = G and
the edge set ET' = {(g,h) | gh™' € Q}. A subset C of the
vertex set VI' of a graph I' is called a perfect e-code if, for
any vertex v of I', there is a unique codeword c¢ in - C such
that d(v,c) < e, where 9(v, c) is the ‘distance’ from ¢ to v;
the shortest length of directed paths from ¢ to v. Perfect e-
codes in the Cayley graph I'(G, 2) are perfect one-codes in the
Cayley graph I'(G, X)), where X is the set of vertices z with
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d(z,1) < e in T(G, Q). So when we consider perfect e-codes
in a Cayley graph, we may assume that e = 1.

For a non-empty subset X of a group G and a natural integer
A, we say X divides AG (with code Y) and write XY = A\G
if there is a subset Y of G such that each element g of G
is written in exactly A ways as ¢ = zy with ¢ € X and
y € Y. Note that if X divides AG with code Y, then A =
|X||Y|/|G|. We say X trivially divides AG with code Y if
A = |X| or X = Gj equivalently, Y = G or Y = {y} for
some y € G. As X always divides | X|G trivially, we may
assume that A = 1, 2,...,|X|— 1. If X is a subgroup of
G or a set of representatives of left cosets for some subgroup
of G, then X divides G obviously. Suppose that a subset X
divides A\G with code Y. Then X:(Yg) = AG for any g € G.
Therefore if we can take elements g1, g2, - . -, gr of G such that
YUY g)U(Yg)U---U(Yg,) =Y is a disjoint union, then
X divides r\G with code Y.
Lemma 1. If a subset X divides A\G with code Y # G, then
the Cayley graph T(G, X) has eigenvalue 0. If in addition

X contains the identity, the Cayley graph T(G, X\ {1}) has
etgenvalue —1. '

Proof. Let A be the adjacency matrix of ['(G, X ). For a sub-
set Z of G, let @z be the column vector indexed by the elements
of G whose entries are 1 or 0 according as the vertex belongs
to Z or not. Then we have A®y = A®g and Adg = | X|Pg.
Thus A(®y — M| X|™1®g) =0. Moreover, &y # A X|™'®g
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since Y # G. Hence A has eigenvalue 0. O

Lemma 2 ([BI, Thm. 7.2, pp. 117], [It]). Let G be
a finite group and {C;}; the set of conjugacy classes. Let
X be a subset of G closed under conjugation of G: X =
Uierr C;. The eigenvalues of the Cayley graph I'(G, X) are
Tier |Ci|9(c;)/I(1), where ¢; is a representative of the con-
Jugacy class C; and ¥ runs through irreducible characters

of G.

For example, the character table of the symmetric group S
is given in Table 1, where U/ and S are the conjugacy classes
corresponding to the partitions 2'1! and 3!, respectively. Let

Table 1: The character table of S3.

Classname |1 U S
Size 1 3 2
X1 1 1 1
X2 1 -1 1

X3 2 0 -1

X be a subset of S3 closed under conjugation. If X divides AS3
then we can easily deduce that X = U, S3\U or S3 by Lemma
1 and Lemma 2. In fact, the subset ¢ and its complement S3\U
divide S3 with code Y = {id, (1 2)}.

Note that X divides A\G with code Y if and only if the
complement G \ X divides (|Y| — A)G with code Y.

Theorem 3 (An analogue to [RT]). Let X be a subset
(not necessarily closed under conjugation) of a finite group
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G and )\ a natural integer. Assume that G has a subgroup
H with the property that

(1) the order | X| of X does not divide A\|H|, and

(2) the matriz Py(X) is non-singular, where Py 1s the per-
mutation representation of G acting on the cosets H\G
and X 1s the sum of elements of X in the group algebra
C[G].

Then X does not divide A\G non-trivially.

Proof. Assume that X divides AG with code Y non-trivially;
that is, X-Y = AG. Then Py(X)Pa(Y) = Pa(\G) =
APy(G). By the assumption (2), there exists the inverse matrix
Py(X)~!, which can be described as a polynomial of Py(X).
Since Py(G) = Py(z)Py(G) for any  in G, we have Py(Y) =
Py(X)""\\Py(G) = aAPg(G) for some rational integer a.
Then, by multiplying the last equation by Py (X) from left,
we have a = | X|~!. Hence we have

X AH|
= —Py(G) = ——
7 = Tx

where J is the matrix with all entries 1. This equation con-
tradicts the fact that the matrix Py(Y) = Tyey Pu(y) has
integral entries. O

Py(Y) J,

Corollary 4. Let X divide A\G with code Y. Assume that
there exists a subgroup H of G such that the matriz Py(X)
is non-singular. Then the integer X is divisible by

| X1/ ged(1X], |H]).
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Note that the matrix Py(X) is non-singular if and only if
R(X\ ) is non-singular for each irreducible representation R ap-

pearing in Py.

We consider which X divides G = SL(2,q) for a power ¢
of 2. Note that the special linear group SL(2, 2) is isomorphic
to the symmetric group S3, and so, the argument for ¢ = 2 is

over. In the following, assume that q is a power of 2 greater
than 2. Let Z and J be the index sets

I={1,2, .. (g—2)/2} and J ={1,2,...,q/2}.

The character table of SL(2, q) is given in Table 2, where ¢
(resp. €) is a primitive (¢ — 1)st (resp. (g + 1)st) root of unity
in the complex number field C.

Table 2: The irreducible characters of SL(2,2f).

- Class name 1 U Ti (ieT) Sj (jeq)
Size 1 ¢-1 gq(g+1) g(g—1)
X0 1 1 1 1
X1 q 0 1 -1
Ym mezy |g+1 1 o4 6™ 0
Yn neqy |2—1 -1 0 — (™ +em)

Using Table 2, we have the decomposition of the permu-

tation character 155539 into irreducible characters as shown

in Table 3 for each subgroup H of SL(2,q), since 1551(29) =
|H| 'y (Teer 9(z)) 9 (the first summation runs over all irre-
ducible characters 9 of SL(2,q)) by the Frobenius reciprocity.
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Table 3: The decompositions of 15¢ (G = SL(2,9) and ¢ > 4).

H
The decomposition

|H|

I

1 X0 + axi + (q+1)}:m¢m + (q_l)Zn‘Pn

> + Em¥m + =
q+1 X0 mY¥Ym n¥n
Ng(S)
2(q+1) X0 + Zm 'l)bm

T

q—l X0 + 2Xl + Zm"pm + Zn‘Pn
Ng(T)

+ + Tm Ym

2g—1) | X0 T X ¥

U

q Xo + X1 + 2Em¢m

B Xo -+
¢q-1) | X1

where S is a Singer cycle of G, T the subgroup of diagonal
matrices, U the standard unipotent radical, B = Ng(U) the
standard Borel subgroup, and the summations run over m €
Zandne J.
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2 The results

We first assume that the subset X is CLOSED under conju-
gation. Then, for an irreducible representation R of a finite
group G, the matrix R(X\ ) is a scalar by Schur’s lemma and
so the condition (2) of Theorem 3 can be checked easily.

Theorem 5. Assume that X is a non-trivial subset closed
under conjugation of SL(2,q) (g = 2/ > 4) and divides
ASL(2,q). Then X s one of the following with A divistble
by X' in the table. In the case where 'wm(j@ # 0 for some

m € I, we have better evaluations for X' as in the raund

brackets (( ).

Subset X N
U
Sho X1/ + )

(Uieg, Ti) U Ujesr S;)
SL(2,9)\ (Viez, Ti) U (Ujes S;)
(Uiez Ti) U (Ujer S;) ,
S12,0)\ (Uiex T) U (UjerS) FIX1/'e) (1X1/2),

b 1X1/(pog)

where Iy (resp. Jo) is a subset of the index set T (resp. J)
such that

v (56"’ + J(J_mi) =0 (resp. 3 (8onj +£0_"j> = O)
1€y J€J

for some m € T and n € J, I’ (resp. J') is a subset
(possibly empty) of Z (resp. J ),



po = ged(|Zo|, g—1) if Zo # 0, or g—1 otherwse,
p =gcd(|Z'], ¢q—1) if T' #0, or g—1 otherwise.

Proof. We shall first list up subsets X for which the Cay-
ley graph T'(SL(2, q), X) have eigenvalue 0, and then consider
conditions on X by taking suitable subgroups H in Theorem 3.
Let

X=dl+ L bTi+ T ¢S,
1€1 J€J

where a, b; (i € Z),¢cj (j € J) are 0 or 1.
Assume that the eigenvalue corresponding to xi is equal to
0; that is, 1(X) = 0. Then we have

)0 s balaD 1 alg=1)- ()
. ieL q jeJ q
= (g+1) X b — (g—1) X ¢
€1 JET

By considering this equation modulo ¢ — 1, we have {1 €
T |b; =1} = 0 since Siezb; < |Z| = (¢ — 2)/2. This im-
plies that the index set {j € J | ¢; = 1} is also the empty set.
Therefore, we have

X =U, or.

To determine for X = U, let us set H = S. The irreducible
representations R appearing in Ps are those affording X0, ¥m
(m € I) and ¢, (n € J) by Table 3. Since each of the scalar
matrices R({f) is not zero by the character table, the matrix
Ps(U) is non-singular. If U divides ASL(2, ¢), then the integer
) is divisible by |U|/|S| = |U|/(q + 1) by Corollary 4.
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In the case where wm(y ) = 0 for some m € T, we have 0 =
(¢*—1)a+q(g+1) iez (6™ + 6™ b;. This equation modulo
g implies that a = 0. Thus we have T;cz (6™ +6~™)b; = 0
and so {1 € Z | b; = 1} = T for some 7. Therefore, we have

X = (UiGIO 7;) U (Ujejl S]) .
To determine the integer A for this subset X, let us set H = B.
Then the matrix Pg(X) is non-singular by Table 3, Table 2
and by the argument for-the case where x1(X) = 0. If X
divides ASL(2, q), then X is divisible by | X|/ ged(| X|, |B|) =
| X1/ (gpo) since | X| = g ((g + 1)|Zo| + (¢ — 1)|T’|) and | B| =
q(¢ — 1). Hence we have the third row of the list.

In the case where gon(jf\) = 0 for some n € J, we have

X = (Uiez Ti) U (Ujes, S)
by an argument similar to the previous case. Suppose that
Ym(X) = 0for some m € Z. Then we get the condition on A by
an argument as before. If 1,,(X) # 0 for any m, let us set H =
Ns12,9)(S) and H = Ngp9,4)(T) in turn. Then the matrix
Pg(X) is non-singular for each H by Table 3 and Table 2.
Assume that X divides ASL(2,q). Set ro := ged(|Jo|, g +1) if
Jo # 0, or g+1 otherwise. Then the the integer ) is divisible by
| X1/ ged(1X],2(g + 1)) = |X|/(2r0) and |X|/ ged(|X], 2(q —

1)) = [X1/(2p) as |X]| = q((a+)IT'| + (¢ = D|K]). In

order to take the least common multiple of these two integers,
we calculate the greatest common divisor of 2ry and 2p’. The
integer 2 is, however, the greatest common divisor of the two
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integers since ged(q — 1, g + 1) = ged(q — 1,2) = 1. Theretore,
the integer A is divisible by | X|/2 .

The case where X contains the identity, the detailed proof
is left to the reader. The argument is similar to the above, or

uses Lemma 6. O

Lemma 6. Keeping the assumptions of Corollary 4, sup-
pose that X is closed under conjugation. Then plH| s
divisible by |G| — | X|, where p=|Y| -

Proof. Note that each irreducible component of Pg(G ,\\X )
is a scalar by Schur’s lemma. Since ¥(G \ X)) =—-9(X) #0
for each non-trivial irreducible character ¥ appearing in the
character of Py, the matrix Py(G TX ) is non-singular. Thus
this lemma follows from Theorem 3. O

Problem. For each X in the table of Theorem 5, determine
whether X divides ASL(2, g) or not.

The list in Theorem 5 settles the perfect e-code problem in
SL(2,q) with A = 1 when SL(2,q) acts on the Cayley graph
by conjugation:

Theorem 7. For a subset X closed under conjugation and
a power q of 2, the special linear group SL(2, q) is divided by
X non-trivially if and only if ¢ = 2 and X 1sU or SL(2,2)\
U. Moreover, for a Cayley graph I' = I'(SL(2,q9),X) on
which SL(2,q) acts by conjugation, there ezists a perfect
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code in T if and only if ¢ =2 and X = SL(2,2)\(UU{1}) =
S. |

We next consider the orbit X of an involution by conjuga-
tion of a Singer cycle as a case where X is NOT closed under
conjugation.

Let ¢ > 4 and GF(q?) the finite field of ¢% elements. Let p
be a primitive (¢4 1)st root of unity in the multiplicative group
GF(¢%)" and denote p’ + p~J by 7. Note that 7, belongs to
GF(q). For each a € GF(q) with a # 0, take matrices

1l «
Ug =
p 1

-1
s ML p 0 |lpl
T 0 1pll0pt||1p] °

Lemma 8. By definition of n, we have the following.

and

(1) We have n; = n_j, Ng41 =m0 =0, 0,2 = ny;,

min; = Niv; + Ny and 0+ m; = (g 2 (miz) V2,

where, for a € GF(g), al/? is the element of GF(q)
whose square equals .

(2) If i = n;, then we have i = £3j mod q + 1.

(3) The order of s1 is g + 1; that is, s; is a generator of a
Singer cycle.



(4) We have s1? = ny* [773'+1 s }

m Mj-1
(5) The field GF(q) coincides with the set {nitnim |7 =
1,2,...,q}, since the generator sy of a Singer cycle acts

on the projective line PG(1,q) regularly.

Theorem 9. Let X, be the orbit of the involution u, by
conjugation of (s1):

Xq = {sljuasl—j |17=0,1,2,...,q}.
Then X, does not divide ASL(2,q) non-trivially if a # m.

Proof. Let P be the permutation representation of SL(2, q)
acting on the projective line PG(1,q). If the matrix P(X,) is
non-singular, then X, does not divide ASL(2, ¢) non-trivially
by Theorem 3 with the subgroup H to be the standard Borel
subgroup B of order q(q —1). Therefore, it is sufficient to show
that P(X,) is non-singular.

The elements of PG(1, ¢) can be arranged as

Vo‘—‘{’)’

v; =sivofori=1,2,...,q.
Then the (i, j)-entry P(Xa)s ; of the matrix P (X, ) is the num-
ber of k’s such that slkuasl_kvj = v;. Note that the matrix
P()/(;) is circulant: P(X\a)z-,j = P()?;)i_j,o since 81 Xos7! =

—

: 7€GH®1

and

X, where we understand the index modulo ¢ + 1.
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For k=0,1,2,...,q,let 7 be the index such that
slkuasl_kv() =Vj.

We have 7 = 0 if and only if £ = 0. Assume that j # 0. Then,

b.
denoting v; by {7 Ty e GF(q)x}, we have
bj = o~ i (n2 + o) (1)
)
since slkuasl‘k = 771"2 T2 Mk Ok If the

ank? e+ amgank |
number of indices k satisfying the equation (1) is even for each

b; € GF(q), then the matrix P(X,) has entries 1 on diago-
nal and even integers off diagonal. Hence the determinant of

P(X,) is odd, in particular, P(Xj) is non-singular.
Note that equation (1) is equivalent to (2) below

a(bjnok + Noky1 +m) + 12 =0 (2)

by multiplying each terms of (1) by ani? and using g 17% =

Mk+1 + M.
Now we would like to show that the number of k satisfy-

ing (2) is even for each b; € GF(q). Assume that k satisfies
equation (2) and take the index ¢ such that b; = n;!n;y; by
Lemma 8. Then b;7; + 1,41 = 0 and 0 = (b;n; + 0ip1)Mi—2k =
bj(N2i—2k + Mok) + M2i—2k+1 + N2kt+1. Thus

0 = {a(bjnak + Mok+1 +m) + M} +

a {bj (Noi—2k + M2k) + Moi—ok41 + Nok+1}
a(bj"??(i—k) + Mogi-k)+1 + 771) + 72;



that is, i — k (mod g+ 1) also satisfies equation (2). If i—k = k
mod ¢ + 1, then n; = nox and 7,41 = N2k41 by definition of 7.
Hence we have am + 72 = 0 since b; = Nok ‘Mok41. Lhis
contradicts that ¢ > 4 if @ # 7. Therefore, we have the
number of k satisfying equation (2) is even if o # m;. Thus the
theorem is proved. O

In the case where a = 1y, the set X, divides SL(2, q) since
X, is a set of representatives of the cosets SL(2,q)/B, where
B is the standard Borel subgroup of SL(2,q). Furthermore,

Theorem 9 implies the theorem below by taking conjugation.

Theorem 10. Let X be the orbit of an involution by con-
jugation of a Singer cycle. Then X divides ASL(2,q) non-
trivially if and only if X 1is conjugate to X, ; that 1is, X s
a complete set of representatives of left cosets for a Borel
subgroup in SL(2,q).

3 In another groups

Finally, we note the known examples for X to divide the sym-
metric group Sy,.

Theorem 11 ([RT]). Let Ty be the set of transpositions
of Syp. |

(1) If 1+n(n—1)/2 is divisible by a prime exceeding /n+2,
then T := Ty U {id} does not divide Sy.
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(2) If a prime exceeding /n + 2 divides n(n — 1)/2, then
Ty does not divide S,.

Remark ([RT]). The numbersn =1, 2, 3, 6, 91, 137, 733
and 907 are the only integers less than 1, 000 which do not have

any prime satisfying the assumption of Theorem 11 (1); that
is, n is one of the above if T' divides S, (n < 1000).

Note that the symmetric group S3 is not divided by T since
the sphere packing condition fails with |T'| = 4 and |Ss| = 6.
Moreover, we can prove that 7' does not divide Sg, using a
combinatorial argument or the fact that the graph I'(Sg, T')
does not have eigenvalue 0; that is, the graph I'(Sg, Tp) does
not have eigenvalue —1.

Theorem 12 ([Ta]). For a natural number n, let X be
the unton of three-cycles and the identity in the symmetric
group S, and let ng :=max{: | n > (3¢ — 1)i}. If a prime
exceeding 1+ n/ng divides 1+ n(n — 1)(n — 2)/3, then the
set X does not divide S,.

Remark ([Ta]). The numbers n = 2, 3, 4, 14 and 4, 065
are the only integers less than 40, 000 which do not have any
prime satisfying the assumption of Theorem 12; that is, n is
one of the above if X divides S, (n < 40000). For n = 4
and 14, however, X does not divide S,, by the sphere packing
condition. For n = 3, X divides S5 as in Theorem 7.
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As shown in the examples above, we can easily conjecture
that a subset X does not divide G except for the cases in In-
troduction. We would like to know an example that X divides

G with code Y on condition that neither X nor Y is a subgroup

of G.
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